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Abstract

A knowledge-based system uses its database
(a.k.a. its “theory”) to produce answers to the
queries it receives. Unfortunately, these an-
swers may be incorrect if the underlying the-
ory is faulty. Standard “theory revision” sys-
tems use a given set of “labeled queries” (each a
query paired with its correct answer) to trans-
form the given theory, by adding and/or delet-
ing either rules and/or antecedents, into a re-
lated theory that is as accurate as possible. Af-
ter formally defining the theory revision task
and bounding its sample complexity, this paper
addresses the task’s computational complexity.
It first proves that, unless P = NP, no poly-
nomial time algorithm can identify the opti-
mal theory, even given the exact distribution
of queries, except in the most trivial of situa-
tions. It also shows that, except in such trivial
situations, no polynomial-time algorithm can
produce a theory whose inaccuracy is even close
(i.e., within a particular polynomial factor) to
optimal. These results justify the standard
practice of hill-climbing to a locally-optimal
theory, based on a given set of labeled sam-
ples.

1 Introduction

There are many fielded knowledge-based systems, rang-
ing from expert systems and logic programs to produc-
tion systems and database management systems [Lev84].
Each such system uses its database of general informa-
tion (a.k.a. its “theory”) to produce an answer to each
given query; this can correspond to retrieving informa-
tion from a database (e.g., finding X such that “(makes
acme X) & (color X red)”) or to providing a diagno-
sis or repair, based on a given set of symptoms. Unfortu-
nately, these responses may be incorrect if the underly-
ing theory includes erroneous information. If we observe

*I gratefully acknowledge receiving helpful comments from
George Drastal, R. Bharat Rao, Narendra Gupta, Tom Han-
cock, Sheila Mcllraith, Edoardo Amaldi, Dan Roth and Roni
Khardon.

that some answers are incorrect (e.g., if the patient does
not get better, or the proposed repair does not correct
the device’s faults), we can then ask a human expert to
supply the correct answer. Theory revision is the pro-
cess of using such correctly-answered queries to modify
the initial theory, to produce a new theory that is more
accurate; i.e., which will not make those mistakes again,
while remaining correct on the other queries.

Most theory revision algorithms use a set of transfor-
mations to hill-climb through successive theories, until
reaching a theory whose accuracy is (locally) optimal,
based on a set of correctly-answered queries; cf., [Pol85;
MBS88; Coh90; OM94; WP93; CS90; LDRG94]. This re-
port addresses the obvious question: Is there a better
approach, which will directly yield the globally optimal
theory?

Section 2 first states the theory revision objective more
precisely: as finding the theory with the highest accu-
racy from the space of theories formed by applying a se-
quence of transformations to a given initial theory; here,
each transform involves either adding or deleting either
a rule or an antecedent. It also proves that a polyno-
mial number of training “labeled queries” (each a spe-
cific query paired with its correct answer) is sufficient;
i.e., they provide the information needed to identify a
transformation-sequence that will transform the given
theory into a new theory whose accuracy is arbitrarily
close to optimal, with arbitrarily high probability. Sec-
tion 3 then addresses the computational complexity of
the task of finding the optimal (or even near-optimal)
revised theory. It first proves that the task of comput-
ing the optimal theory within this space of theories is
intractable, even in trivial contexts — e.g., even when
dealing with propositional Horn theories, or when con-
sidering with only atomic queries, or when considering
only a bounded number of transformations, etc.! We
then show that this task cannot even be approximated:
i.e., that no efficient algorithm can find a theory whose
inaccuracy is even close to (i.e., within a particular small
polynomial of ) optimum! We also prove that these nega-
tive results apply even when we are only generalizing, or
only specializing, the initial theory. We also discuss the

! Throughout, we will assume that P# N P [GJ79], which
implies that any NP-hard problem is intractable. This also
implies certain approximation claims, presented below.



efficiency of other restricted variants of theory revision,
providing sharp boundaries that describe exactly when
this task is, versus is not, tractable.

We view these results as sanctioning the standard ap-
proach of using a set of transformations to hill-climb to
a local optimum, based on a set of samples: The labeled
training samples are required to obtain the needed distri-
bution information, and the realization that no tractable
algorithm will be able to find the global optimum justi-
fies hill-climbing to a local optimum, within the space
formed using specified transformations.

We close this section by describing related research.?

Related Research: While most learning systems
begin with an “empty theory” and attempt to learn
a target function (perhaps a decision tree, or a logic
program), theory revision processes work by modify-
ing a given initial theory. There are several imple-
mented theory revision systems. Most use essentially
the same set of transformations we describe — e.g.,
AUDREY [WP93], FonTE [MBS8§], ErTHER [OM94] and
A [LDRGY4] all consider adding or deleting antecedents
or rules. Our analysis, and results, can easily be applied
to many other types of modifications — e.g., specializ-
ing or generalizing antecedents [OM94], using “n-of-m
rules” [BM93], or merging rules and removing chains
paths of rules that produced incorrect results [Coh90;
Coh92].3  While these projects provide empirical evi-
dence of the effectiveness of their specific algorithms, and
deal with classification (i.e., determining whether a given
element is a member of some target class) rather than
general derivation, our work formally addresses the com-
plexities inherent in finding the best theory, for handling
arbitrary queries.

Finally, note that, in some cases, our task can require
extracting the best consistent sub-theory from a given
inconsistent theory. From this perspective, our work is
related to “Knowledge Representation” form of theory
revision, d la Gardenfors [Gar88; AGMS85], Katsuno and
Mendelzon [KM91] and many others. Our work differs
by using the notion of expected accuracy to dictate which
of the “revisions” is best.

2 Framework

We define a “theory” as a collection of (propositional or
first order) Horn clauses, where each clause is a disjunc-
tion of literals, at most one of which is positive. Bor-
rowing from [Lev84; DP91], we also view a theory T as
a function that maps each query to its proposed answer;
hence, T: @ — A, where Q is a (possibly infinite) set of
Horn queries, and A = { No, Yes } is the set of possible

2The technical report [Gre95b] provides a more extensive
literature survey, as well as proofs of the theorems.

®The companion paper [Gre95a) considers yet other ways
of modifying a theory, viz., by rearranging its component
rules or antecedents.

answers.* Hence, given

h :- a, b.
h .- 1, g.
_ i:-g, 3.
T =1¢ .- c, d.
g :— e.
q. ¢ d. e

Ti(h) = Yes, T1(i) = No and T;(i

:= e,j.) = Yes.
Of course, different theories can return different answers
to a given query: For example, let Ty be a theory that

differs from Ty only by excluding the “g :- e” rule;
then Tz(h) = No.

While the non-atomic queries may seem unusual at
first, they are actually quite common. For example, a
medical expert system typically collects relevant data
{£1(p), ..., £,(p) } about an individual patient p, then
determines whether p has some specific disease disease;;
e, if TU{f1(p), ..., £,(p) } |E= disease;(p), where
T is the expert system’s initial theory that contains gen-
eral information about diseases, etc. Notice this entail-
ment condition holds iff T' | —£1(p) V...V ~£,(p) V
disease;(p); i.e., iff the Horn query “disease;(p)
- £1(p), ..., £,(p)” follows from the initial theory.
(See also “entailment queries” [FP93].)

We assume there is a single correct answer to each
question, and represent it using the real-world oracle
O : Q@ — A. Here, perhaps, O(h) = No, meaning
that “h” should not hold. We say an oracle is con-
sistent if it produces the same answers as a Horn the-
ory, over the set of queries @. N.b., we will sometimes
deal with inconsistent oracles; e.g., where O(a) = Yes,
O(b :- a)=Yes, and O(b) = No.

Our goal is to find a theory that is as close to O( )
as possible. To quantify this, we first define the “accu-
racy function” a(-, -) where a(T, ¢q) is the accuracy of
the answer the theory T returned for the query g:

def 1 if T(q) =0(q)
(T, q) - { 0 otherwise

(Notice a(T, -) implicitly depends on the oracle O(-).)
Hence, as O(h) = No, a(Ty, “h”) = 1 as Ty provides
the correct answer while a(Tq, “b”) = 0 as T returns
the wrong answer.

This a(T, -) function measures T’s accuracy for a sin-
gle query. In general, our theories must deal with a
range of queries. We model this using a stationary, but
unknown, probability function Pr: @ ~— [0, 1], where
Pr(q) is the probability that the query ¢ will be posed.
Given this distribution, we can compute the “expected
accuracy” of a theory, T:

A(T) = E[a(T, q)] = Y_ Pr(g) xa(T, q) .
q€Q
We will consider various sets of possible theories,

T = {T,}, where each such 7 contains the set of theories

*To simplify the presentation, the bulk of this paper will
deal only with propositional logic; Section 2.3 below describes
the extensions needed to deal with predicate calculus.



formed by applying various sequences of transformations
to a given initial theory; see Section 2.1 below. Our chal-
lenge is to identify the theory T,,; € 7 whose expected
accuracy is optimal; i.e.,

VT ET: A(Top) > A(T). (2)

There are two challenges to finding such optimal the-
ories. The first is based on the observation that the ex-
pected accuracy of a theory depends on the distribution
of queries, which means different theories will be opti-
mal for different distributions. While this distribution is
not known initially, it can be estimated by observing a
set of samples (each a query/answer pair), drawn from
that distribution. Section 2.2 below discusses the num-
ber of samples required to be confident of obtaining the
information needed to identify a good T* € 7, with high
probability.

We are then left with the challenge of computing the
best theory, once given this distributional estimate. Sec-
tion 3 addresses the computational complexity of this
process, showing that the task is not just intractable,®
but it is also not approximatable — i.e., no efficient al-
gorithm can even find a theory whose expected accuracy
is even close (in a sense defined below) to the optimal
value.

We first close this section by describing the transfor-
mations we will use to define the various spaces of the-
ories, then discussing the sample complexity of the im-
plied learning process and finally providing the exten-
sions needed to deal with predicate calculus.

2.1 Standard Transformations

Standard theory revision algorithms implicitly explore
the space of possible theories X*®°[T¢] = {o(Ty) | ¢ €
¥}, which contains the theories formed by applying
some sequence of theory-to-theory transformations o €
3°° to the given initial theory Ty. Each 0 = 1y o5 0
...oT € X% sequence is formed from X = XpprUXpU
¥paUX a4, where each Tpr € X pg deletes a rule from
the theory, each T4yr € Yap adds a new rule to the
theory, each 7ps € X p4 deletes an existing antecedent
from an existing rule, and each 744 € ¥4 adds a new
antecedent to an existing rule. In some situations, we
will consider “K-bounded sequences”

»E = {oc=momo...on|neEX &c(o) <K }
whose members ¢ = MM omo...om € XX are
sequences of transformations whose total cost ¢(o) =
e(r)+e(m) + ...+ c(m) are at most K, where the cost
¢(r) of the transformation 7 is the number of symbols
added to, or deleted from, T to form 7(T). In the
propositional case, ¢(744) = ¢(rP4) = 1 for each trans-
formation that either adds or deletes an antecedent; and

°As a(T, q) requires computing T(g), which can require
proving an arbitrary theorem, this computation alone can be
computationally intractable, if not undecidable. Our results
show that the task of finding the optimal theory is intractable
even gwen a poly-time oracle for these arbitrary derivations.
Of course, as we are considering only Horn theories, these
computations are guaranteed to be poly-time in the proposi-
tional case [BCH90].

e(tHM) = e(rPF) = |p| for each add-rule (resp., delete-
rule) transformation that adds (resp., deletes) the rule
p, which has 1 conclusion and |p| —1 antecedent literals.

As an example, applying the 3-element sequence
c = Tﬁfe; ¢ © Thoy © Tﬁfqd; _. with total cost
(o) = elrfd 4g) +oe(mily) + (TR 4 )
1+2+4+1 = 4, will transform T; into o(T;) =
Tﬁfe; +q( Tlfff ( Tﬁfcyd; _.(T1))) which is a theory with
8 clauses that differs from Ty by including the clause
“g:-e,q” rather than “g:-e”, including the clause
“f:-d” rather than “f:-c,d”, and by including an extra
clause “b:-£7.

Finally, we will also consider various other restricted
spaces of transformation-sequences, which are formed
from specified types of transformations; e.g.,

E_R’ +4

E+R’ -A

{O’:TloTzO...OTleZ' EXprUXAn }
{O’ITloTQO...OTleZ' EXAarUXpa }
correspond to (unbounded) transformation sequences
that produce more specific (resp., more general) theo-
ries; as well as the bounded variants; e.g. X~ +4 (K) —
{o = mo...om|n € ¥prUXaa & ¢(o0) < K}

Note that the earlier ¥° = NTR-B+4,-4 5nq vK —
yHR-R+A-A(K)

2.2 Sample Complexity

We can use following standard Computational Learn-
ing Theory theorem to bound the number of samples
required to obtain the information needed to identify a
good T* € 7 with high probability; showing in partic-
ular how this depends on the space of theories 7 being
considered:

Theorem 1 (from [Vap82, Theorem 6.2]) Given a
class of theories T and €,6 > 0, let T, € T be the theory
with the largest empirical accuracy after

2 ()

samples (each a labeled query), drawn from the station-
ary distribution, Pr(-). Then, with probability at least
1—46, the expected accuracy of T, will be within € of the
optimal theory in T ; ie., PrA(Ty) > A(Topt) — €] >
1— 6, using the T,y from Equation 2.

Mupper(,]—aeaé) =

This means a polynomial number of samples is suffi-
cient to identify an e-good theory from 7 with probabil-
ity at least 1 — 6, whenever In(|7|) is polynomial in the
relevant parameters. Notice this is true for most of the
classes of theories being considered; e.g., as ~#(T) is
the power-set of the rules in T, |S~F(T)| = 2/Rules(T)l,
which means |In(X~%(T))] = |Rules(T)| = O(|T]),
which clearly is polynomial in the size of the initial the-
ory. This “In(|7|) = poly(|T|)” claim is slightly prob-
lematic for transformations that can add symbols, no-
tably for ¥t® and ¥t4. But even here, the sample
complexity remains polynomial in the size of the re-
vised theory, which effectively means again that sample-
efficient learning remains possible; c¢f., “nonuniform”
pac-learning [BI&S]



2.3 Dealing with Predicate Calculus

To handle predicate calculus expressions, we have to con-
sider answers of the form {Yes[ {X;/v;} ]}, where the
expression within each Yes[] is a binding list of the free
variables, corresponding to a single answer to the query.
For example, given the theory®

tall(john). short(fred).
Tpe = rich(john). rich(fred).
eligible(X) :- tall(X), rich(X)

the query short(Y) will return T,.(short(Y)) =
{Yes[{Y/fred}]}, the query rich(Z) will return the
pair of answers Tp.(rich(Z)) = {Yes[{ Z/John}]

Yes[{ Z/fred}]}, and  Tp.(eligible(4)) =
{ Yes[{A/john}] }. As O(-) and T(-) each returns a set

of answers to each query, we therefore define T’s accu-

o nT (o)
o) = M € [0,1]. All of the

theorems in this paper hold even when considering only
non-recursive Datalog (i.e., “function-free”) theories.

racy score as a(T

3 Computational Complexity

Our basic challenge is to produce a theory T,,; whose
accuracy is as large as possible. The previous section
supplied the number of samples needed to guarantee,
with high probability, that the expected accuracy of the
theory whose empirical accuracy is largest, T, will be
within € of the expected accuracy of this T,p;. This sec-
tion discusses the computational challenge of determin-
ing this T, given this distributional estimate. We show
first that this task is tractable in degenerate trivial situ-
ations: when considering (1) only atomic queries posed
to a (2) propositional theory and being allowed (3) an
arbitrarily large number of modifications to the initial
theory, to produce (4) a perfect theory (i.e., one that
returns the correct answer to every query). This task
becomes intractable, however, if we remove (essentially)
any of these restrictions: e.g., if we seek optimal (rather
than only seeking “perfect”) propositional theories and
are allowed to pose Horn queries, or if we consider predi-
cate calculus theories. It also remains intractable even if
we restrict the number of modifications allowed, which
implies that the task of determining the smallest num-
ber of modifications required to find a perfect theory is
intractable. We next show that these tasks are not just
intractable but worse, they are not even approximatable,
except in the most trivial of situations.

We also consider two special subtasks by restricting
the allowed types of transformations, to consider revision
processes that only specialize (respectively, only gener-
alize) the initial theory. We show that these tasks, also,
are intractable and non-approximatable in essentially all
situations; i.e., except when all four of the above con-
ditions hold.” Figures 1 and 2 summarize the various
cases.

SFollowing PROLOG’s conventions, we will capitalize each
variable, as in the “X” above.

" Actually, there is one other tractable case in the gener-
alization situation; see Figure 1.

3.1 Basic Complexity Results
To formally state the problem:

Definition 1 (TR[X!] Decision Problem)
INSTANCE:

—  Initial theory T;

—  Labeled tmzmng sample S = {{(¢;,0(¢;))} con-
taining a set of Horn queries and the correct an-
swers; and

- Probability value p € [0,1].

QUESTION: Is there a theory T € X1[T] such that
As(T") = ﬁ E(qho(q,))es‘ a(T', ¢;) > p?

The ©1[] function maps a theory to a set of candidate
revised theories; here, we will consider various L*f+4
transformation sets. To simplify our notation, we will
write A( T ) for Ag( T ).

We will also consider the following special cases:
TRperp[S1] requires that p = 1 (ie., seeking perfect
theories, rather than “optimal” theories TR(ON)[ET]);

TRprop [£1] deals with propositional logic (rather than
predicate calculus, TR(preqcar [£1]); and TRazom[S1]
deals with only atomic queries (as opposed to Horn
queries, TR(gorn)[E1]). We will also use TRpj,;[1]
to refer to the task when the queries can be arbitrary
disjunctions, which need not be Horn. (While the other
subscripts are restrictions on TR[XT], this Disj case
is more permissive.) We will also combine subscripts,
with the obvious meanings. When TR, [X1] is a special
case of TRy[X], finding that TR,[¥'] is hard imme-
diately implies that TRy [X1] is hard. Similarly, seeing
that TRy [X1] is easy immediately implies that each spe-
cial case of TRy [X1] is easy. As a final note: all of the
hardness results presented in this paper hold even if we
only consider “3-CNF Horn theories” — i.e., rules whose
antecedents contain at most 2 literals.

Here, it is easy to find the optimal theory in cer-
tain degenerate cases, where either the individual queries
can be decoupled (e.g., when using atomic propositional
queries) or when our actions are forced (e.g., when seek-
ing perfect propositional theories): just throw away the
original theory, then add in propositions corresponding
to the “Yes-labeled queries”. In every other case, how-
ever, the task is intractable:

Theorem 2 The TRprop, atom,(0pt) 1] and
TRprop,(Horn),Pery[X°°] decision problems —are easy;
each other problem s NP-hard.

(This information is summarized in lower left “Un-
bounded, Arbitrary” graph of Figure 1.)

The above theorem describes the complexity of com-
puting the best theory when we are allowed to use an
arbitrarily expensive sequence of transformations. We
get an even stronger negative results if we restrict the
“expense” of the transformation sequence:

Theorem 3

For some K € Z%, the TRprop Atom Perf [X] decision
problem is NP-hard. This is true even if we consider
only labeled queries produced by a consistent oracle (i.e.,
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Any task that “projects” down to an NP-hard task, along any axis, is NP-hard. Here, this means all of the “cross terms” are
NP-hard. (For example ThRevpreacal, Horn,Per[2°°] is NP-hard, as its projection to the “Prop—PredCal x Perf-Opt” plane,
ThRevVpreacal, Atom,Pers[2°°] is NP-hard.) The ThRevprop Horn,0pt [Z°°] case is shown explicitly as each of its projections is

easy; the figures omit all other cross-terms.

Figure 1: Tractability of Theory Revision Tasks

even when there ts a Horn theory that correctly labels all
of the queries).

The observation that determining such “K-step perfect
theories” is NP-hard leads immediately to:

Corollary 3.1 It is NP-hard to compute the minimal-
cost transformation sequence required to produce a per-
fect theory (ie., to compute the smallest K for which
there is @ Tperpect € SE[T) such that A( Trerfect ) = 1),
even in the propositional case when considering only
atomic queries. It is also NP-hard to compute the
“minimal-length” transformation, where the length of the
transformation sequence T, 0 To o ...0 T 18 sumply k —
1.e., when each transformation has “unit cost”.

This negative result shows the intractability of the ob-
vious proposal of using a breath-first transversal of the
space of all possible theory revisions: First test the ini-
tial theory Ty against the labeled queries, and return
Tg if it is 100% correct. If not, then consider all theories
formed by applying a single (unit-cost) transformation,
and return any perfect Ty € X1[Ty]; and if not, consider
all theories in $%[Tg] (formed by applying sequences of
transformations with cost at most two), and return any
perfect Ty € ¥2[Ty]; and so forth.

3.2 Approximatability

Many decision problems correspond immediately to opti-
mization problems; for example, the MINGRAPHCOLOR
decision problem (given a graph G = (N, E) and a pos-
itive integer K, can each node be labeled by one of K
colors in such a way that no edge connects two nodes of
the same color; see [GJ79, p191(Chromatic Number)])
corresponds to the obvious minimization problem: Find
the minimal coloring of the given graph G. We can sim-
ilarly view the TR, [X!] decision problem as either the
maximization problem: “Find the T’ € X1[T] whose ac-
curacy is maximal” or the minimization problem: “Find
the T" € ©1[T] whose inaccuracy is minimal”, where a
theory’s inaccuracy is obviously INA(T) = 1 — A(T).

(While the maximally accurate theory is also mini-
mally inaccurate, these two formulations can lead to
different approximatability results.) For notation, let
“MaxTR,[X1]” (resp., “MINTR,[X1]”) refer to the
maximization (resp., minimization) problem.

Now consider any algorithm B that, given any
MINTR, [X1] instance z = (T, S) with initial theory T
and labeled training sample S, computes a syntactically
legal, but not necessarily optimal, revision B(z) € X1[T].
Then B’s “performance ratio for the instance z” is de-
fined as

MinPerfIMINTR, [EN)( B,z) =
{“”‘(B(”) if INA(opt(z) )20  (3)

InA(opt(z))
0 otherwise
where opt(z) = optarinrr, (st)() is the optimal solution
for this instance; i.e., opt(z) is the theory T, € XT[T]
with minimal inaccuracy over S.
We say a function g(-) “bounds B’s performance ratio

(over MINTR, [E1])” iff

Yz € MINTR,[S1],
MinPerfIMINTR,[EN)( B, z) < g(]z])

where || is the size of the instance 2 = (T, S), which we
define to be the number of symbolsin T plus the number
of symbols used in S. Intuitively, this g(-) function in-
dicates how closely the B algorithm comes to returning
the best answer for z, over all MINTR, [£1] instances z.

Now let Poly( MINTR,[X']) be the collection of
all polytime algorithms that return legal answers to
MINTR, [E1] instances. It is natural to ask for the algo-
rithm in Poly( MINTR, [E1] ) with the best performance
ratio; this would indicate how close we can come to the
optimal solution, using only a feasible computational
time. For example, if this function was the constant 1
for MINTR py,,[£%], then a poly-time algorithm could
produce the optimal solution to any MINTRp,op [X°°]
instance; as TRpyop[X™] is NP-complete,® this would

8While Theorem 2 only proves TRprop[2°] to be NP-
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Figure 2: Approximatability of Theory Revision Tasks

mean P = NP, which is why we do not expect to ob-
tain this result. Or if this bound was some constant
c(z) = ¢ € R, then we could efficiently obtain a solu-
tion within a factor of ¢ of optimal, which may be good
enough for some applications.’

However, not all problems can be so approximated.
Following [CP91; Kan92], we define

Definition 2 A minimization problem MINP is NoT-
PoLYAPPROX if there is a v € RT such that

VB € Poly( MINP ), Jz € MINP,
MinPerfIMINP]( B,z) > |z|".

Lund and Yannakakis [LY93] prove that the “MiIN-
GRAPHCOLOR minimization problem” is NoTPoLY AP-
PROX. We can use that result to prove:

Theorem 4 Unless P = NP
MINTRProp,Dw] [E ] MINTR(PredCaI) (Horn) [
MINTR prop, atom [£X] is NoTPOoLY APPROX.

, each  of
] and

While these results may at first seem trivial, given that
it is NP-hard to determine if a perfect theory exists, no-
tice from Equation 3 that MinPerffMINTR[E>]](-) es-
sentially ignores such perfect theories. Note also that
this result holds in the context based on an “inconsis-
tent” oracle; in such situations, no theory can be perfect.

As |z| can get arbitrary large, this result means that
these MINTR,, [X1] tasks cannot be approximated by any
constant, nor even by any logarithmic factor nor any
sufficiently small polynomial, etc.

3.3 Special Cases

If the theory is too general (i.e., returns Yes too often),
then we may want to consider “specializing” it by apply-
ing only the “delete rule” and “add antecedent” transfor-
mations. In particular, recall that X T4 ~%[T] is the set
of theories obtained using an arbitrary number of such
transformations, and X~f[T] (resp., XT4[T]), is the set
of theories obtained by applying an arbitrary number
of “delete rule” (respectively, “add antecedent”) trans-
formations. Similarly, if the theory is too specific (i.e.,

hard, this problem is clearly in NP.

°There are such constants for some other NP-hard min-
imization problems. For example, there is a polynomial-
time algorithm that computes a solution whose cost is
within a factor of 1.5 for any TRAVELINGSALESMAN-WITH-
TRIANGLE_EQUALITY problem; see [GJ79, Theorem 6.5].

returns No too often), then we may want to consider
“generalizing” it by applying only the “add rule” and
“delete antecedent” transformations; here, we consider
YHRE-AT] ©+HE[T] and ©~4[T], which are the set of
theories obtained by applying an arbitrary number of
such transformations.

Even using only these transformations, almost all of
these tasks remain intractable:

Theorem 5 It is easy to solve
TRProp,Perf [g] fOT g € {E+R’_A: E+R1 E_A}:
TRProp,Atom,Perf [S] for S € {E_R’+A, E_R, E+A}.
However, every other situation, formed by any other
combination of restrictions (read “subscripts”) is NP-
hard. (See middle and right of Figure 1.)

Worse,

Theorem 6 Unless P = NP, each of the following is

NoTPOLYAPPROX:
L4 MINTR(PredCal) Atom [S] MINTRProp (Horn) [S]
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for S € {¥~ R+A DOELID Vs
L MINTR(PredCal),Atom[g] MINTRProp,Disj[g]
for G € {THE-A wHR y-4
¢ MINTRprop, atom[E1]
i E+A,—R(K)’ E_R(K), E+A(K)
for Xt e T-A+R(K) pHR(K) y-A(K)
(See middle and right of Figure 2.)

In each of these cases, however, there is a trivial
polynomial-time algorithm that can produce a theory
whose accuracy (n.b., not inaccuracy) is within a factor
of 2 of optimal. That is, using the ratio of an algorithm’s
accuracy to the optimal value,

M(B,x) =

A(opt(z))

MazPerf[MAXTR,[Z A(B(z))

Theorem 7
For ¥ ¢ {X~ 44 w8 yi+4 y+R -4 v+l yi-4}
1B € Poly( MAXTR[¥]),
MazPerfIMAXTR[V]]( B,z) < 2

The companion paper [Gre95a] considers other related
cases, including the above special cases in the context
where our underlying theories can use the not(-) opera-
tor to return Yes if the specified goal cannot be proven;
i.e., using Negation-as-Failure [Cla78]. It also considers
the effect of re-ordering the rules and the antecedents, in
the context where such shufflings can affect the answers
returned. In most of these cases, we show that the cor-
responding maximization problem is not approximatable
within a particular polynomial.

(All NoTPOLYAPPROX ® )

Prop PredCal



(The extended [Gre95b] explains the asymmetry be-
tween TRprop pery [E~#] versus TRprop,pery [£+F] and
discusses how these results relate to both inductive logic
programming, and to default theories.)

4 Conclusion

A knowledge-based system can produce incorrect an-
swers to queries if its underlying theory is faulty. A
“theory revision” system attempts to transform a given
theory into a related one that is as accurate as possi-
ble, using a given set of correctly-answered “training
queries”. This report describes both the sample and
computational complexity of this task. It first provides
the number of samples required to obtain the statistics
needed to identify a theory (from within a class of the-
ories defined by applying various standard transforma-
tions to a given initial theory) whose accuracy will be
within € of the optimal theory in this class, with prob-
ability at least 1 — §. It then shows that, in general,
the task of computing this globally optimal theory is
intractable — and worse, that no polynomial time algo-
rithm can be guaranteed to find a solution that is even
close to optimal (given the standard P # NP assump-
tion). We also present special cases of these tasks, which
pin-point exactly when the task becomes tractable.
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