Appears in the

Proceedings of the Thirteenth International Conference on Machine Learning (IMLC-96),

Bari Italy, July 1996.

Learning Active Classifiers

Russell Greiner
Siemens Corporate Research
755 College Road East
Princeton, NJ 08540-6632

greiner@scr.siemens.com

Abstract

Many classification algorithms are “passive”,
in that they assign a class-label to each in-
stance based only on the description given,
even if that description is incomplete. In con-
trast, an active classifier can — at some cost
— obtain the values of missing attributes,
before deciding upon a class label. The ex-
pected utility of using an active classifier de-
pends on both the cost required to obtain the
additional attribute values and the penalty
incurred if it outputs the wrong classifica-
tion. This paper considers the problem of
learning near-optimal active classifiers, us-
ing a variant of the probably-approximately-
correct (PAC) model. After defining the
framework — which is perhaps the main con-
tribution of this paper — we describe a sit-
uation where this task can be achieved effi-
ciently, but then show that the task is often
intractable.

1 INTRODUCTION

A classifier is a function that assigns a class label to an
instance. For example, given information about a pa-
tient (such as symptoms and test values), a diagnostic
classifier might specify the disease; given a visual scene
of the world, a visual classifier might decide what ob-
ject is being depicted; etc. Many classifiers (including
most of those considered by researchers attempting to
learn classifiers) have no control over how much data
they see. A more versatile classifier, however, might
first seek additional information about the instance be-
fore deciding upon a classification. As obtaining data
usually involves costs — e.g., to perform a medical test,
or to run an specialized image processor — a classifier
should not necessarily request all possible pieces of in-

Adam J. Grove
NEC Research Institute
4 Independence Way
Princeton, NJ 08540
grove@research.nj.nec.com

Dan Roth
Dept. of Appl. Math. & CS
Weilzmann Institute of Science
Rehovot 76100, Israel

danr@wisdom.weizmann.ac.il

formation. We therefore define an active classifier as
a function which, given a partially specified instance,
returns either a class-label or a strategy that specifies
which test should be performed next.

As an example, suppose that a medical classifier is ini-
tially told only that a patient is jaundiced (i.e., her
eyes are yellowish). A passive classifier must then re-
turn either the diagnosis that the patient has hepatitis,
or the diagnosis that she does not. An active classi-
fier could return either of these responses, or it could
perhaps order a blood test, and if that test is positive,
return the diagnosis “hepatitis”, but if the blood test
is negative, then order a liver biopsy, and decide on
the diagnosis based on the result of this test.

In the standard machine-learning paradigm, a classi-
fier is considered good precisely if it correctly identifies
the class label for as many of the instances as possi-
ble. This measure is too simplistic for active classifiers.
The correct measure is decision theoretic, balancing
the costs of acquiring addition information against the
penalties for incorrect classification. For instance, it
may not be worth spending $1,000 to perform an ex-
pensive test to distinguish two minor variants of hep-
atitis, especially if the treatment is the same for both
[PPI1]; similarly, it is not appropriate to spend $100
to obtain the information required to win a $1 bet.

On any given instance, an active classifier ac has a total
cost, defined as the final penalty plus all costs incurred.
Ideally, we would like to find an active classifier whose
expected total cost, over the distribution of instances
that the classifier encounters, is (near) minimum.

Section 2 contrasts this problem with previous related
work and Section 3 formally defines our framework.
The most distinctive aspect of our proposal is that we
look at the problem of learning active classifiers in an
integrated fashion, as opposed to the “two stage” ap-
proach, of first learning the underlying concept and
then, in a separate phase that does not involve learn-
ing, finding the best active classifier. Section 4 argues

that this idea has the potential to improve over the
two-phase approach. The rest of the paper is a (pre-
liminary) investigation as to whether this potential can
be realized; the news here is mixed. Section 5 demon-
strates an interesting case in which active classifiers
can be learned efficiently. But Section 6 then shows
that the problem is very often intractable. The con-
clusion, Section 7, presents some ideas for future work,
and some thoughts on the contrast between learning
active versus passive classifiers.

2 LITERATURE SURVEY

Our framework is based upon the “standard” learn-
ing model [BMSJ78], in which a learner receives a
set of labeled (i.e., correctly classified) training exam-
ples as input, and must output a good classifier. Fur-
thermore, the notion of “good” we use is a derivative
of the popular probably-approximately-correct (PAC)
model [Val84]. However, we differ from the usual
model in (at least) the following respects. First,
our classifier receives only partially specified instances,
which can omit the values of some or all attributes.
Note, though, that we assume the learner has access
to complete instances.® Second, our classifier is able
to actively request attribute values. Third, the quality
of such a classifiers depends on the ezpected cost of 0b-
taining attributes, as well as its classification accuracy.

Missing attribute values: Several other learning
algorithms produce classifiers that can deal with par-
tially specified instances; cf., [DLR77, LR87, Qui89,
SG94]. However, these classifiers are not able to ac-
tively obtain missing information. [BDD93, KR95]
consider the problem of learning from partially speci-
fied instances, but with the goal of (resp.) later clas-
sifying complete instances, or later reasoning with re-
spect to the learned concept. [GGK96] also considers
learning from partially specified instances, but in situ-
ations where this missing information is known not to
matter to the classification.

Active classification: “Active” classification is not
a novel concept; many diverse areas use related ideas
(including planning, diagnosis, decision theory, and
so on). As just one illustrative example, Heckerman
et al. [HBRY4] describe how to translate any given
Bayesian net (which satisfies certain properties) into
(what we call) an effective “active classifier” that both
isolates and repairs the fault, taking account of costs
and the probability of various diagnoses being correct.

1Of course, the classifier will be tested on instances
drawn from the same distribution on which the learner was
trained; the examples differ only in that the classifier may
initially see the values of fewer attributes. Section 3 ex-
plains why it is reasonable to give the learner this more
complete information.

However such work usually does not consider the prob-
lem of learning such classifiers. One possible reason
is that the tasks of learning and classifying can often
be decoupled from each other. For instance, [HBR94]
could appeal to standard Bayesian-network learning
techniques to learn the necessary distributions. While
conceding that such a decoupling is possible in many
cases, the basic question examined in this paper is
whether there can be any advantage in studying learn-
ing and active classification together; see Section 4.

Our task, of learning active classifiers, should also be
distinguished from another interesting problem, that
of actively learning (passive) classifiers. For example,
[Ang87, Ang88], [KMT93] consider models in which
the learner can query for labels of examples as it is
learning. In contrast, our learner is passive; see Sec-
tion 7.

Utility: There are several learning projects that at-
tempt to learn classifiers that are sensitive to test
costs. For example, Turney [Tur95] (and others; see
references therein) uses heuristic methods to build
decision trees which minimize classification and test
costs; by contrast, we are seeking provably optimal ac-
tive classifiers, of any representation. Haussler [Hau92]
studies a decision-theoretic generalization of the PAC
model, in which the learner may output a classification
or a decision rule with the goal of minimizing a given
loss function. However, his classifier always receives
complete instances, and so is not active in our sense.

A final contrast is with work that assumes that a
learner gets to see a (hopefully good) active classifier
in action, and tries to learn to duplicate its perfor-
mance [Kha96]. In our model, however, the learner
must use the cost structure to discover its own classi-
fication strategy.

3 FRAMEWORK

To simplify the presentation, we make the fairly stan-
dard assumption that all attributes, as well as the clas-
sification itself, are binary.2 Thus we can identify each
domain instance with a finite vector of boolean at-
tributes # = (z1,...,2,). Let X, = {0,1}" be the
set of all possible domain instances. We assume the
world corresponds to a concept ¢, which we view as
an indicator function ¢: X,, — {T, F'}, where € X,
is a member of ¢ iff ¢(&) = T. We assume the learner

?Extensions to non-binary attributes and class-labels
are straightforward. In particular, in natural problems the
appropriate classification can be a member of some arbi-
trary (finite) set. Note that even if the concept is conceptu-
ally “binary”, it is often useful to have an “I-don’t-know”
option available to the classifier, in addition to 7" and F'.

knows the set of possible concepts, C = {p;} (as well
as a representation scheme for these concepts).

A (labeled) example of a concept ¢ € C is a pair
(Z,0(2)) € Xp x {T,F}. We assume there is a sta-
tionary distribution P : X, +— [0, 1] over the space
of domain instances, from which random instances are
drawn independently, both during training and testing
of the learning algorithm.

To continue the earlier example, suppose the first at-
tribute z; in the instance & = (21, 2, ¢3) corresponds
to the jaundice test and x3 and x3 correspond (re-
spectively) to particular tests of the patient’s blood
and liver. Then the instance (1,0,1) corresponds to
a patient whose blood test was negative, but whose
jaundice and liver tests (z; and x3) were both posi-
tive. Assume that the concept associated with hepati-
tis corresponds to any tuple (1,22, z3) where z; = 1
and either 9 = 1 or z3 = 1. Hence labeled ex-
amples of the concept hepatitis include ((1,0,1),T),
((1,0,0), F'), and ((0,1,1), F). Further, P(&) spec-
ifies the probability of encountering a patient with
the particular set of symptoms specified by z; e.g.,
P({1,0,1)) = 0.01 means 1% of the time we will deal
with a patient with positive jaundice and liver tests,
but negative blood test.

Blocking: In the standard (“passive”) model, each
unlabeled instance & is passed as is to the classifier. By
contrast, this paper concentrates on the case in which
the classifier initially sees no attribute values, i.e., it
sees (x,*,...,%). We call this complete blocking. Of
course, our classifier is subsequently allowed to obtain
(at a price) the values of some blocked attributes.

A natural extension of this model considers a separate
blocking process (3 which may initially present some
attribute values to the classifier “for free”; i.e., the
classifier will initially see some element of {0, 1, *}".
This extended model raises a number of interesting
questions (e.g., how does § decide which attributes
to reveal? [SG94]), which space limitations prevent us
from pursuing; but see the brief discussion in Section 6.

Active Classifier: An active classifier ac : X} —
{T, F}U X is a function that maps each such par-
tial instance (zf,a5%,...,2%) € {0,1,%}" to one of
{T, F, 1,...,n}, where ac({z},z%,...,2%)) = T
(resp., F') means the classifier returns the categor-
ical answer T (resp., categorical F'). Returning
ac((xy,2%,...,2k)) =1 €{l,...,n} means the classi-
fier is requesting the value of the z; attribute. Hence,
ac((1,*,*)) = 2 means the classifier is requesting the
value of zy — i.e., asking to perform the blood test
on the patient. The classifier then calls itself on the
result, say (1,0, *), perhaps to return ac({(1,0, %)) = F.
In general, of course, repeated calls to ac might be nec-
essary (thus requesting the values for several variables)

before a final answer is produced.

The learner’s task may be to find the optimal active
classifier amongst the set of all possible classifiers A,
or to find the best classifier of some particular type
A" C A. In general, A or A’ should be viewed as
a particular “programming language” — a representa-
tion language and computational model for some (pos-
sibly restricted) class of active classifiers. Given some
A’ it then makes sense to talk of the size of an ac-
tive classifier, |ac|, as well as its running time (i.e., the
time it takes ac, given input z* € {0,1,*}", to out-
put its recommendation). Naturally, we are interested
in finding classifiers whose size is polynomial in the
relevant quantities (such as |p|, the size of the true
concept). Furthermore, we want active classifiers that
are “fast” to execute. As any particular active clas-
sifier only has finitely many inputs, we cannot speak
of its asymptotic execution time in the sense of stan-
dard complexity theory. We can, however, impose the
requirement of efficient execution indirectly, as a prop-
erty of the computational model given by .A’.3 In this
paper we restrict attention to A’ with the property
that
there is some fixed polynomial p4:(-) such that,
for all ac € A’, the running time of ac is at most

pa(lac]).

The question of how best to represent classifiers is a
subtle one, but largely beyond the scope of this paper.
In the following we occasionally refer to a very simple
lookup-table representation language. In this, one sim-
ply lists the classifier’s recommendations for various
tuples * € {0, 1, x}"; if the classifier sees a tuple that
is not on the list, it performs some constant action
(perhaps announce the classification F'). The size of
an active classifier thus represented is just the length
of the given list, and the run-time complexity of using
such a classifier is at most linear in its size.

Total Cost: To evaluate the quality of an active clas-
sifier, we assume as given a cost function ¢; = ¢(i) € R
(for ¢ = 1...n) which specifies the cost of obtain-
ing the value of the i** attribute z;; and a penalty
function err(vy, vg), which specifies the penalty for
returning v; € {7, F} when the correct answer is
ve € {T,F}. Without loss of generality, we can as-
sume err(7T, T) = err(F, F) = 0, rescaling the other
err(-, -) values if necessary. To avoid triviality, we also
assume that err(7, F),err(7, F) > 0.

Suppose that z* € {0, 1, *}" represents the classifier’s
current knowledge about the instance £ € X,,. We can
then determine the “total cost”, tcac(&, *) € R, that
ac would spend to complete the classification (together
with the misclassification penalty, if appropriate). We

®This is very similar to the standard PAC requirement
that the output representation can be evaluated efficiently.

define teac(Z) = teac(Z, (*,*,...%)) as the total cost
when the classifier begins with a completely blocked
instance.

We determine tcac(Z,&*) recursively. If ac(z*) €
{T, F'}, then tcac(Z,*) = err(ac(Z*), ¢(Z)) where
¢ is the target formula. Otherwise, if ac(Z*) =i €
{1,...,n}, then tcac(Z,z*) = (i) + tcac(Z, lZHx[])
where Z7_ (] is the result of replacing the variable
*) with the value of that & spec-
As an example, suppose

indexed by i = ac(&
ifies for this variable, Z[d].

& =1(1,0,1), & = (*,*,%) (i.e., we have not yet asked
for any attribute’s value), and ac(z*) = 2. Then
i’;._»i[z] = (,0,%), as it replaces the &% value with

£[2] = 0. If we suppose further that ac({x,0,%)) = F,
then

tCac((l,O, 1)) = tCac((LO; 1)1 <*a* *))
= clac({*, %,)] + teac((1,0,1), (*, %, *)a (1,012)
= c 2) +7fcac(<1 0;1> <*a0a*>)
= Ca +err(ac(0; >)a 90(1,0, 1)))

= co

We define the “expected total cost” of the active clas-
sifier ac under the distribution of instances Z, P, as

Eep(ac) = Ezepltcac(®)] = Ea”reXn P[E] x teac(Z).

Performance Criterion: We assume that a learn-
ing algorithm L can draw random correctly-labeled
completely-specified examples (%, ¢(Z)) according to
the distribution P. (One possible justification for al-
lowing the learner to train on complete instances (even
though the classifier will see only partial instances) is
that it can be cost-effective to invest in a relatively
expensive training phase, if we expect that the ac-
tive classifier we learn will be used very often. In this
case, the cost of obtaining all attributes while learn-
ing, amortized over a much longer performance phase,
might be insignificant. Although we plan to later con-
sider training on incomplete instances, this is beyond
the scope of the present work; see Section 7.)

We will evaluate the learner L in terms of the expected
total cost of its output, ac(®). For any such ¢ € C and
A’ let ac, 4o p € A’ be an active classifier whose
expected total cost is minimum among classifiers in
A': Yac € A", Ecp(acy, 41 p) < Ecp(ac). (When the
dependence on A’ and P is clear, we will write ac,
rather than acy, 4/ p.)

We define the following variant of the standard “Prob-
ably Approximately Correct” (PAC) criterion [Val84,
KLPV87] to specify the desired performance of such a
learner.

Definition 1 (PAO-AC-Learning) Given a set of
concepts C, a class of distributions D, a cost function
c(+), and a penalty function err(-,-), we say that an al-

gorithm L PAO-AC-learns a set of active classifiers A’ 4

(w.r.t. C, D, ¢(-) and err(-,-)) if, for some polynomial
function p(---), for any target concepts ¢ € C, distri-
bution P € D, and error parameters €,6 > 0, L runs
in time at most p(%, %, l¢]), and outputs an active clas-
sifier L(e, 6, C, D, c(-), err(-,-)) = acl) € A', whose
expected total cost is, with probability at least 1 — 6,
no more than € over the minimal possible expect total
cost; 1.e.,

VPED, peC, €6>0,
P(ECP(ac(L)) > Ecp(acoarp)+e) < 6.

Note that the number of samples drawn by act) can
be no more than the running time, and thus is poly-
nomial in %, %, le|. Similarly, the size of the learned

classifier, |ac(L)|, is bounded by the learner’s running
time, and so is polynomial as well. Using the require-
ment that .4’ includes only classifiers whose execution
time is time polynomial in their size, we see that actX)’s
run-time is also polynomial in %, %, |l

Finally, while this definition allows restricting the pos-
sible distributions P to some class D, we will focus
on the normal (“distribution-free”) case, where D in-
cludes all possible distributions.

4 WHY LEARN ACTIVE CLASSIFIERS?

The optimal active classifier is determined by the con-
cept ¢, the set of active classifiers A’, and the distribu-
tion P. If we know all of these, then then we are faced
with a very interesting optimization problem [HBR94]
— one which, however, has nothing to do with learn-
ing. Sometimes this problem is tractable as, for in-
stance, in the following case involving product distri-
butions (i.e., distributions in which each attribute’s
value is determined independently) and classifiers that
can only ask a constant number of questions.

Proposition 1 Suppose we know the concept ¢ and
the product distribution over instances P, and are
considering only the set of active classifiers that ask
for at most k attribute values, A*. Then, for any
€ > 0, there is an efficient algorithm that runs in time
O(poly(, 6)) and produces an active classifier whose
expected total cost is within ¢ of the optimal active clas-

sifier in A*.

Proof: (Sketch)* As P is a product distribution, the
classifier can generate “simulated” data from P that
matches the given instance. As it also knows ¢, it
can estimate the probability of T' versus F' and thus
determine which is the better response. In general,

* All proofs are sketched or omitted entirely, due to space
limitations. The extended report, [GGR96], containing all
proofs, is in preparation.

it can also determine whether it should ask for the
value of an attribute using straightforward dynamic
programming; see Section 5 below. 1

This suggests an obvious way to learn an active classi-
fier: first learn the optimal underlying (passive) classi-
fier ¢ and the distribution P, and then combine these
to produce the best active classifier ac, 4 p. While
Proposition 1 shows that this “learn then optimize”
approach can sometimes works, there are problems.
First, and unsurprisingly, the optimization problem
can be intractable:

Proposition 2 There exists choices for A’, P, C such
that the problem of finding an approrimately opti-
mal act® € A, given ¢ € C, with Ecp(act?) <
Ecp(acy) + €, is NP-hard.

This result holds even if we further require that |acy|
be polynomial in |p| (i.e., the complezity is not simply
because a very long classifier is needed), that C be PAC-
learnable, and that P have support of size O(n).

We include the observation that the result holds even
if C is PAC-learnable, and the distribution has “small”
support (in comparison to the potential support size of
27, where n is the number of attributes), to emphasize
that the complexity is, in a sense, “independent” of the
complexity of learning. Learning the concept and/or
the distribution poses separate problems:

Proposition 3 There are some concept classes C (to-
gether with A', P, err(-,-), ¢(-)) such that finding the
optimal active classifier is trivial if we are given ¢ € C,
but otherwise is not known to be possible.

Proof: This claim reduces to the fact that not every-
thing is known to be PAC learnable [Ang92] because,
if all costs ¢(a;) are zero, the classifier can ask for all
attributes and then we will classify optimally if and
only if it knows the concept. I

The preceding Propositions show that, while the
“learn then optimize” approach is certainly sufficient
(in principle) to determine ac,, it can fail (for com-
plexity reasons) in various ways. Our paper’s main
point, however, is that it may be easier to simply learn
the active classifier directly. In particular, one can
sometimes learn a good active classifier without hav-
ing learned (even implicitly) the concept or the dis-
tribution. This basic idea — of learning just enough
to perform some particular task, rather than trying
to learn everything — has been used by Khardon and
Roth [KR94] in their Learning to Reason framework.
They are concerned with the task of logical reasoning
(rather than classification), and show that there can
be significant complexity advantages in directly learn-

ing a representation tailored to a particular reasoning 5

task (rather than trying to learn the concept itself and
then, in a separate phase, perform logical deduction).
Our work shares very much the same philosophy (if
none of the technical underpinnings) as Learning to
Reason.

When might it be a good idea to learn the active clas-
sifier directly? Our main positive result, given in Sec-
tion 5, provides one answer in detail. Below are some
of the underlying general issues:

e We do not always have to learn the full concept. The

following simple example shows why. Suppose err(-,)
and ¢(-) are such that it is never worthwhile asking
more than one question. Then the optimal active clas-
sifier is completely determined once we specify which
attribute we should request, and which classification
(T or F') is most likely given each value that this at-
tribute might take (forming “decision-stumps” of the
form studied in [Hol93, AHM95]). We can sometimes
discover this classifier without knowing the full con-
cept itself. Of course, knowing the full concept would
be important if we were frequently asked to classify
complete (unblocked) instances. But this is simply ir-
relevant: as we know that attributes will be presented
completely blocked, we know that such questions will
not in fact be asked. We should only care about cases
that we actually might encounter (with high enough
probability).

e We do not always need to learn the complete dis-
tribution P. The same example shows that, in some
cases, only a few aspects of the distribution may be rel-
evant: here we only need to know correlations between
single attributes and the class label. Higher order cor-
relations (i.e., involving more than one attribute) do
not affect the optimal active classifier.

o There is a second reason why we might not need
to learn the distribution. The standard PAC-learning
framework usually avoids having to learn distributions,
because the performance criterion uses the same dis-
tribution that one learns under. If one has a (passive)
classifier that fits the sample data well enough, one
may hope that it will perform well on other data from
the same distribution. We do not necessarily need to
know what that distribution is; only that it has not
changed since the learning phase. As our definition of
PAO-AC-learning is similar to the standard PAC for-
mulation in this respect, it too might avoid the need
to learn distributions.

Of course, these arguments are only suggestive. Sec-
tion 6 below will show several significant limitations
on what can be achieved. However, we first present a
straightforward, yet worthwhile, positive result.

5 LEARNING A* UNDER
COMPLETE BLOCKING

This section presents a nontrivial class of problems for
which we can efficiently learn the optimal active clas-
sifiers. Our assumption of complete blocking is criti-
cal here. We also restrict the set of active classifiers
considered: we only consider classifiers that request
(at most) a constant, k, attribute values. (The par-
ticular attributes requested can vary from instance to
instance.) To motivate seeking only such classifiers,
consider a time-critical task, where a classification re-
turned after k& seconds is useless (perhaps because we
know the patient will be dead by then). Similarly, a
health-plan may be willing to spend up to k dollars to
diagnose a specific ailment per patient, which means
the doctor should not consider any classification pro-
cess that can require spending more than this amount.

Formally, we are looking for a good classifier in A* —
the class of all active classifiers ac such that ac(z*) €
{T, F'} whenever * has k specified values (i.e., n — k
*’s), and gives a constant response (e.g., F') if there
are more than k specified values. Notice that the size
of such a classifier in the lookup-table representation is
at most O(2¥n*); given complete blocking, this bounds
the number of distinct contexts in which the learner
might find itself.

Given these (restrictive, but not unrealistic) assump-
tions, it is possible to PAO-AC-learn any concept class
C under any distribution. In particular, we can learn
to actively classify (under these assumptions) with re-
spect to concepts and distributions that are not learn-
able in the pure PAC-learning sense!

Our algorithm for this task, L(*), involves straightfor-
ward dynamic programming. In general, let X} = be
the set of all blocked n—tuples with exactly n — m *’s
(i.e., m attributes have known values). Given our as-
sumptions, any z* € X;k can only appear once the
classifier has already asked k questions and thus, as
discussed above, we must have ac,(*) € {T, F'}. For
such z*, we can find the best classification simply by
sampling. Suppose, for example, that P is the uni-
form distribution Pypiform-. The proportion of training
instances matching #* will be about 1/2%. Thus, in a
reasonable number of samples, we can obtain a good
estimate of P, = P((%) |z matches £*), and so can
then determine the appropriate classification for z*:
As the difference in expected penalty between answer-
ing T as opposed to F is:
(1= Pi)err(T, F) — Plerr(F,T) = 1
ert(T,F) — PL (erx(T,F) +erx(F,T)) (1)

the optimal classifier ac'X) should choose 7' iff
err(T, F)

P, .
€ ert(T, F') + err(F,T)

What happens if our estimate of Py, is inexact —
which it generally will be, due to statistical fluctua-
tions? In general, the only potential problems arise if
P/, is near the above threshold, as this could cause
us to make the wrong decision. But, from Equa-
tion 1, this is precisely when it does not matter much
which decision we make, because the expected costs
are nearly the same. Do things change for distribu-
tions other than Punitorm? In this case, there may be
some probabilities whose estimate is wildly inaccurate
(because we see so few matching samples). But, by
our PAC-like performance criterion, it does not mat-
ter much if we do badly on these extremely unlikely
cases. We make these argument precise in the full
paper, but this is the basic idea underlying L*)’s cor-
rectness: Estimated payoffs are good enough in this
setting, and although they may lead to an classifier
whose recommendations differ from the optimal clas-
sifier, this only happens when the disagreement does
not affect costs by much.

Having decided what the acL) classifier should do for
z* € X ., we now show how to determine the correct
actions for each #*/ € X ,_1; and then use the same
reduction to deal with each &/ € X} _5, and so on,
until reaching X7 o = {{*,,*,.. .,*)}, thus complet-

ing the specification of the learned classifier ac(X).

To explain each step, suppose ac'X) has decided what
to do for all 2* € X ,_,; (i > 0), and is considering
some particular g* € X:,k—(i—l)' Let U be the costs
already incurred in reaching §*. ac(t)’s possible ac-
tions are to announce a classification (i.e., T or F') or
ask about a variable whose value is not yet known.
The expected cost for each of these can be estimated
using statistics gathered from the sample data. For

instance, the cost of announcing 7 is simply:
Ecp(ac™[§*]) = U+ (1—Pf)en(T,F)
and the expected cost of testing attribute z; is:
Ecp(acD[g*]) =

U + P(
+ P

#; = T|# matches §*) Ecp(acL)[§_,])
#; = F|& matches §*) Ecp(acH) [;])
where, in general, Ecp(actF)[#*]) is the expected cost
of classifier ac() among all samples matching #*. Note
that the expected costs required by the last equation
(Ecp(acP[gi_r]), Fep(acB)[g:_ p])), have been es-
timated at the previous phase of the algorithm. Our
L) algorithm then simply assigns to actX) the action
with the best expected costs, based on estimates com-
puted above.

The proof that L) correctly PAO-AC-learns a good
clagsifier requires a sensitivity analysis, to examine
how the likely error of ac(L) (i.e., deviation from op-

6 timal) depends on the errors in statistical estimation.

Fortunately, this acX) is only likely to depart from the
true optimal classifier, acopr, when the departure is of
little consequence.

Theorem 4 The learning algorithm L*) PAO-AC-
learns active classifiers in the set A* (using the lookup-
table representation, for instance), for any concept ¢
and any distribution P.

6 SOME (mostly) NEGATIVE
RESULTS

It seems to be surprisingly hard to relax the assump-
tions used in Theorem 4 while maintaining tractability.
Here we investigate several reasonable weakenings.

6.1 INCOMPLETE BLOCKING

Earlier, we mentioned a generalized blocking model, in
which some attributes might be revealed to the clas-
sifier “for free”. To be concrete, we consider the class
of p-independent blocking models, in which a a weight
p coin is tossed (independently) for each attribute and
the attribute’s value is revealed iff its coin comes up
heads. (Of course, the classifier still has the opportu-
nity to ask further questions.) In analogy to the class
A* | we define AT* as the class of classifiers that can
ask at for at most k additional attributes other than
those the blocker reveals for free.

We distinguish three cases. First, if p = O(1/n) then
we expect to see only a constant number of attributes
revealed. It is easy to show that a version of Theo-
rem 4 still applies. This is simply because, with very
high probability, the classifier will be given one of only
polynomially many initial configurations, and we can
run L) separately for each.

The p = O(logn/n) case is much more interesting,
because the result is still positive even though there

can be superpolynomially many starting configura-
tions (nO(nn)),

Theorem 5 Under O(logn/n)-independent blocking,
there is a representation scheme under which A1* can

be PAO-AC-learned.

Notice it is not possible to use the lookup-table repre-
sentation scheme in this case. Instead, the “learning”
algorithm simply records the (polynomially many)
samples seen during training and gives them to the
classifier which, when faced with a particular blocked
instance, estimates all the necessary statistics. Thus
the representation of the classifier is essentially just
the sample itself — which is reminiscent of lazy learn-
ing [Aha96].

Finally, we consider the p = Q(constant) case. Unfor-

tunately, it is fairly easy to see that this case can be
extremely difficult, as it can sometimes require learn-
ing exponentially many probabilities (e.g., the prob-
abilities that ¢(&) is T' conditioned on each possible
initial configuration). This problem can arise even if
the concept is known and trivial.

Proposition 6 Let ¢ = x1 be the concept that is
T iff 1 s 1, and let p € (0,1) be a fizred con-
stant. Under p-independent blocking, any representa-
tion scheme, and for any k > 0, there exists a cost
structure (c(-), err(-, -)) such that At* cannot be PAO-
AC-learned.

To understand this result, note that asking for z;’s
value is not optimal if the values of some other at-
tributes (which we may see for free) are correlated
with z1; making an enquiry about z; may not be cost-
effective. (Section 7 returns to this important point.)

6.2 OTHER BLOCKERS

Since we can cope with a blocker that is expected to
reveal O(logn) attributes, we might also hope to be
able to solve problems in which the active classifier it-
self gets to choose O(logn) attributes; i.e., under com-
plete blocking, can we learn the class A!°87? This
remains an open question: it is easy to see that if
PAO-AC-learning A!°8™ is possible, then log n-depth
decision trees would be PAC-learnable in the standard
(passive learning) model. But even the simpler prob-
lem, of learning boolean functions that depend on only
log n variables, even under the uniform distribution, is
regarded as a challenging open problem [Blu94].

On the other hand, the news is not all bad here. The
difficulty here concerns computational complexity, and
not sample complexity nor the nonexistence of a good
small classifier.

Proposition 7 It is possible to learn A°8" in the
sense of Definition 1, still using only polynomially
many samples and producing a polynomial-size table-
lookup classifier, except that the learner may not run
in polynomial time.

That is, the learner uses a reasonable number of sam-
ples and (eventually!) outputs a small (hence efficient)
active classifier. This can be useful; if the performance
phase is much longer than the training phase, it may
well be worth spending whatever time is necessary to
find a good classifier.

6.3 “HIGH COSTS”

It might seem reasonable to suppose that if costs are
“high”, relative to the potential penalties, then one
should only plan to ask a few questions.

Definition 8 Without loss of generality, assume ¢; <
... < cp; Le., attributes are sorted by increasing cost.
We then define:

k(err,e) = largest k' such that

{Tie < maxg,{ ooy,) 1

It is easy to see that:

Proposition 9 The optimal active classifier should
not ask on average more than k(err,c) questions (as-
suming complete blocking).

Unfortunately, this does not mean that we can bound
the number of questions by k(err, ¢) — i.e., we cannot
restrict ourself to A®(™¢) 5 The problem is that a
classifier may reach a point where it should ask yet
more questions, even after it has spent more than any
possible payoff. This is because earlier costs are sunk
costs and even if, in retrospect, they turn out not to
have been useful, they must still be paid for. However
the optimal classifier should not expect a prior: to get
into this situation very often, as a classifier that often
throws good money after bad cannot be optimal.

While it may seem plausible that a variant of the
dynamic programming can still PAO-AC-learn active
classifiers under the assumption of constant k(err, ¢),
this is wrong:

Theorem 10 Let A®* be the class of active classi-
fiers whose members each ask, on average, at most k

questions. Unless P = NP, no efficient algorithm can
PAO-AC-learn AR2.

(Note that A®! is the same as A! and so it is learn-
able.) This hardness result only talks about compu-
tational complexity. It is open as to whether this is
the only difficulty (i.e., is there a result analogous to
Proposition 77).

6.4 RESTRICTED DISTRIBUTIONS

We have seen it can be hard to learn good active clas-
sifiers even if the underlying concept is very simple; in
some cases, this is due to the complexity of the distri-
bution P. This suggests considering restricted classes
of distributions. The obvious candidate is the class of
“product distributions”, in which each attribute value
is chosen independently; the uniform distribution is
a further restriction of this class. We have only just
begun exploring this promising direction. On the one
hand, not all difficulties are due to complex distribu-
tions: We noted above that PAO-AC-learning A'°8"

®On the other hand, it is easy to see that it is sufficient
to consider classifiers in A*™)/¢ But then our dynamic-
programming algorithm will be exponential in 1/e.

subsumes a hard open problem, even under the uni-
form distribution. Sometimes, however, distributional
restrictions can be exploited. For instance,

Remark 11 If C is the class of conjunctions and the
distribution is known to be a product distribution, then
the optimal active classifier (under any blocking model,
and with any cost structure) uses a straighiforward
greedy strategy.

(Very roughly speaking, this classifier always asks for
the attribute that promises the highest immediate in-
formation gain about the classification, balanced by
cost.)

Although this is a simple observation, it does show
that the negative result in Proposition 6 depends cru-
cially on having “difficult” distributions. Even under
product distributions, greedy active classification is
not guaranteed to work in general (i.e., beyond the
class of conjunctions); counterexamples are easy to
find. However, variants of the greedy strategy might
be very useful heuristics and this, too, is worth further
investigation.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we have proposed a framework for study-
ing learning and active classification together. It
seems plausible that this might entail some “Learning-
to-Reason”-style advantages, in that learning a par-
ticular classification strategy (w.r.t. a particular cost
structure and blocker) might be easier than learning
the full concept (and perhaps distribution). We have
presented results which supports this thesis, but also
shown that the scope for such advantages is quite re-
strictive. Three research directions that offer hope for
further positive results are (1) other restrictions on
the type of active classifiers allowed; (2) approxima-
tion techniques; and (3) the combination of stronger
restrictions on both the concept class and the distribu-
tion. We are also exploring an “on-line” version of this
framework. Here the learner would incur costs even
while it was learning: it would pay for any attribute it
sees, and would have to predict each instance’s classi-
fication (risking penalty). The goal would be to min-
imize total cost over some lifetime. Among the new
difficulties this would introduce is the characteristic
dilemma of bandit problems [BF85]: finding the right
balance between learning and performance in terms of
the number of attributes requested. The model in this
paper was (at the expense of some realism) designed
so that this particular tradeoff is avoided.

We close by noting an interesting contrast between our
results and standard PAC concept learning: Few of our
results depend, in any critical way, on the identity of

concept class. Theorem 4, while rather restrictive in
many other respects, works for any concept at all. To
explain this difference, first note that when one does
not see all the attributes then the induced probabilis-
tic concept [KS90] over the visible attributes can, in
general, be quite complex, even if the real concept is a
simple one. A second issue is that the distribution ap-
pears to matter more. For example, attributes which
are logically irrelevant to the concept might neverthe-
less be very important to an active classifier, if their
values are somehow correlated with the correct label.
Both of these reasons suggest that, to whatever ex-
tent that active classifiers can be learned at all, we
might expect to find results that do not distinguish
between concept classes to the extent that ordinary
passive classifier learning theory does.

Acknowledgements

We gratefully acknowledge receiving helpful comments
from Mukesh Dalal, Sanjeev Kulkarni, Nick Little-
stone, and Dale Schuurmans.

References

[Aha96] D. Aha. Special issue on “Lazy Learning”.
Artificial Intelligence Review, 1996. (in progress).

[AHM95] P. Auer, R. C. Holte, and W. Maass. The-
ory and applications of agnostic PAC-learning with
small decision trees. In ICML-95, pages 21-29, 1995.

[Ang87] D. Angluin. Learning regular sets from
queries and counterexamples. Inform. Comput.,
75(2):87-106, 1987.

[Ang88] D. Angluin. Queries and concept learning.
Machine Learning, 2(4):319-342, April 1988.

[Ang92] D. Angluin. Computational learning the-
ory: survey and selected bibliography. In STOC-92,
pages 351-369, 1992.

[BDD93] S. Ben-David and E. Dichterman. Learning
with restricted focus of attention. In COLT93, pages
287-296, 1993.

[BF85] D. Berry and B. Fristedt. Bandit Problems:
Sequential Allocation of Experiments. Chapman and
Hall, London, 1985.

[Blu94] A. Blum. Relevant examples and relevant fea-
tures: Thoughts from computational learning the-
ory. In AAAI Fall Symposium on ‘Relevance’, 1994.

[BMSJ78] B. G. Buchanan, T. M. Mitchell, R. G.
Smith, and C. R. Johnson, Jr. Models of learning
systems. In Encyclopedia of Computer Science and
Technology, volume 11. Dekker, 1978.

[DLR77] A. Dempster, N. Laird, and D. Rubin. Max-
imum likelihood from incomplete data via the EM
algorithm. J. Royal Statistics Society, B, 39:1-38,
1977.

[GGK96] R. Greiner, A. Grove, and A. Kogan. Ex-
ploiting the omission of irrelevant data. In ICML-96,
1996.

[GGRI6] R. Greiner, A. Grove, and D. Roth. Learning
active classifiers. Technical report, Siemens Corp.
Res., 1996.

[Hau92] David Haussler. Decision theoretic general-
izations of the PAC model for neural net and other
learning applications. Information and Computa-
tion, 100(1):78-150, 1992.

[HBRY94] D. Heckerman, J. Breese, and K. Rommelse.
Troubleshooting under uncertainty. In International
Workshop on Principles of Diagnosis, 1994.

[Hol93] R. Holte. Very simple classification rules per-
form well on most commonly used datasets. Machine
Learning, 11:63-91, 1993.

[Kha96] R. Khardon. Learning to act. In AAAI-96,
August 1996.

[KLPV87] M. Kearns, M. Li, L. Pitt, and L. G.
Valiant. On the learnability of boolean formulae.
In STOC-87, pages 285-295, 1987.

[KMT93] S. R. Kulkarni, S. K. Mitter, and J. N. Tsit-
siklis. Active learning using arbitrary binary valued
queries. Machine Learning, 11(1), 1993.

[KR94] R. Khardon and D. Roth. Learning to reason.
In AAAI-94, pages 682-687, 1994.

[KR95] R. Khardon and D. Roth. Learning to reason
with a restricted view. In COLT-95, pages 301-310,
1995.

[KS90] M. Kearns and R. Shapire. Efficient
distribution-free learning of probabilistic concepts.
In FOCS-90, 1990.

[LR87] J. Little and D. Rubin. Statistical Analysis
with Missing Data. Wiley, New York, 1987.

[PP91] Gregory Provan and David Poole. The utility
of consistency-based diagnostic techniques. In KR-
91, pages 461-72, 1991.

[Qui89] J. R. Quinlan. Unknown attribute values in
induction. In ICML-89, pages 164-168, 1989.

[SG94] D. Schuurmans and R. Greiner. Learning de-
fault concepts. In CSCSI-94, pages 519-523, 1994.

[Tur95] P. D. Turney. Cost-sensitive classification:
Empirical evaluation of a hybrid genetic decision
tree induction algorithm. Journal of AI Research,
2:369-409, 1995.

[Val84] L. Valiant. A theory of the learnable. Com-
munications of the ACM, 27(11):1134-42, 1984.

