Appears in the

Workshop on Knowledge Compilation and Speedup Learning,

Ambherst, June 1993.

Adaptive Derivation Processes

Russell Greiner*
Siemens Corporate Research
755 College Road East
Princeton, NJ 08540-6632

greiner@learning.scr.siemens.com

1 Introduction

Many reasoning systems must reach conclusions based
on stored information; we can often model this as de-
riving logical conclusions from a given knowledge base
of facts. We of course prefer derivation systems that
draw all and only the correct conclusions, and that
reach these conclusions as quickly as possible. Un-
fortunately, a sound and complete derivation process
can be intractable, if not undecidable, in the worse
case [LB85]. This position paper discusses the general
challenge of producing an derivation process that is
as effective as possible, and argues for using a (cau-
tious) adaptive derivation process here. Section 2 first
provides a trivial example to explain the ideas and
motivate our “adaptive process” approach; Section 3
then explains adaptive systems in general, and focuses
on one implementation of this idea, PALO. Section 4
concludes by suggesting some of the extensions and ap-
plications relevant to knowledge compilation and pre-
senting some relevant future work.

2 Framework (and Example)

Extending [Lev84], we model the reasoner as a
parameterized derivation process ASK,(-, -), where
AsK,(K B, ¢) returns the answers to the query ¢
based on the knowledge base K B.! The « subscript is
used to denote the various parameters of this deriva-
tion process, which can include a derivation strategy
that specifies the order in which to consider the clauses

in the knowledge base; cf., [Smi89, GO91]. As a simple

*T gratefully acknowledge receiving helpful comments on
this research from William Cohen and Dale Schuurmans.

'In the propositional case, an “ideal” Aska(K B, g) pro-
cess will return “Yes” iff KB |= q and “No” otherwise. In
the predicate calculus case, such processes could return a
set of binding lists for the free variables in g; etc.

example, consider the knowledge base

child(X) :- boy(X).
- _ child(X) :- girl(X).
KB. = boy(abe). boy(bob).
girl(ann). girl(carla).
and assume the o = (bg) parameter-setting spec-

ifies that each (sub)goal is matched against the
K B’s clauses in a top-to-bottom order (d la Pro-
LoG [CM81], assuming “top” is oldest). Hence,
AsKpgy(K B, child(bo)) first reduces child(bo) to
boy(bo) and checks if this proposition is in KB,’s
set of atomic facts; if not, it then uses the sec-
ond rule to reduce child(bo) to girl(bo) and
checks if this proposition is in KB.. By con-
trast, the o = (gb) parameter-setting uses a differ-
ent ordering of the rules: AsK,(K B., child(bo))
first searches for the girl(bo) proposition, and
then (if necessary) for boy(bo). Notice this
AsK 3y (K B, child(bo)) process will take less time
than AsK(y,)(KB., child(bo)) if girl(bo) is in
K B, but will take more time if boy(bo) € K B,.?

When should we use the AsK, (KB, -) process,
rather than AsK(,)(K B., -)? As both systems pro-
duce the same set of answers to each query, the only
difference can be computational cost. If we knew
the distribution of queries — which here corresponds
to “the respective probabilities of boy(x;) € KB,
and girl(xk;) € KB, over the set of child(x;)
queries” — we could then compute the average time
required to answer ASK,,(K B., child(x;)) queries
for a; € {(gb}), (bg)}, and then chose the a; whose av-
erage cost is less.3

To scale up from this trivial example: In general,

?Here, we assume that bo is known to be either a boy
xor a girl.

#This assumes we know (at least an approximation to)
the cost model for such individual computations — i.e., the
cost of each rule-based reduction and database retrieval.
We are also assuming that the appropriate quality measure
is expected cost, as opposed to “best worst-case cost”, or
some other combining relation; see [GE91].

there can be a set of possible “performance elements”
So = {AsKy,(KB, -)}i, perhaps each formed from
an initial AsKa,(K By, -) by modifying the initial
knowledge base K By and/or the parameters ag. (The
ASK,,(KB, -)s in our example differ only in the or-
der in which they considered the various rule-based
reductions; notice they all use the same KB..) Our
goal is to find the best of these Sg elements.

To define this more precisely: We assume as given a
set of performance elements Se = {O} and a set of
tasks (or problems or queries or ...) @ = {¢;} that
will be drawn according to some stationary (but un-
known) distribution P: @ +— [0,1]. There is also a
cost function ¢: Sg x Q@ — R, which measures the
time © requires to produce an answer to ¢. The qual-
ity measure for comparing different elements is their
respective expected cost,

Cle] = E[«(©,q)] =) Plal x «(©, g)
qeQ

We are seeking the “optimal element” ©,,; € Se,
which is the element whose expected cost is minimal:

VO € So, C[Ogp] < C[O] .

There are two immediate issues: First, we need to
know the distribution of queries P[-] to compute the
expected cost of any given ©; = AsKq,(K B;,) sys-
tem, and hence to determine which is optimal. Unfor-
tunately, this distribution information is usually not
available a priori. Second, even given the distribu-
tion information, the task of computing the globally
optimal system is often intractable; cf., [Gre91].

3 Adaptive Derivation Process

One way around these obstacles is to build an adap-
tive derivation process, which begins with one per-
formance element ©; = AsK,,(KBj, -) and slowly
“adapts” — as ©; is solving the queries posed by the
user, a “learning element” [BMSJ78] monitors the per-
formance, and can eventually replace ©; with another
performance element @5 that is better for this environ-
ment. (In the above example, if the learner observed
that all of the queries dealt with girls, it would replace
the ©1 = AsKy,)(K Bc, -) performance element with
Oz = ASKy)(KB., -).) The learner could then ob-
serve how well this new ©, works over another set of
queries, and possibly replace it with a third, superior
performance element O3, and so on; in essence hill-
climbing in the space of performance elements. Even-
tually the learner may reach a locally optimal element,
and terminate. Hence, the learner is using its obser-
vations (of the user’s queries) to obtain an estimate
of the distribution P[] of the queries, and then using
this information to hill-climb to successive (apparently
better) performance elements.

Algorithm PALO(Oy, €, 6)
For k=1..c0 do
Let 7[0] «— {7(©)|7€T}
Ly [2 (%)2 In 7’“2”:[35"]' WT
Draw Ly sample queries from P[] distribution,
Se={q1,---, 95, }
ForEach ©' € 7[0;] do
Ly
Let A[Q, 0] — Lik;c(@k, q) — (@', q) .
If thereis © € T[O;] st. A[O, O] > £
Then Let Op4q — ©'
Else Return|[Oy].
End For
End paLO

Figure 1: pALO Algorithm

Many speed-up learning systems fit into this frame-
work; cf., [MKKC86, DM86], [LRN86]. Most of these
systems, however, climb to a new performance element
(by incorporating a new macro, or an additional con-
trol heuristic, etc.) after observing a single query;
in each case, forming a new performance system that
would work better on that specific query. Unfortu-
nately, the resulting system may not work well over
the entire distribution of queries, as this one query is
unlikely to be representative; this issue leads to the
utility problem [Min90]. One way to address this prob-
lem is to include a pruning process: After adding in
the rules that appeared useful on single queries, this
pruner would use a set of subsequent queries to iden-
tify, and then remove, the rules that have “negative
utility”.

This position paper, however, advocates a more cau-
tious approach: Only climb to a new element (e.g.,
modify the derivation strategy, or add a new macro)
if we are confident that the resulting element is better
than the current one. Such cautious adaptive systems
(e.g., cOMPOSER [GD92] and paLO [Gre92, GJ92]) first
observe a statistically significant set of queries, implic-
itly computing the empirical expected costs of an el-
ement with, versus without, a proposed modification.
They then climb to the modified element if it is, with
high probability, superior to the original one.

PALO Adaptive System: The rest of this section dis-
cusses the adaptive system, PALO, that is shown in
Figure 1.* PALO takes as arguments an initial perfor-

*This procedure uses the value X, which is the largest
value of the ¢ cost function: VO € Se,q € Q,0 <¢(0, ¢q) <
A

mance element ©p, along with error and confidence
parameters €, 6 > 0. It also uses a set of possi-
ble transformations 7 = {r;};, where each 7, maps
one performance element to another; here by perform-
ing one re-ordering of the possible reductions. The
set 7[0] = {7(©)}; defines the set of ©’s neigh-
bors. PALO will climb from O to one of its neigh-
bors, © € T[Oy], if this @ is statistically likely to
be superior to Oy; i.e., if we are highly confident that
C[Ok+1] < C[Of]. This constitutes one hill-climbing
step; in general, PALO will perform many such steps,
climbing from ©; to ©, to Oz, and so on, until termi-
nating on reaching ©,,. At this point, we are confident
that none of ©,,’s neighbors 7[0,,] is more than e
better than ©,,. Theorem 1 specifies PALO’s behavior
more precisely; its proof appears in the [Gre93b].

Theorem 1 The PALO(61, €,) algorithm incremen-
tally produces a series of performance elements
01,09, ...,0,, such that, with probability at least 1—96,
both

1. the expected cost of each successive element in the
series is strictly better than its predecessors’; i.e.,

Vi>j, (16;] < (16;]

2. (once PALO terminates) the final ordering O, is
an “c-local optimum?”; i.e.,

VreT, C[0,] < (7(0n)] + €.

Moreover, PALO terminates with probability 1, and on
each iteration, requires only a number of samples that
is polynomial in 1/¢, 1/6 and |T|. O

4 TIssues

Notice the overall “performance+adaptation” system
is both solving relevant problems ¢; (at each instant,
using the Oy performance element) and collecting the
statistical data required to decide whether to climb
to a new Op4i1. Our objective is for the “adap-
tive component” to be quite efficient, so the overall
performance+adaptation system is essentially as ef-
ficient as the underlying performance system. The
only challenge, here, is in computing A[©®', O] «
ﬁzqesk c(O, q) — c(©', q) for each ©' € T[O4].
The obvious way of computing this value involves first
running each © on each ¢ € Sk, for each individ-
ual © € 7[0;] U {O}. This can be expensive, as
it involves (|7[Ok]| + 1) x |Sk| (non-trivial) compu-
tations, of which only |Sg| are required to solve the
performance task. A partial solution to this, ex-
plored in [GJ92], is to approximate this A[©’, O]
quantity using guaranteed upper and lower bounds,
L(0,0;) < AJO,0;] < U(O,04), which can be
computed efficiently, based only on information ob-
tained by observing the current ©y solve each problem
q € Sg.

Extensions: There are many obvious extensions,
both to the PALO algorithm in particular and to the
idea of a “cautious adaptor” in general. The PALO al-
gorithm shown here works in a “batched incremental”
mode, as it iteratively uses a set of samples to decide
whether to climb to a new theory, or to terminate.
There is also a strictly-incremental variant of this al-
gorithm, which observes samples one-by-one, and de-
cides after each individual sample, whether to climb,
terminate, or simply draw an additional sample; see
[Gre92]. There are other variants that will climb only a
fixed number of steps [GS92a]. All of these systems are
guaranteed to work appropriately for an arbitrary dis-
tribution of queries; there are yet other PALO-variants
that are designed to handle certain specific distribu-
tions. For example, [Gre93a] describes a system that
is guaranteed to work effectively if the distribution of
¢(©, q) values are normally distributed. [Gre93a] also
provides a preliminary empirical study of these differ-
ent PALO-ish systems, which suggests when each works
most effectively.

Notice that this PALO system is described in terms of
a given set of transformations 7 = {r;}. While our
earlier example deals only with one type of transfor-
mation (namely, by rearranging the order in which the
rule-based reductions are performed), there are many
other ways of modifying a given Ask,,(K B;,) per-
formance element: We could change the knowledge
base by adding in entailed clauses [Gre91] or removing
redundant ones [MCK*89], or even “reformulating”
by adding in clauses that involve newly-defined terms
[Sub89, KS92]. We could also adjust other parame-
ters of the derivation process, for example, by adding
checks for loops, etc. Each of these types of modifica-
tions leads to its own space of performance elements.
[Gre93a] discusses how to find a good space of such
transformations, and specifies when these transforma-
tions will work effectively.

So far, we have been considering only “symbol level”
modifications [Die86], whose objective is to improve
the efficiency of the computation, but not to modify
the set of answers returned. (ILe., we have implicitly
insisted that V¢ Asky,(KB;, ¢) = AsKq(KBy, ¢).
We can, however, use this same type of adaptive pro-
cess for knowledge-level learning as well; [GS92a], for
example, presents a PALO-like system that finds an
optimally-accurate prioritized default theory. (See also

[OM90].)

Finally, we can consider yet other ways of evaluating a
given performance element. In general, we can use an
(essentially) arbitrary user-specified utility function,
which could perhaps quantify how much categoricity
we are willing to sacrifice for an increase in efficiency
[GE91]. As an example, [GS92b] describes an algo-
rithm that re-represents a given theory into a new form
(as a pair of horn theories), from which queries can be
always be answered efficiently. However, the answers

to some queries will be “I don’t know”, rather than
the categorical “Yes” or “No”. (Hence, while this new
system is never incorrect, it may be silent on some
queries.)

Future Work: There are several remaining chal-
lenges. First, the PALO framework assumes we have
access to an arbitrarily large number of sample queries.
It does not address the important, but distinct, chal-
lenge of producing the best possible element, given
only a specified number of samples. Second, this frame-
work assumes that the error and confidence terms e
and § are given initially. We have not explored how to
determine appropriate values for these terms. (Clearly
ideas from both decision theory and the two-armed-
bandit problem [BF85, NT89] are relevant.) Third,
PALO can easily land in a local optimum that is not the
globally best element. One obvious approach, which
we yet to explore, is to combine PALO with some ideas
from simulated annealing [KGV83]. Finally, PALO is
designed to work in a discrete space of elements. It is
not clear if it would apply to domains with an infinite
number of elements, such as weights in a neural net.

References

[BF85] D. A. Berry and B. Fristedt. Bandit
Problems: Sequential Allocation of Exper-

tments. Chapman and Hall, London, 1985.

Bruce G. Buchanan, Thomas M. Mitchell,
Reid G. Smith, and C. R. Johnson, Jr.
Models of learning systems. In Encyclope-
dia of Computer Science and Technology,
volume 11. Dekker, 1978.

William F. Clocksin and Christopher S.
Mellish. Programming in Prolog. Springer-
Verlag, New York, 1981.

Thomas G. Dietterich. Learning at
the knowledge level. Machine Learning,
1(3):287-315, 1986. (Reprinted in “Read-

ings in Machine Learning”).

[BMSJIT78]

[CM81]

[Die86]

[DM86] Gerald DeJong and Raymond Mooney.

Explanation-based learning: An alterna-
tive view. Machine Learning, 1(2):145-76,
1986.

Jonathan Gratch and Gerald Dejong.
COMPOSER: A probabilistic solution to

the utility problem in speed-up learning.
In Proceedings of AAAI-92, 1992.

Russell Greiner and Charles Elkan. Mea-
suring and improving the effectiveness of
representations. In Proceedings of IJCAI-
91, pages 518-24, Sydney, Australia, Au-
gust 1991.

Russell Greiner and Igor Jurisica. A statis-
tical approach to solving the EBL utility

[GDY2]

[GE91]

[GI92]

[GOY1]

[Gre9l]

[Gre92]

[Gre93a]

[Gre93b]

[GS92a]

[GS92b]

[KGV83]

[KS92]

[LB85]

[Lev84]

[LRNS6]

problem. In Proceedings of AAAI-92, San
Jose, 1992.

Russell Greiner and Pekka Orponen.
Probably approximately optimal deriva-
tion strategies. In J.A. Allen, R. Fikes,
and E. Sandewall, editors, Proceedings of
KR-91, San Mateo, CA, April 1991. Mor-

gan Kaufmann.

Russell Greiner. Finding the opti-
mal derivation strategy in a redundant
knowledge base. Artificial Intelligence,
50(1):95-116, 1991.

Russell Greiner. Probabilistic hill-
climbing: Theory and applications. In
Proceedings of CSCSI-92, Vancouver,
June 1992.

Russell Greiner. Palo algorithms. Tech-
nical report, Siemens Corporate Research,

1993.

Russell Greiner. Probabilistic hill-
climbing: Theory and applications. Tech-
nical report, Siemens Corporate Research,

1993.

Russell Greiner and Dale Schuurmans.
Learning an optimally accurate represen-
tational system. In ECAI Workshop
on Theoretical Foundations of Knowledge
Representation and Reasoning, Vienna,

August 1992.

Russell Greiner and Dale Schuurmans.
Learning useful horn approximations. In
B. Nebel, C. Rich, and W. Swartout, ed-
itors, Proceedings of KR-92, San Mateo,
CA, October 1992. Morgan Kaufmann.

S. Kirkpatrick, C. D. Gelatt, and M. P.
Vecchi. Optimization by simulated anneal-

ing. Science, 220:671-680, 1983.

Henry Kautz and Bart Selman. Speeding
inference by acquiring new concepts. In
Proceedings of AAAI-92, San Jose, July
1992.

Hector Levesque and Ron Brachman. A
fundamental tradeoff in knowledge repre-
sentation and reasoning. In Ron Brach-
man and Hector Levesque, editors, Read-
ings in Knowledge Representation, pages
41-70, Los Altos, CA, 1985. Morgan Kauf-

mann Publishers, Inc.

Hector J. Levesque. Foundations of a func-
tional approach to knowledge representa-
tion. Artificial Intelligence, 23:155-212,
1984.

John E. Laird, Paul S. Rosenbloom, and
Allan Newell. Universal Subgoaling and
Chunking: The Automatic Generation and

[MCK*89]

[Min90]

[MKKCS6]

[NTS89]

[OM90]

[Smi89)]

[Subs9]

Learning of Goal Hierarchies. Kluwer Aca-
demic Press, 1986.

Steven Minton, Jaime Carbonell, C.A.
Knoblock, D.R. Kuokka, Oren Etzioni,
and Y. Gil. Explanation-based learning:
A problem solving perspective. Artifi-
cial Intelligence, 40(1-3):63-119, Septem-
ber 1989.

Steven Minton. Quantitative results con-
cerning the utility of explanation-based
learning. Artificial Intelligence, 42(2-
3):363-391, March 1990.

Thomas M. Mitchell, Richard M. Keller,
and Smadar T. Kedar-Cabelli. Example-
based generalization: A unifying view.

Machine Learning, 1(1):47-80, 1986.

Kumpati S. Narendra and Mandayam
A. L. Thathachar. Learning automata:
an introduction. Prentice Hall, Englewood

Cliffs, N.J., 1989.

Dirk Ourston and Raymond J. Mooney.
Changing the rules: A comprehensive ap-
proach to theory refinement. In Proceed-
ings of AAAI-90, pages 815-20, 1990.

David E. Smith. Controlling backward in-
ference. Artificial Intelligence, 39(2):145—
208, June 1989.

Devika Subramanian. A Theory of Justi-
fied Reformulations. PhD thesis; Stanford
University, March 1989.

