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Abstract

This paper investigates the methods for learning predictive classifiers based on Bayesian
belief networks (BN) -- primarily unrestricted Bayesian networks and Bayesian multi-
nets. We present our algorithms for learning these classifiers, and discuss how these
methods address the overfitting problem and provide a natural method for feature subset
selection. Using a set of standard classification problems, we empirically evaluate the
performance of various BN-based classifiers. The results show that the proposed BN and
Bayes multi-net classifiers are competitive with (or superior to) the best known
classifiers, based on both BN and other formalisms; and that the computational time for
learning and using these classifiers is relatively small. These results argue that BN based
classifiers deserve more attention in the data mining community.

1 I nt r oduct i on

Many tasks – including fault diagnosis, pattern recognition and forecasting – can be viewed as
classification, as each requires identifying the class labels for instances, each typically described by a
set of features (attributes). Learning accurate classifiers from pre-classified data is a very active
research topic in machine learning and data mining. In the past two decades, many algorithms have
been developed for learning decision-tree and neural-network classifiers. While Bayesian networks
(BNs) (Pearl 1988) are powerful tools for knowledge representation and inference under conditions of
uncertainty, they were not considered as classifiers until the discovery that Naïve-Bayes, a very
simple kind of BNs that assumes the attributes are independent given the class node, are surprisingly
effective (Langley et al. 1992).

This paper further explores this role of BNs. Section 2 provides the framework of our research,
introducing Bayesian networks and describing standard approaches to learning simple Bayesian
networks, then briefly describing five classes of BNs – Naïve-Bayes, tree augmented Naïve-Bayes
(TANs), BN augmented Naïve-Bayes (BANs), Bayesian multi-nets and general BNs (GBNs). Section
3 describes methods for learning GBNs and Bayesian multi-nets. This section also describes our
approaches to avoiding overfitting and to selecting feature subsets. Section 4 presents and analyzes
our experimental results, over a set of standard learning problems obtained from the UCI Machine
Learning Repository (Murphy and Aha, 1995).
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2 Fr amewor k

2.1 Bayesi an net wor ks

A Bayesian network Θ= ,, ANB is a directed acyclic graph (DAG) AN, where each node Nn∈

represents a domain variable (eg, a dataset attribute), and each arc Aa ∈ between nodes represents a
probabilistic dependency, quantified using a conditional probability distribution (CP table) Θ∈iθ for

each node ni (see Pearl 1988). A BN can be used to compute the conditional probability of one node,
given values assigned to the other nodes; hence, a BN can be used as a classifier that gives the
posterior probabil i ty distribution of the class node given the values of other attributes. Typically,
the associated classifier system would then return class node value with the largest posterior
probability. A major advantage of BNs over many other types of predictive models, such as neural
networks, is that the Bayesian network structure represents the inter-relationships among the dataset
attributes (see Figure 10). Human experts can easily understand the network structures and if
necessary modify them to obtain better predictive models. By adding decision nodes and utility nodes,
BN models can also be extended to decision networks for decision analysis (Neapolitan, 1990).

Applying Bayesian network techniques to classification involves two sub-tasks: BN learning
(training) to get a model and BN inference to classify instances. In Section 4, we will demonstrate
that learning BN models can be very efficient. As for Bayesian network inference, although it is NP-
hard in general (Cooper, 1990), it reduces to simple multiplication in our classification context, when
all the values of the dataset attributes are known.

2.2 L ear ni ng Bayesi an net wor ks

The two major tasks in learning a BN are: learning the graphical structure, and then learning the
parameters (CP table entries) for that structure. As it is trivial to learn the parameters for a given
structure that are optimal for a given corpus of complete data – simply use the empirical conditional
frequencies from the data (Cooper and Herskovits 1992)1 – we will focus on learning the BN
structure.

There are two ways to view a BN, each suggesting a particular approach to learning. First, a BN is a
structure that encodes the joint distribution of the attributes. This suggests that the best BN is the one
that best fits the data, and leads to the scoring-based learning algorithms, that seek a structure that
maximizes the Bayesian, MDL or Kullback-Leibler (KL) entropy scoring function (Heckerman 1995;
Cooper and Herskovits 1992).

Second, the BN structure encodes a group of conditional independence relationships among the nodes,
according to the concept of d-separation (Pearl 1988). This suggests learning the BN structure by
identifying the conditional independence relationships among the nodes. Using some statistical tests
(such as Chi-squared or mutual information), we can find the conditional independence relationships
among the attributes and use these relationships as constraints to construct a BN. These algorithms
are referred as CI-based algorithms or constraint-based algorithms (Spirtes and Glymour 1996;
Cheng et al. 1997a).

Heckerman et al. (1997) compare these two general learning, and show that the scoring-based
methods often have certain advantages over the CI-based methods, in terms of modeling a
distribution. However, Friedman et al. (1997) show theoretically that the general scoring-based

1 These parameters maximize the likel ihood of the data for this structure, which corresponds to minimizes
the KL-divergence.



methods may result in poor classifiers since a good classifier maximizes a different function – viz.,
classification accuracy. Greiner et al. (1997) reach the same conclusion, albeit via a different
analysis. Moreover, the scoring-based methods are often less efficient in practice.

This paper demonstrates that the CI-based learning algorithms can effectively learn BN classifiers.

2.3 Bayesi an net wor k cl assi f i er s

We will consider the following five classes of BN classifiers: Naïve-Bayes, Tree augmented Naïve-
Bayes (TANs), Bayesian network augmented Naïve-Bayes (BANs), Bayesian multi-nets and general
Bayesian networks (GBNs).

2.3.1 Naïve-Bayes

A Naïve-Bayes BN, as discussed in Duda and Hart (1973), is a simple structure that has the class
node as the parent node of all other nodes (see
Figure 1). No other connections are allowed in a Naïve-Bayes structure.

Naïve-Bayes has been used as an effective classifier for many years. Unlike many other classifiers, it
is easy to construct, as the structure is given a priori (and hence no structure learning procedure is
required). Naïve-Bayes assumes that all the features are independent of each other. Although this
independence assumption is obviously problematic, Naïve-Bayes has surprisingly outperformed many
sophisticated classifiers over a large number of datasets, especially where the features are not
strongly correlated (Langley et al. 1992).

In recent years, a lot of effort has focussed on improving Naïve-Bayesian classifiers, following two
general approaches: selecting feature subset (Langley and Sage 1994; Kohavi and John 1997; Pazzani
1995) and relaxing independence assumptions (Kononenko 1991; Friedman et al. 1997). Section 2.3.2
through Section 2.3.4 introduce BN models that extend Naïve-Bayes by allowing dependencies among
the features.

c

x1 x2 x3 x4

Figure 1: A simple Naïve Bayes structure

2.3.2 T r ee A ugment ed Naïve-Bayes (T A N)

TAN classifiers extend Naïve-Bayes by allowing the attributes to form a tree – cf,
Figure 2: here c is the class node, and the features 4321 ,,, xxxx , without their respective arcs from

c, form a tree. Learning such structures can be easily achieved by using a variation of the Chow-Liu
(1968) algorithm. The performance of TAN classifiers is studied in Friedman et al. (1997) and Cheng
and Greiner (1999).

c

x1 x2 x3 x4

Figure 2: A simple TAN structure



2.3.3 BN A ugment ed Naïve-Bayes (BA N)

BAN classifiers extend TAN classifiers by allowing the attributes to form an arbitrary graph, rather
than just a tree (Friedman et al. 1997) – see Figure 3. Learning such structures is less efficient.
Friedman et al. (1997) presents a minimum description length scoring method for learning BAN.
Cheng and Greiner (1999) study a different algorithm based on conditional independence (CI) tests.
Both papers also investigate the performance of BAN classifiers.
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Figure 3: A simple BAN structure

2.3.4 Bayesi an M ul t i -net

Bayesian Multi-nets were first introduced in (Geiger and Heckerman, 1996) and then studied in
(Friedman et al., 1997) as a type of classifiers. A Bayesian multi-net is composed of the prior
probability distribution of the class node and a set of local networks, each corresponding to a value
that the class node can take (see Figure 4). Bayesian multi-nets can be viewed as a generalization of
BANs. A BAN forces the relations among the features to be the same for all the values that the class
node takes; by contrast a Bayesian multi-net allows the relations among the features to be different –
i.e., for different values the class node takes, the features can form different local networks with
different structures. In a sense, the class node can be also viewed as a parent of all the feature nodes
since each local network is associated with a value of the class node. Note that these multi-net
structures are strictly more expressive than Naïve-Bayes, TAN or BAN structures.

To motivate this, consider the tasks in pattern recognition – different patterns may have different
relationships among features.

As multi-net structure imposes no restrictions on the relationships among the attributes, they are a
kind of unrestricted BN classifier. However, while multi-net is more general than BAN, it is often
less complex than BAN since some of the local networks can be simpler than others, while BAN
needs to have a complex structure in order to express all the relationships among the features.
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C = C1 C = C2

Figure 4 A simple Bayesian multi-net

2.3.5 Gener al Bayesi an Net wor k (GBN)

GBN is another kind of unrestricted BN classifier, however, of a different flavor. A common feature
of Naïve Bayes, TAN, BAN and multi-net is that the class node is treated as a special node – the
parent of all the features. However, GBN treats the class nodes as an ordinary node (see Figure 5), it
is not necessary a parent of all the feature nodes. The learning methods and the performance of GBN
for classification are studied in (Friedman et al., 1997; Cheng and Greiner 1999).



Compar ison: To compare GBNs and Bayesian multi-nets, observe that GBNs assume that there is
a single probabilistic dependency structure for the entire dataset; by contrast, multi-nets allow
different probabilistic dependencies for different values of the class node. This suggests that GBN
classifiers should work better when there is a single underlying model of the dataset and multi-net
classifier should work better when the underlying relationships among the features are very different
for different classes.
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Figure 5: A simple GBN

2.4 M ot i vat i ons

This work continues our earlier work presented in (Cheng and Greiner 1999). In that paper, we
studied the CI-based methods for learning GBN and BAN and showed that our CI-based methods
appear not to suffer from the drawbacks of scoring-based methods (see Section 2.2). With a wrapper
algorithm (see Section 3.3), these more general types of BN classifiers do work well. This paper
continues our research in BN classifiers in the following aspects.

1. Our earlier work suggested that the more general forms of BN classifiers can capture the
relationships among the features better and therefore make more accurate predictive models.
However, it did not consider an important class of BN classifiers – Bayesian multi-net. Here we
evaluate its learning efficiency and performance for classification.

2. A node ordering specifies an order of the nodes, with the understanding no node can be an
ancestor of a node that appears earlier in the order. Our earlier work assumed this node
ordering was given, which greatly simplified the task of learning the appropriate structure (for
the CI-based GBN and BAN learners). Here we investigate the effect of such orderings by
learning the BN classifiers with and without node orderings.

3. The learned GBN structure immediately identifies the relevant feature subset – the Markov
blanket (Section 3.4) around the class node. Here we study the effectiveness of such feature
subsets by using it to simplify Bayesian multi-net classifiers.

3 L ear ni ng Unr est r i ct ed BN Classi f i er s

This section presents algorithms for learning general Bayesian networks and Bayesian multi-nets. It
also presents the wrapper algorithm that can wrap around these two learners to help find good
settings for the “ independence test threshold” , and an algorithm for learning multi-nets using feature
subsets.

Figure 6 and Figure 7 sketches the algorithms for learning multi-nets and GBNs. They each use the
CBL i algorithms, which are general purpose BN-learning algorithms: one for the case when node
ordering is given (the CBL1 algorithm – Cheng et al. 1997a); the other for the case when node
ordering is not given (the CBL2 algorithm – Cheng et al. 1997b).

Both CBL1 and CBL2 are CI-based algorithms that use information theory for dependency analysis.

CBL1 requires )( 2MNO mutual information tests to learn a general BN over N attributes from M

training cases, and CBL2 requires )( 5MNO mutual information tests. The efficiency of these

algorithms is achieved by a three-phase BN learning algorithm: drafting, which is essentially the



Chow-Liu (1968) tree construction algorithm; thickening, which adds edges to the draft; and
thinning, which removes unnecessary edges. As these learners use a finite set of samples, they need
to use some threshold +ℜ∈τ when determining whether some statistical condition is met (see below).
Modulo this issue, these algorithms are guaranteed to learn the optimal structure, when the underlying
model of the data satisfies certain benign assumptions. For the correctness proof, complexity analysis
and other detailed information, please refer to (Cheng et al., 1997a; Cheng et al., 1997b).2

3.1 M N i (S: t r ai ni ng set ; F : f eat ur e set ; [ O: Node Or der i ng] ) :
returns Bayesi an M ul t i -net

1. Partition the training set into subsets Si, by the values of the class node.

2. For each training subset Si,
Call BN-structure learning algorithm CBL i on S, F (and O if i=1)
Compute the parameters (using observed frequencies) of each local network.

3. Estimate the prior probability distribution of the class node.

Figure 6 The MNi Algorithm

3.2 GBN i (S: t r ai ni ng set ; F : f eat ur e set ; [ O: Node Or der i ng] ) :
returns Gener al Bayesi an net wor k

1. Call BN-structure learning algorithm CBL i on S, F (and O if i=1)
2. Find the Markov blanket B ⊆ F of the class node.
3. Delete all the nodes that are outside the Markov blanket.
4. Compute the parameters (using observed frequencies)

Figure 7 The GBNi Algorithm

3.3 T he wr apper al gor i t hm

Unlike Naïve-Bayes and TAN learners, there is no restriction on the structures that the GBN learner
and multi-net learner can learn. Therefore, it is possible that a BN model will overfit – ie, fit the
training set too closely instead of generalizing, and so will not perform well on data outside the
training samples. In (Cheng and Greiner 1999), we proposed a wrapper algorithm to determine the
best setting for the threshold τ ; we observed that this increased the prediction accuracy up to 20% in
our experiments. Suppose X-learner is a learning algorithm for classifier X, the wrapper algorithm
can wrap around X-learner in the following way.

When the training set is not large enough, k-fold cross validation should be used to evaluate the
performance of each classifier.

This wrapper algorithm is fairly efficient since it can reuse all the mutual information tests. Note that
mutual information tests often take more than 95% of the running time of the BN learning process
(Cheng et al. 1997b).

2 Here, that the GBN-learner wil l produce the same answers if i t omitted steps 2 and 3 – i.e., i f i t considered
the entire BN, rather than just a subset. We explicitly compute the Markov blanket as it wil l be used by the
subsequent W-MN-FS and W-MN-FS-O learners .



Wrapper (X-learner : L earningAlgor ithm, D: Data)
1. Partition the input training set D = T ∪ H into internal training set T and internal

holdout set H.
2. Call X-learner on the internal training set T m times, each time using a different

threshold setting iτ ; this produces a set of m classifiers { BNi }

3. Select a classifier BN* = ** ,, θAN { }iBN∈ that performs best on the holdout set

H.
4. Keep this classifier’ s structure *, AN and re-learn the parameters (conditional

probability tables) Θ′ using the whole training set D.
5. Output this new classifier.

Figure 8 The wrapper algorithm

3.4 Feat ur e Subset Sel ect i on

Overfitting often happens when there are too many “ parameters” , for a given quantity of data. Here,
this can happen if there are too many nodes, and hence too many CPtable entries. One way to reduce
the chance of this happening is by considering only a subset of the features; this is called “ feature
selection” , and is an active research topic in data mining. For example, Langley and Sage (1994) use
forward selection to find a good subset of attributes; Kohavi and John (1997) use best-first search,
based on accuracy estimates, to find a subset of attributes.

A byproduct of GBN learning is that we can get a set of features that are on the Markov blanket of
the class node. The Markov blanket of a node n is the union of n’ s parents, n’ s children, and the
parents of n’ s children. This subset of nodes can “ shields” n from being affected by any node outside
the blanket. When using a BN classifier on complete data, the Markov blanket of the class node forms
a natural feature selection, as all features outside the Markov blanket can be safely deleted from the
BN. This can often produce a much smaller BN without compromising the classification accuracy.

To examine the effectiveness of such feature subset, we use it to simplify the multi-net learner. The
algorithm is described below.

3.5 M N-FSi (S: t r ai ni ng set ; F : f eat ur e set ; [ O: Node Or der i ng] ) :
returns Bayesi an M ul t i -net

1. Call Wrapper( GBNi ) with the training set Sand all features F.
2. Get the Markov blanket B ⊆ N of the class node.
3. Call Wrapper (MNi) with the training set S and the feature subset B.
4. Output the multi-net classifier.

Figure 9 The MN-FSi algorithm

4 Empi r i cal st udy

4.1 M et hodol ogy

Our experiments involved five datasets downloaded from the UCI machine learning repository -- see
Table 1. When choosing the datasets, we selected datasets with large numbers of cases, to allow us
to measure the learning and classification efficiency. We also preferred datasets that have few or no
continuous features, to avoid information loss in discretization and to be able to compare the learning



accuracy with other algorithms fairly. When we needed to discretize the continuous features, we used
the discretization utility of MLC++ (Kohavi et al. 1994) on the default setting.

Table 1: Datasets used in the exper iments.

Dataset Attr ibutes. Classes I nstances

Tr ain Test

Adult 13 2 32561 16281

Nursery 8 5 8640 4320

Mushroom 22 2 5416 2708

Chess 36 2 2130 1066

DNA 60 3 2000 1186

The experiments were carried out using our Bayesian Network PowerPredictor 1.0. For each data set,
we learned six BN classifiers: Wrapper(GBN) = W-GBN, Wrapper(GBN) with ordering = W-GBN-
O, Wrapper(multi-net) = W-MN, Wrapper(multi-net) with ordering = W-MN-O, Wrapper(multi-net)
with feature selection = W-MN-FS and Wrapper(multi-net) with feature selection with ordering = W-
MN-FS-O. The ordering for the Chess data set is the reversed order of the features that appear in the
data set since it is more reasonable, the ordering we use for other data sets are simply the order of the
features that appear in the data set. For the GBN learner, we also assume that the class node it is a
root node in the network.

The classification process is also performed using BN PowerPredictor. The classification of each case
in the test set is done by choosing, as class label, the value of class variable that has the highest
posterior probability, given the instantiations of the feature nodes. The classification accuracy is
defined as the percentage of correct predictions on the test sets (i.e., using a 0-1 loss function).

The experiments were performed using a Pentium II 300 MHz PC with 128MB of RAM, running
MS-Windows NT 4.0.

4.2 Resul t s

Table 2 provides the prediction accuracy and standard deviation of each classifier. We ordered the
datasets by their training sets from large to small. The best results of each dataset are emphasized
using a boldfaced font. Table 2 also gives the best results reported in the literature on these data sets
(as far as we know). To get an idea of the structure of a learned BN classifier, please see Figure 6.

From Table 2 we can see that all six unrestricted BN classifiers work quite well. Bayesian multi-net
works better on Nursery and Mushroom; while GBN works better on DNA. The two types of
classifiers have similar performance on Adult and Chess. This suggest that some data sets are more
suitable for multi-net classifiers while others are more suitable for GBN, depending on whether the
underlying relationships among the features are different for different class node values.

We can also see that the feature ordering does not make much difference to the performance of the
classifiers. We also tried to provide the BN learners with obviously wrong ordering. Its effect to the
classifier’ s performance is very small. However, with wrong ordering, the classifiers tend to be more
complex.

By comparing the performance of the multi-nets without feature selection to the multi-nets with
feature selection, we can see that the difference is quite small. However, the multi-nets with feature
selection are much simpler. By comparing the running time of learning these classifiers (see Table 3),
we can see that multi-nets with feature selection can be learned faster.



Table 2 The results of unrestr icted BN classifiers
(The numbers in the parentheses are the number of selected features / total number of features)

W-GBN W-GBN-O W-M N W-M N-O W-M N-FS W-M N-FS-O Best-
r epor ted

Adult 86.33±0.53
(7/13)

85.88±0.53
(8/13)

84.83±0.55 85.54±0.54 85.79±0.54
(7/13)

85.46±0.54
(8/13)

85.95

Nursery 91.92±0.81
(8/8)

91.60±0.83
(8/8)

97.13±0.50 97.31±0.48 Same as
W-MN

Same as
W-MN-O

N/A

Mushroom 98.67±0.43
(7/22)

98.74±0.42
(5/22)

99.96±0.07 100 98.67±0.43
(7/22)

99.11±0.35
(5/22)

100

Chess 93.53±1.48
(11/36)

93.62±1.47
(11/36)

96.44±1.11 94.56±1.36 93.25±1.51
(11/36)

93.43±1.49
(11/36)

99.53±0.21

DNA 95.70±1.15
(14/60)

96.63±1.03
(15/60)

94.10±1.34 93.51±1.40 95.36±1.20
(14/60)

95.70±1.15
(15/60)

96.12±0.6

Table 3 gives the total learning time of each BN classifier using the wrapper algorithm. Because the
feature ordering makes little difference on the efficiency, we only give the running time of the learning
procedure without the ordering. (In practice, CBL1 and CBL2 are both linear in the number of
instances and appear )( 2NO in the number of features.) The table shows that all BN classifiers can be

learned efficiently as the longest learning time is less than 25 minutes. Note that the running time for
learning the multi-nets with feature selection includes the running time for learning GBN in the first
step of the feature subset selection algorithm (see Section 3.4). In general, the wrapper algorithm is
about 3 to 5 times slower than only using the learner alone, even though the wrapper algorithm
usually tries 7 to 15 different models before it output the best performer.

Table 3: Running time (CPU seconds) of the classifier learning procedures.

W-GBN W-M N W-M N-FS

Adult 1046 1466 1200

Nursery 54 79 N.A.

Mushroom 322 533 345

Chess 84 163 109

DNA 210 1000 266

In our experiments, we found that the classification process is also very efficient. PowerPredictor can
perform 200 to over 1000 classifications per second depending on the complexity of the classifier.

5 Conclusi on

In this paper, we studied two types of unrestricted BN classifiers – general Bayesian networks and
Bayesian multi-nets. The results show that our CI based BN learning algorithms are very efficient,
and the learned BN classifiers can give very good prediction accuracy. This paper also presents an
effective way for feature subset selection.

As we illustrate in Figure 6, the BN classifiers are also very easy to understand for human being. By
checking and modifying the learned BN predictive models, domain experts can study the relationships
among the attributes and construct better BN predictive models.

Based on these results we believe that the improved types of BN classifiers, such as the ones shown
here, should be used more often in real-world data mining applications.
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Figure 10 The W-GBN classifier for “ Adult” data set
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