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Abstract

We are interested in the problem of learn-
ing the dependency structure of a belief net,
which involves a trade-off between simplicity
and goodness of fit to the training data. We
describe the results of an empirical compar-
ison of three standard model selection crite-
ria — viz., a Minimum Description Length
criterion (MDL), Akaike’s Information Cri-
terion (AIC) and a Cross-Validation crite-
rion — applied to this problem. Our results
suggest that AIC and Cross-Validation are
both good criteria for avoiding overfitting,
but MDL does not work well in this context.

1. Introduction

In learning a model of a data-generating process from
a random sample, a fundamental problem is finding
the right balance between the complexity of the model
and its goodness of fit to the training data. A more
complex model can usually achieve a closer fit to the
training data, but this may be because the model re-
flects not just significant regularities in the data but
also minor variations due to random sampling that
give no information about the underlying process. The
true error of a model comes from two sources: (1) the
bias in the structure of the model, which prevents it
from representing the underlying process, and (2) the
variance of estimating the parameters from a limited
sample. More complex model structures have less bias
but their parameters usually have higher variances.
Finding the best model, based on a random sample,
requires finding a balance between the competing ob-
jectives of reducing the bias of the model and reducing
its variance for the sample in question.

Algorithms for model-learning generally divide into
two components: a search algorithm, for finding the
best model in a given class, and a criterion for com-
paring models. Handling the bias-variance trade-off is
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primarily a matter of choosing the criterion to be ap-
plied. One approach is to add a complexity penalty to
the training error so that more complex models have
to fit the data considerably better than smaller models
in order to outscore them. Two standard criteria are
Minimum Description Length (MDL) (Rissanen, 1989)
and Akaike’s Information Criterion (AIC) (Bozdogan,
1987). Another approach is to use only part of the
sample to set the parameters, and use the rest of the
sample to get an unbiased estimate of the true error.
This latter approach is called Cross-Validation (Stone,
1974).

In this paper, we compare these three model selection
criteria, in the context of learning belief nets (defined
in Section 2.1). We had two goals in carrying out this
research. The first was to find a good criterion for
learning belief net structures. The second was to un-
derstand the issues and trade-offs involved in model-
selection. Consequently, we have both prescriptive and
descriptive results. We hypothesized that MDL would
be less effective than either Cross-Validation or AIC,
and in fact we found this to be the case: using the
MDL criterion to select a model results in drastically
underfitting the data in many cases. Therefore, we en-
dorse the use of AIC and Cross-Validation as model
selection criteria for learning belief nets, and caution
against the use of MDL. Our descriptive results ex-
plain the reasons for MDL’s poor performance, and
illustrate some of the issues and trade-offs involved in
model selection.

The outline of this paper is as follows. The rest of
this section discusses previous research related to this
topic. Section 2 gives background information on be-
lief nets, model selection and the criteria under con-
sideration. Section 3 describes the experimental de-
sign we used. Section 4 presents the results of our ex-
periments, using both case studies and comprehensive
tests to establish our claims. Section 5 contains a dis-
cussion of the results and the issues involved in model
selection. It also responds to some possible criticisms



of our research.

1.1 Related Work

There is a considerable literature on learning belief
networks, and in particular, on learning their struc-
ture; see Heckerman (1995) for a detailed overview
of the subject.Note that many researchers, including
Lam and Bacchus (1994), Suzuki (1996), and Fried-
man and Goldszmidt (1996) explicitly use the MDL
criterion (or something close to it) to evaluate candi-
date networks. Our work suggests a problem with this
MDL framework. Friedman and Yakhini (1996) carry
out an analysis of the sample requirements for various
complexity penalty approaches to belief net learning.
While that work also addresses suitability of various
selection criteria, its analysis is theoretical and based
on asymptotic behaviour; by contrast we are empiri-
cally investigating small sample behaviour over a dif-
ferent class of criteria.

Linhart and Zucchini (1986) provide an overview of the
general problem of model selection, covering AIC and
Cross-Validation, but not MDL. Rissanen (1989) gives
a detailed development of the Minimum Description
Length Principle, which is the information-theoretic
view of induction that the MDL criterion is based on.
Bozdogan (1987) provides an easy to read derivation of
AIC and a discussion of its use. Kearns et al (2000)
describe an experiment related to our own, covering
a similar range of criteria, but applied to the prob-
lem of function learning rather than distribution learn-
ing. Their study also found problematic behaviour for
MDL.

2. Background

Notation: We use capital letters to denote random
variables, and use expressions such as P(X = z) and
P(X =z | Y = y) to denote probabilities. We
use expressions such as P(X) and P(X | ¥V = y)
to represent distributions, and P(X | Y) to repre-
sent a set of conditional distributions. In general,
unbound variables are implicitly universally quanti-
fied over their domains, so an “equation” such as
P(X) = PY)P(X | V) means Vz Vy [P(X =z) =
PY =y)P(X =z | Y = y)]. Functions of random
variables are also random variables.

In what follows, we will assume that we are deal-
ing with learning a network over n discrete variables,
{X1,X5...X,}, given a sample s of size m, drawn
from the distribution P(S | T' =t), where T is a ran-
dom variable ranging over the family of models under
consideration, and ¢ is the true model. Note that all

logs are to base 2.

2.1 Belief Networks

A Dbelief network is a representation for a joint
distribution over a set of random variables X =
{X1,X5...X,}. It consists of two parts: a depen-
dency graph, and a set of conditional probability func-
tions. The dependency graph is a directed acyclic
graph, whose vertices are the random variables. Each
variable is assumed to be conditionally independent of
all other variables, given its parents and children in the
graph. Thus, the joint probability distribution over all
variables is given by the pseudo-equation:

n

[P | Pa(xa)),

i=1

P(X1,Xs...X,) =

where Pa(X;) is the vector of X;’s parents. We will
restrict our attention to the case where these condi-
tional probability functions are unrestricted — that
is, where they are given by a complete table listing all
joint assignments to ( X;, Pa(X;)). Hence, the num-
ber of parameters required to represent the function is
exponential in the number of parents.

2.2 Model Selection

The negative log-likelihood is a standard measure of
training error. It is given by:

DL(s,h) = —logP(S=s|T=h),

for a sample s and a hypothesis h. We denote it DL
because it is the description length of s, encoded using
an optimal code based on the distribution given by h.
When s is a sequence of i.i.d. instances z1,z2,.. ., Ty,
of X, then:

DL(s,h) = — > logP(X ==; | T = h).
i=1

KL-divergence (Kullback & Leibler, 1951) is a stan-
dard measure of error for distribution learning. If ¢ is
the “true” model, and h is a hypothesized model, the
KL-divergence of h from ¢ is given by:

PX=2z|T=t)

KLD(t|[h)=> P(X ==z | T =t)log

where x ranges over all possible assignments to X. It
measures the expected cost of encoding instances from
P(X | T =t) using a code based on P(X | T = h).
Note that it can also be written as:

KLD(t|| ) = E[DL(X, h)] — E[DL(X, )],

(X==z|T=h)



where the expectations are taken under P(X | T =t).
The second term is the entropy of P(X | T =1t). Asit
does not depend on h, the first term alone is sufficient
to compare models. We can form an estimate of this
first term:

1
info(h; s) = EDL(S’ h),

The problem, of course, is that if we use s to esti-
mate the parameters of h, then h depends on s and so
info(h; s) is a biased estimator, tending to favour more
complex models. In general, the more complex h is,
the more it will be tuned to s, and the worse the bias in
this estimate will be. Note that there are two different
kinds of bias involved here: as networks become more
complex, they become less representationally biased (
i.e., they can represent a larger class of distributions),
but their parameters have higher variance under sam-
pling, and so training error becomes more biased as
an estimator of true error.

One solution to this problem is to partition s into
two subsamples, a training sample and a validation
sample. We can then use the training sample to fit
the parameters, and the validation sample to estimate
the discrepancy. This removes the bias in the esti-
mate of E[DL(X, h)], but increases the variance in the
E[DL(X, h)] criterion. One way to (seemingly) avoid
the increase in variance is to partition s into k sub-
samples, and repeat the training process k times, each
time reserving one subsample for validation, and af-
terward combining these estimates. The logical ex-
treme is to divide the sample into m subsamples of 1
datum each. This family of methods goes under the
generic name of Cross-Validation, being respectively
called “simple”, “k-fold”, and “leave-one-out” Cross-
Validation (Stone, 1974; Linhart & Zucchini, 1986).
For our experiments, we used the simple version, di-
viding the sample into two equal size subsamples, one
for training and one for validation.

XV (h; s) = info(h(s1);s2)

where s has been split into disjoint halves s; and sa,
and h(sy) is the hypothesis h instantiated using the
instances s;. Note that the final parameters of the
chosen model will be estimated on the full data set s;
it is only for model selection that we need to withhold
data from the parameter estimation process ( i.e., use
h(s1) rather than h(s)).

Another approach is to add a complexity penalty to
the goodness of fit term, to counteract the bias intro-
duced by overfitting to the data. The penalty may be a
function of both the sample size and the number of pa-
rameters of the model. Except for sample size, it does
not otherwise depend on the data. The problem with

this approach is that any such penalty function can-
not, in principle, remove the bias from the estimate,
because the bias of this estimate depends on the the
parameters of the true model. Since the complexity
penalty in no way depends on the true distribution, it
cannot exactly counteract the bias — it introduces a
bias of its own.

There are several well-known penalty functions, each
motivated by different theoretical considerations and
each appropriate for a particular class of learning prob-
lems. The Minimum Description Length (MDL) cri-
terion is based on an information-theoretic view of
induction as data compression; see Rissanen (1989)
for a detailed development. It is equivalent to the
Bayesian Information Criterion, which was introduced
originally by Schwarz (1978) and given a Bayesian in-
terpretation. The information-theoretic interpretation
of the MDL criterion is as the length of an encoding
of the sample as a two part code. The basic idea is
to use the model to define a code for the sample: en-
code the sample by first encoding the model, and then
encoding the data using the code given by the model.
If the model captures significant features of the data,
this encoding will be considerably smaller than sim-
ply sending the sample as is. On the other hand, if
the model represents too much about the sample, the
encoding size will increase. This trade-off is similar
to the bias-variance trade-off (Linhart & Zucchini,
1986). Our version differs from the standard form in
that we have normalized everything by 1/m so we can
compare it across sample sizes and with other criteria.
Some low order terms (all positive) have been dropped
as well — it will be seen that this has no negative im-
pact on the criterion. Our MDL criterion is given by:

MDL(h; s) = info(h;s) +

klogm
2

where k is the number of parameters of h.

Akaike’s Information Criterion (AIC) comes from a
different theoretical perspective. It is an explicit at-
tempt to correct the overfitting bias. See Bozdogan
(1987) for a derivation of the criterion. The complex-
ity penalty is considerably smaller than MDL’s. Our
version of AIC is given by:

1
AIC(h; s) = info(h; s) + i Tonge7

where e is the base of the natural logarithm, and loge
is simply a conversion from nats to bits.
3. Experimental Design

We wanted to observe the behaviour of these criteria
while varying the training sample size and the true



distribution. Because the space of network structures
is huge for even a modest number of variables, a sys-
tematic exploration of that space was an unrealistic
goal. Instead, we focussed on trajectories through that
space; in particular, trajectories from the simplest to
the most complex structure that pass through the true
structure. In short, we repeated many experiments of
the following form:

1. Generate all edges over n vertices.
2. Randomly order these edges.

3. Pick a number of edges, d € [0..(})], for the true
model.

4. Make the true structure from the first d edges in
the randomized list.

5. Generate random probabilities for the parameters
of the true model.

6. Generate samples of various sizes from the true
model.

7. For i =0 to (g), construct a hypothesis structure
with the first ¢ edges in the randomized list. (We
will later refer to the i-edge structure as h;.)

8. For each hypothesis structure, and each criteria,
evaluate the criteria based on the generated sam-
ples, and then fit the parameters.

We generated the parameters for the true model from
different distributions; however, generally we used a
uniform distribution over (0,1). We experimented
with different values for n, and found that 10 was a suf-
ficiently large number to give us interesting results; for
larger numbers of variables the results simply scaled up
without changing qualitatively. We used binary valued
variables only; this also had no qualitative impact on
results, but made the computation and analysis easier.
We describe our results in the section that follows.

4. Results

Using the experimental apparatus described in the pre-
vious section, we could observe the behaviour of each
criterion across a spectrum of complexities and a range
of sample sizes. What we observed followed a remark-
ably consistent pattern, one which suggests caution in
applying the MDL principle.

Figures 1-3 are “snapshots”, taken at different sam-
ple sizes, of the results for one particular true model.
These graphs show the criteria compared across the
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complexity spectrum (marked out in number of de-
pendencies, not number of parameters) when they
are evaluated on samples of size 200, 600 and 1000.
Four values are plotted for each hypothesis structure:
(ERR) the true error, which is the KL-divergence of
the network with parameters estimated from the sam-
ple, (MDL) the MDL criterion, (AIC) the AIC crite-
rion, and (XV) the Cross-Validation criterion. To scale
everything, the true entropy of the distribution has
been subtracted from each criterion. The true model
is the one with 20 edges.

Given this set of hypotheses, an ideal learner using a
criteria y(h; s) would pick a hypothesis with the lowest
v-value. So for the m = 200 graph, the MDL-based
learner would pick hg ( i.e., the the 0-edge structure),
the AIC-based learner would select either hi; or hag,
and the Cross-Validation-based would pick hs;. While
all are wrong (recall the true structure is hgg) note
that the structure returned by MDL, hg, is the worst,
in that its KL-divergence is 0.65, while the answer re-
turned by AIC may have KL-divergence of either 0.60
(h11) or 0.22 (hao) and the answer for XV has KL-
divergence of 0.23 (hs1). Here, MDL is clearly doing
poorly. For m = 600 MDL picks hy; (KL of 0.55), AIC
picks hag (KL of 0.1) and Cross-Validation picks haso
(KL of 0.1); and for m = 1000, all three (correctly)
pick hsg. In all cases, we see that Cross-Validation
finds a structure that is close to optimal, while MDL
does not, at least for small samples.

In general, a criterion that is well suited for optimizing
a function is one that has the same general shape as
the function, and in particular, has the same local and
global minima. The graphs show that XV and AIC
acquire the relevant properties of the ERR function
on much smaller samples than does MDL. We have
observed a threshold pattern here: often a small in-
crease in sample size can make a large difference in
the optimality of MDL’s preferred structure. That is,
before observing a critical quantity of data MDL will
typically prefer very sub-optimal models ( i.e., models
that are too small); on reaching that size, it returns the
optimal model. This is because MDL has a high bias
for simplicity, and this bias dominates its behaviour
on smaller samples, in that the actual fit to the data
has relatively little impact here. Note that the data is
sufficient to find a good model — otherwise XV and
ATC would not have found good models.

Figure 4 shows the complexity penalties of
MDL (klogm)/(2m) and AIC (kloge)/m, plotted
against the actual amount of overfitting measured
(E[DL(X, h)] — info(h; s) for each h), on a sample of
size 400, for the same truth as Figures 1-3. You can
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Figure 5. Case Study 2: A lower entropy truth; m = 400.

see that AIC does a reasonably good job of matching
the overfitting, until the network complexity gets too
high. The MDL penalty is much larger than than the
amount of overfitting.

Figure 5 is a snapshot of the same experiment on a
different truth; here we used the same true structure,
but changed the parameters to be either high or low
(0.9 or 0.1). This generation scheme tended to produce
lower entropy distributions, which have more potential
for data compression. We see the same pattern, albeit
for a smaller sample size (400 is shown here). MDL
is just beginning to overcome its bias, while Cross-
Validation and AIC prefer the ideal structure. Note
that Cross-Validation does not do such a great job of
predicting what the true error of a model is — here it
consistently overestimates — but it does a good job of
predicting the relative error between models, which is
sufficient for model selection.
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Figure 6 shows the empirical convergence rates for
truths with 20 dependencies, whose parameters were
drawn from a uniform distribution. Each point rep-
resents an average of 30 experiments, where each ex-
periment involved generating a new truth. The y-axis
represents the difference in KL-divergence between the
best-scoring model for the criterion and the model with
the lowest true error. As the values go to zero, the
criterion is converging on the ideal structure. Note
that, while the curve created by plotting the averages
is a smooth exponential curve (a best fit is shown for
MDL), the actual behaviour of the criteria on any par-
ticular truth might not be smooth convergence. In
many cases, MDL actually tends to shift almost im-
mediately from preferring high error networks to pre-
ferring the ideal structure (as seen in Figures 3 and
4).

Table 1 summarizes the results of our comprehensive
study. For each (sample-size, truth complexity) com-
bination we carried out 30 experiments of the type de-
scribed above (using a uniform distribution to generate
the true parameters). For each experiment, for each
criterion, we took the network that scored the best and
subtracted its error from the lowest error attained by
any network. We summarize the 30 values thus ob-
tained by giving their mean and median. Note that,
because we manipulated the number of dependencies,
rather than the number of parameters directly, there
was a considerable amount of variance in these values.
This is because the number of parameters depends on
the graph structure, not just on the number of depen-
dencies, though it tends to increase exponentially as
the number of dependencies increases. In fact, even
sorting the networks into buckets based on the num-
ber of parameters did little to reduce the variance: the

parameter values have a large effect on the relative dif-
ficulty of learning the distribution. We use a large font
to indicate the “winners” in each cell, however, the dif-
ferences are more important than distinguishing the
best. Where MDL “won” (low left), for example, the
other methods also did quite well in attaining low er-
ror; but where MDL did poorly (high right), it did
very poorly relative to the other criteria.

4.1 The Real World

Our reviewers suggested complementing our random
experiments with “real-world” problems. Therefore we
carried out additional experiments with the Alarm
and Insurance networks, which are commonly used
in belief net studies. Both the Alarm and Insurance
networks are sparse: the Alarm network has 37 vari-
ables but only 46 links, and the Insurance network
has 27 variables and 52. What we observed on these
networks essentially mirrored our results on random
distributions. For each network we generated samples
of size 200, 500 and 1000. Then we computed the
three criteria under consideration for a range of net-
work structures, including networks whose edges were
a subset of the true network, and networks created
by adding edges to the true network. Because of the
large sample spaces for these distributions we did not
exactly compute the true entropy and KL-divergences,
but instead used a large sample (10,000 data) empiri-
cal approximation.

Each cell in the table below summarizes the results
of 10 experiments of this kind. First we computed
the scores for each network across the spectrum of
complexity; while doing this we also computed the
KL-divergence of each network from the true model.
Next we found the best-scoring network for each cri-
terion, and determined the difference between its KL-
divergence and the lowest KL-divergence obtained by
any network tested (this was not always the true net-
work structure). Finally, we determined the minimum,
median and maximum of these differences for each cri-
teria over the 10 experiments. As we observed in our
random experiments, the MDL score would lead to sig-
nificant underfitting if used as a model selection cri-
terion; AIC was considerably better but slightly less
effective than Cross-Validation on small sample sizes.

5. Discussion

Our empirical results show that optimizing for the
MDL criterion can be a risky strategy for learning be-
lief net structures. While MDL does seem to work for
sufficiently large samples, it can be arbitrarily worse
for even slightly smaller samples; therefore there is no



Table 1. Comprehensive Study.

d= d=10 d=20 d=30
m MDL AIC XV MDL AIC XV MDL AIC XV MDL AIC XV
200
14 0.0015 0.0074 0.0210 0.0618 0.0138 0.0258 0.3079 0.0483 0.0377 0.4705 0.2008 0.0477
M 0.0000 0.0000 0.0117 0.0044 0.0000 0.0096 0.3167 0.0031 0.0031 0.4419 0.1861 0.0275
400
14 0.0000 0.0020 0.0050 0.0277 0.0036 0.0141 0.1658 0.0181 0.0064 0.4965 0.0864 0.0231
M 0.0000 0.0000 0.0014 0.0000 0.0000 0.0038 0.1332 0.0000 0.0000 0.4884 0.0521 0.0000
600
M 0.0000 0.0017 0.0016 0.0111 0.0010 0.0049 0.0946 0.0008 0.0033 0.3601 0.0589 0.0143
M 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0461 0.0000 0.0000 0.3143 0.0031 0.0000
800
14 0.0003 0.0022 0.0032 0.0023 0.0014 0.0047 0.0510 0.0001 0.0084 0.3684 0.0294 0.0020
M 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.3408 0.0000 0.0000
1000
14 0.0000 0.0023 0.0027 0.0013 0.0023 0.0036 0.0319 0.0016 0.0027 0.3150 0.0232 0.0032
M 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0160 0.0000 0.0000 0.3504 0.0000 0.0000
guarantee of graceful degradation. Furthermore, there
Criterio’rfable 2M§;es‘ﬂts fi(\)/fe{irglgance Max is no way to know a priori whether MDL has suffi-
cient data to be effective. By contrast, we found Cross-
m = 200 Validation to be a “safe bet”, one which was never that
VDL ossiTis o osnirss b, (ol Lot Gl e
AIC 0.238702  1.856821 ~ 3.755595 between, but closer to Cross-Validation, in terms of its
XV 0.000000 0.000000 0.238702 risk. ’ ’
m = 500 It is known that any complexity penalty has bias, and
MDL 0.681383 2.651849 4.677080 therefore will do better for some learning problems at
AIC 0.000000 0.000000 0.681383 the expense of others. Of course, a learner should use
XV 0.000000 0.000000 0.097622 any available prior knowledge, and if that supports
some complexity penalty such as AIC or MDL, then
m = 1000 that criterion should be used. On the other hand,
MDL 0.000000 0.615123 2.103506 there are many cases where one has no prior knowl-
AIC 0.000000 0.000000 0.083442 edge; and Cross-Validation minimizes the worst-case
XV 0.000000 0.000000 0.000000 loss without sacrificing too much in terms of average
performance. (Table 1 shows it was the minimax over
the three criteria.) This is consistent with the Cross-
~_ Table 3. Results for Alarm Validation’s other name, “the jackknife” — i.e., a jack
Criterion Min Median Max of all trades but master of none.
m = 200 We now address some possible criticisms of our find-
MDL 0.489475 0.883749 1.033580 ings. First, some might argue that the MDL criterion
AIC 0.489475 0.876087 0.971317 is not intended to optimize for true error, but sim-
XV 0.000000 0.086332 0.595293 ply to implement the MDL principle. Even if Cross-
Validation prefers a more complex network that has
m = 500 lower true error, they might argue that it is not jus-
MDL 0.679741 1.226129 1.300100 tified in doing so. However, anyone using MDL to
AIC 0.000000 0.221338 0.875011 optimize for description length should be aware that
XV 0.000000 0.000538 0.145014 they may obtain very bad generalization error.
A related argument is that the truth tends to be sim-
m = 1000 ple, or that we have strong prior beliefs that it is,
MDL 0.000000 0.474193  0.995653 and therefore we should bias our model-selection algo-
AIC 0.000000  0.004413 ~0.210303 rithms in favour of simplicity. A prior expectation of
XV 0.000000 0.000000 0.008826

simplicity can be incorporated into the training error



term, however, using a Bayesian prior. It may also be
reflected in search strategy or representational choice.
It need not be part of the same mechanism used to
handle overfitting.

Third, there are other possible MDL criteria, and per-
haps we chose the wrong one for our task of learning
belief nets. For example, our MDL criterion implicitly
assumes that the parameters can vary independently,
which is not the case. Note however that the AIC crite-
rion was based on the same assumption, but it still per-
formed fairly well. Moreover, the natural parameteri-
zation for many (perhaps most) learning domains ex-
hibits some parameter-dependencies, which means the
rigorous application of these asymptotic criteria cre-
ates technical difficulties. Cross-Validation does not
have this problem. Note also that our results corrob-
orate the results of Kearns et al. (2000) even though
they were considering a different domain.

Fourth, it is sometimes argued that natural, or “real-
world” problems have a special structure, and there-
fore results based on random experiments have little
value. This is true primarily when prescriptive results
are not complemented by descriptive results, however.
We have attempted to show why the MDL criterion
may lead to underfitting (a large simplicity bias that
overwhelms the goodness of fit on small samples), and
why it is a risky strategy (it exhibits phase-transition
behaviour). Our experiments on real-world data sets
confirmed our random experiments, but more impor-
tantly, we carried out exploratory analyses on a large
number of problem types, seeking falsifying evidence,
but found none.

There are several ways to extend the research, in
particular, by examining the interactions of differ-
ent encoding schemes (Friedman & Goldszmidt 1996),
and search strategies with model selection. It
would also be of interest to compare these meth-
ods to greedy algorithms and/or hypothesis testing
methods. For more information, including a more
complete description of our data and results, see
WWw.cs.ualberta.ca/"vanallen/models.html.

6. Conclusion

We carried out an empirical study to compare three
criteria for selecting belief network structures: MDL,
AIC and Cross-Validation. We found Cross-Validation
was an effective criterion for a wide range of sam-
ple sizes and across the broad spectrum of truth
complexities, both in terms of number of parame-
ters and parameter values. AIC was also effective,
over a somewhat smaller range of truth complexities.

MDL, by contrast, required much larger sample sizes
to reach the same level of performance as either Cross-
Validation or AIC. Based on our experience: for learn-
ing belief net structures, if there is no prior knowledge,
we advise using Cross-Validation; if there is a prior ex-
pectation of simplicity, we advise using AIC; and we
advise against the use of MDL.
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