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Abstract: Many learning tasks involve searching through a discrete space of performance
elements, seeking an element whose future utility is expected to be high. As the task of
finding the global optimum is often intractable, many practical learning systems use sim-
ple forms of hill-climbing to find a locally optimal element. However, hill-climbing can be
complicated by the fact that the utility value of a performance element can depend on the
distribution of problems, which typically is unknown. This paper formulates the problem
of performing hill-climbing search in settings where the required utility values can only be
estimated on the basis of their performance on random test cases. We present and prove
correct an algorithm that returns a performance element that is arbitrarily close to a local

optimum with arbitrarily high probability.
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1 Introduction

Many learning tasks can be viewed as a search through a space of possible performance
elements [BMSJT78], seeking an element that is optimal, under some utility measure. For
example, many inductive systems seek optimal classification functions that correctly label as
many examples as possible [BFOS84]; and many speed-up learning systems try to produce
optimally efficient problem solving systems [DeJ88, MCK*89, LNR87]. In each case, the
utility of the candidate performance elements is defined as the value of some scoring function,
averaged over the natural distribution of samples (queries, tests, problems, ...) that the
system will encounter.

There are (at least) two potential problems with implementing such a learning system:
First, the task of identifying the globally optimal element is intractable for many spaces;
cf., [Hau88], [Gre9l]. A common solution to this problem is to use a hill-climbing approach
to find a locally optimal solution. Two well-known inductive learning systems that use this
approach are ID3 [Qui86], which uses a greedy technique to reduce the expected entropy
of a decision tree, and BACKPROP [Hin89]. In addition, many speed-up learning methods
can also be viewed as using hill-climbing to improve the expected performance of a problem
solver: this view is clearly articulated in [GD91].

Unfortunately, even finding a locally optimal element can be problematic as it depends
critically on the query distribution, which is often unknown. This paper thus addresses the
following question: to what degree can hill-climbing search be approximated if the utility
function is only estimated by random sampling? Our main result is a positive one, in the form
of an algorithm PALO! that with high probability returns an element that is approximately
locally optimal.

Section 2 motivates the use of “expected utility”as a quality metric for performance ele-
ments. Section 3 then defines the general PALO algorithm, which incrementally produces a

series of performance elements PE;, ..., PE,, such that, with high confidence, each PE;;

for “Probably Approximately Locally Optimal”. As the name suggests, this is related to standard
“Probably Approximately Correct”, or PAC, learning [Val84].
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is statistically likely to be an incremental improvement over PE; and the performance of
the final element PE,, is a local optimal in the space searched by the learner. This uses
an analytic tool, based on mathematical statistics, for evaluating whether the result of a
proposed modification is better than the original PE; this tool can be viewed as mathemat-
ically rigorous version form of [Min88]’s “utility analysis”. The conclusion sketches various

applications of this technique.

2 Framework

We assume as given a (possibly infinite) set of performance elements PE, where each PE €
PE is a function that returns an answer to each given query (or problem or goal or ...).
For example, in context of seeking a good classification function, each PE € P& may be
a particular decision tree [Qui86], or a specific boolean formula [Hau88], or a credulous
prioritized default theory [Gre92]. Within the context of speed-up learning, [GJ92]| views
each PE € P& as a particular PROLOG program, where all of the programs in P& include
exactly the same clauses, but differ in the order of these clauses.

Let @ = {¢1,42,...} be the (possibly countably infinite) set of possible queries, and
c: PE x Q — R be the utility scoring function: ¢(PE, ¢) indicates how well the element PE
does at solving ¢. For example, in a classification task, ¢(PE, ¢) may quantify the accuracy
of PE’s answer to the problem g¢; or in speed-up learning, the (negative of the) time PE
requires to solve ¢. (Higher scores are better.) We require only that the value of ¢(PE, ¢)

be in some bounded interval — i.e.,

for al PE€PE, g€ Q: ¢, < ¢(PE,q) < e+ A (1)

for some constants ¢, € ® and A € RT.
We can use this scoring function to determine which performance element is best for a
single problem. Our performance elements, however, must be able to solve an entire ensemble

of problems; and in general, no single element will be optimal for all possible problems. We
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therefore consider how well each element will perform over the distribution of problems
that it will encounter, and prefer the element of PE whose average is best. We model
the distribution using a probability function, Pr: Q ~— [0,1], where Pr(g¢;) denotes the
probability that the problem ¢; is selected. (That is, we assume that problems are selected
at random, according to this arbitrary, but stationary, distribution.)

The utility measure used to evaluate an element PE is, accordingly, the expected value

of ¢(PE, -) with respect to this distribution, written C[PE]|:

C[PE] < E[(PE,q)] = average ¢«(PE,q) = 3 ¢(PE, q)x Pr(q)

Pr,qge @ 9€Q

Our underlying challenge is to find the performance element whose expected utility is
maximal. As mentioned above, there are two problems: First, the probability distribution,
needed to determine which element is optimal, is usually unknown. Second, even if we knew

that distribution information, the task of identifying the optimal element is often intractable.

3 The PALO Algorithm

This section presents a learning system, PALO, that side-steps the above problems by using a
set of sample queries to estimate the distribution, and by hill-climbing efficiently from a given
initial PE; to one that is, with high probability, close to a local optimum. Subsection 3.1
first summarizes PALO’s code, then states the fundamental theorem that specifies PALO’s
functionality, and presents the foundations for the proof. (The complete proof appears in

the appendix.) Subsection 3.2 then discusses several extensions to this algorithm.

3.1 pPraLO’s Behavior and Code

As shown in Figure 1, PALO takes as arguments an initial performance element PE; €
PE; error and confidence parameters €,6 > 0; a scoring function ¢(-, -) used to specify the

expected utility; and a (possibly infinite) set of possible transformations 7 = {r;}, where
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Algorithm PALO( PEy, €, 6, ¢(+, -), 7))
For j « l.oco do
T(PE;) « {n(PE;j) }
Take n; samples, S < {q1,¢2,¢3,...,¢n,}, where

8\?  j?|T(PE;)| 2 _

[&

n]-<—

For each PE’' € T(PE;)
1
let A[PE', PE;,S] = — > ¢(PE, q) — ¢(PE;, q)
"j qes
If JPE € T(PE;) suchthat A[PE/ PE; S] >
then let PE;;; « PE
else [Here, forall PE' € T(PE;): A[PE, PE; S| < 5]
return PE;

£
2

End For
End pALO

Figure 1: Code for PALO

each 7; maps one performance element to another. Examples of such transformations include
flipping the parity of a variable within a boolean formula, splitting a node in a decision tree
[BFOS84], reordering the clauses in PROLOG program [GJ92] or adding a new macro rule to
a problem solver [GD91].

PALO uses a set of sample queries drawn at random from the Pr(-) distribution to climb
incrementally from the initial PE; to a new PEy; = 7,(PE;) using one 7, € 7, then onto
a third PE; = 7;(PE,;) using another 7; € 7, and so on. PALO terminates on finding a
locally-optimal PE,,: here, no single transformation can convert PE,, into a significantly
better performance element. The theorem below formally specifies PALO’s behavior; its proof

appears in the appendix.

Theorem 1 The PALO( PEy, ¢, 6, ¢(-, -), T ) algorithm incrementally produces a series of
performance elements PE{, PE,, ..., PE,, — requiring only a polynomial number of samples

at each stage — such that, with probability at least 1 — ¢,

1. the expected utility of each performance element is strictly better than its predecessors

1Le.,
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forall 1 <i<j<m: C[PE;] > C[PE;]; and

i@

2. (if PALO terminates) the final performance element returned by PALO, PE,,, is an “-

local optimum” — i.e.,

forall 7; € T: C[PE, ] > C[r;(PE,) ]| — ¢ .

To give some intuitions regarding the statistical methods used in the proof: PALO climbs
from PE; to a new PE; ; if PE;;; is likely to be strictly better than PE;; i.e., if we are

highly confident that C[PE;;;] > C[PE;]. Towards specifying this confidence, define

A; = A[PE, PEsq] € ¢(PE., ¢)-c(PEs q)
to be the difference in utility between using PE, to deal with the problem g¢;, and using
PEg. As each sample ¢; is selected randomly according to a fixed distribution, these A;s are

independent, identically distributed random variables whose common mean is 4 = C[ PE,, |—

C[PEg]. (Notice PE, is better than PEg if ¢ > 0.)

1 n
Let Y, = A[PE,, PEg, {¢:}o;] = =Y ¢(PE,, ¢) — ¢(PEg, ¢;) be the sample
n =1
mean over n sample queries. This average tends to the true population mean p = C[PE, | —

C[PEg]| as n — oo; ie., g = limy— Yy, Chernoff bounds [Che52] describe the probable
rate of convergence: the probability that “Y,, is more than g 4+ +” goes to 0 exponentially

fast as n increases; and for a fixed n, exponentially as 7 increases. Formally,?

n

PriY, >pu+~v] < e3(3) PriY,<p—~] < 3 (3) (3)

using the A from Equation 1, which bounds the size of ¢(PE, ¢)’s range.
Based on these equations, PALO uses the values of A[PE', PE;, S| to determine both
how confident we should be that C[PE’] > C[PE; ] and whether any “7-neighbor” of PE;

(i.e., any 7x(PE;)) is more than € better than PE;; see the proof in Appendix A.

2See [Bol85, p. 12]. These are also called “Hoeffding’s Inequalities”. N.b., these inequalities holds for
essentially arbitrary distributions, not just normal distributions, subject only to the minor constraint that
the random variables {d;} are bounded.
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3.2 Notes and Extensions to PALO

Note#1. A “0-local optimum” corresponds exactly to the standard notion of local optimum;
hence our “e-local optimum” generalizes local optimality. Notice also that we can expect
PALO’s output PE,, to be a real local optimum if the difference in cost between every two

distinct performance elements, PE and 7(PE), is always larger than ¢; i.e., if

foral PE€ PE, 7 €T: 1(PE)#PE = |C[PE]-C[7(PE)]| > €.

Thus, for sufficiently small values of ¢, PALO will always produce a bona fide local optimum.

Note#2. We can view PALO as a variant on anytime algorithms [BD88, DB88] as, at any
time, PALO provides a usable result (here, the performance element produced at the j*
iteration, PE;), with the property that later elements are better than earlier ones; i.e.,
¢ > j means C[ PE;] > C[PE;, ] with high probability. PALO differs from standard anytime

algorithms by terminating on reaching a point of diminishing returns.

Note#3. Although we know the number of samples required per iteration, it is impossible
to bound the number of iterations of the overall PALO algorithm without making additional
assumptions about the search space defined by the 7 transformations. However, it is easy
to see that PALO will terminate with probability 1 if the space of systems is finite. (This
is based on the observation that the only way PALO can fail to terminate is if it cycles
infinitely often — thinking first that some PE; is better than PE; and so switching to it,
and later, thinking that PE; is better, switching back. From the proof in Appendix A,

the probability that this will happen infinitely often goes to 0.)

Note#4. Equation 2 (from Figure 1) is meaningful only if the number of neighbors of each
performance element PE is finite; that is, if 7(PE) = {m(PE)|r, € T} is finite.

This constraint is trivially satisfied if the total number of transformations |7 | is finite.
It also holds in certain important situations where 7 is infinite. Consider, for example,

a typical EBL (Explanation-Based Learning) system that uses operator composition to
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transform performance elements [GD91]: Given an initial performance element PE; with
n operators, PALO can consider (g) distinct new performance elements, each formed by
adding to PE; a new n + 1°* operator that is the result of composing two of PE;’s existing
n operators. Ater it climbs to one of these elements, call it PE;, PALO can then climb
from this PE, to a yet newer PE3 by adding to PE; a new operator formed by composing

two of PEy’s n 4+ 1 operators, and so forth.

As each possible operator corresponds to a finite combination of some set of PE;’s
operators, only a countable number of operators can ever be formed; call them O = {o;}.

We can then define 7 = {7,, ., }:; to be the total set of possible transformations, where

PE + ‘o0;-0;7 if PE includes both o; and o;
Toivoj(PE) =
PE otherwise
where PE + ‘0;-0; refers to the performance element that includes all of PE’s operators
plus the newly composed operator o;-0;. Even though there are an infinite set of such

transformations, notice only a finite number will map any particular element to a different

element; hence |7 (PE)| < oo for every performance element PE.

Note#5. There are many other variants of the PALO algorithm that may be more efficient
in some situations. First, the sample complexity of each step (which is the n; from
Equation 2) involves the constant A defined in Equation 1. We can in general replace the

A in Equation 2 by

e 1
Amae(PE;) < S max{ A((PE;), PE)) [ m €T },

where A(PE;, PE;) is the actual range of the possible values of A[PE;, PE;, ¢] = ¢(PE;, ¢)—

¢(PE;, q) over the set of possible problems ¢ € Q; i.e., there is a ¢;; € R such that

forallqge Q: ¢; < A[PE27 PE;, q] < ¢j+ A(PEZ', PE]')
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By inspection, A[PE;, PE; ] is necessarily less than 2A; hence A,,..(PE;) is always under

A. [GJ92] presents an example of a situation where A,,..(PE;) < .

Second, [Gre92| presents a variant of our PALO algorithm, that differs by taking samples
one at a time, rather than in batches of size n;. As that algorithm can consider climbing
to a (probabilistically) better element, or terminating, after seeing each individual sample,

it can potentially require few samples than our algorithm.

Finally, each of these PALO systems must compute the values of A[PE', PE;, S] for each
PE' € T(PE;). The obvious way of obtaining these values involves constructing and then
running each element in the set 7(PE;) on each sample problem ¢ € S, and comparing
this with the cost of running PE; on S; this requires a total of |S| x (|7 (PE;)|+1) “calls”
of some performance element on some sample. Alternatively, we could run only the single
PE; on the samples in 5, and use an efficient analytic technique to estimate changes in
performance; i.e., to approximate the values of A[r(PE;), PE;, S| for each 7 € 7. This
reduces the total number of “PE on ¢” calls to |S|; see [GJ92] for an example of this

approach.

Note#6. The samples that PALO uses may be supplied by a user of the performance system
who is simply posing questions relevant to his current applications; in this case, PALO is
unobtrusively gathering statistics as the user is solving his own problems [MMS85]. PALO
must then compare the behavior of the current performance element with that of each
alternative element; as discussed in Note 5 above, this can be done efficiently in some
situations. Here, the total cost of the overall system, which both solves performance
problems and learns by hill-climbing to successively better performance elements, will be
only marginally more than the cost of only running the performance element to simply

solve the performance problems.

Notice we are using these user-provided samples to estimate the average utility values of
the performence elements, over the distribution of problems that the element will actually

encounter. This “average case analysis” differs from several other approaches as, for
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example, we do not assume that this distribution of problems will be uniform [Gol79], nor

that it will necessarily correspond to any particular collection of “benchmark challenge

problems” [Kel87].

4 Conclusion

Applications: Several related papers present specific applications of this PALO system.
[GJ92] illustrates how this approach fits into the framework of “explanation-based learning”
systems, and in particular, that how this analysis extends and formalizes [Min88]’s “utility
analysis”. It also presents empirical evidence that this system does work effectively. Other
papers, notably [Gre92], demonstrate the generality of this approach by presenting various
other instantiations of the PALO system, each using its own set of transformations to find a
near-optimal element within a particular set of performance elements, where optimality is

defined in terms of efficiency, accuracy or categoricity.

Contributions: This report first poses two of the problems that can arise in learning
systems that try to identify a performance element whose expected cost is optimal [Vap82,
Hau90]: wviz., that the distribution is usually unknown and that finding a globally optimal
performance element can be intractable. It then presents the PALO algorithm which addresses
these shortcomings by using statistical techniques to approximate the distribution and by

hill-climbing, efficiently, to produce a locally optimal element.

A Proof of Theorem 1

Theorem 1 The paLO( PEq, €, 6, ¢(-, -), 7 ) algorithm incrementally produces a series of perfor-
mance elements PE.,PE,, ..., PE,, — requiring only a polynomial number of samples at each

stage — such that, with probability at least 1 — 6,

1. the expected utilily of each performance element is strictly belter than ils predecessors i.e.,

forall1<i<j<m: C[PE;] > C[PE;]; and
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2. (if PALO terminates) the final performance element returned by PALO, PE,,, is an “c-local
optimum” — I.e.,

forall; € 7: C[PE,]| > C[7j(PE,)]| — ¢ H.

Proof: The n; in Equation 2 is the number of samples required for each iteration; this
quantity is clearly polynomial in |7 (PE;)| and the other relevant parameters, including %
1
and .
Now to prove Parts 1 and 2: Consider first a single interation of the PALO algorithm.

Notice there are two ways of making a mistake:
1. If some PE’ € T(PE;) appears to be better than PE; but is not; or
2. If some PE' € T(PE;) is more than ¢ better than PE;, but appears not to be.

Let

pi = Pr[3PE €T(PE;): A[PE, PE;,5]> % and C[PE'] < C[PE;]]
p, = Pr[3PE € T(PE)): A[PE, PE;, 5] < ¢ and C[PE'] > C[PE;] +¢ |

(3]

be the respective probabilities of these events. Now observe that

o< 3 PT[A[PE’, PEj,S]Zg andC[PE’]—C[PEJ-]<()]
PE/€T (PE;)
S Z e_T(T) (4)
PE/€T(PE;)
_rf e 1t |T(P3’E])|Tr2) <)
< pripmy (E R
36 136
TCE) srpe)= = 7o

Line 4 uses Chernoff bounds (Equation 3) and the observation that the expected value of



Probabilistic Hill-Climbing 12

each A[PE', PE; ¢] is C[PE'] — C[PE;]. Similarly,

[

< ¥ Pr[A[PE’, PE,, 5] < < and C[PE'] - C[PE;] > ¢
PE'€T(PE;) 2
< > e_%(%) < 130
2
PE'€T(PE;) T

Hence, the probability of ever making either mistake at any iteration is under

i i < i 136 5 6 i 1 5 2 5

= 1 2 = §2 x2 72 j=1]2 72 6
as desired. a.
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