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Abstract

The multiple extension problem arises because
a default theory can use different subsets of its
defaults to propose different, mutually incom-
patible, answers to some queries. This paper
presents an algorithm that uses a set of ob-
servations to learn a credulous version of this
default theory that is (essentially) “optimally
accurate”.

In more detail, we can associate a given default
theory with a set of related credulous theories
R = {R;}, where each R; uses its own total or-
dering of the defaults to determine which single
answer to return for each query. Our goal is to
select the credulous theory that has the highest
“expected accuracy”, where each R;’s expected
accuracy is the probability that the answer it
produces to a query will correspond correctly
to the world.

Unfortunately, a theory’s expected accuracy
depends on the distribution of queries, which is
usually not known. Moreover, the task of iden-
tifying the optimal R,,; € R, even given that
distribution information, is intractable. This
paper presents a method, OpTAcCC, that side-
steps these problems by using a set of samples
to estimate the unknown distribution, and by
hill-climbing to a local optimum. In particular,
given any parameters €,6 > 0, OpTAcCC pro-
duces an R,, € R whose expected accuracy is,
with probability at least 1 — 6, within € of a
local optimum.

1 Introduction

A “representational system” R is a program that pro-
duces an answer to each given query. We of course pre-
fer “accurate” answers — i.e., answers that correspond
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correctly to the world. As obvious examples, we prefer
that our R produces the answer “4” to the query “find z
such that 2+ 2 = z”, produces the accepted bid for each
hand in bridge, finds the correct diagnosis from a given
set of patient symptoms, etc. We define R’s “expected
accuracy” as the average accuracy of the answers it pro-
duces, over the distribution of queries posed. Our goal
is to find the representational system with the highest
possible expected accuracy.

Many representational systems base their answers on
their store of factual information. When this body of
accepted information is insufficient to entail an answer
to some queries, many of these systems will consider
augmenting this initial information with some new hy-
pothesis (or conjecture or default, etc.) that is plausi-
ble but not necessarily true; each particular collection of
facts and hypotheses (a.k.a. defaults) is a default the-
ory. Unfortunately, there can often be more than one
such hypothesis, and these hypotheses (and hence the
conclusions they respectively entail) may not be com-
patible; consider for example the Nixon diamond [Rei87,
pl55]. This is called the “multiple extension problem”
in the knowledge representation community, and the
“bias problem” in machine learning. In each, it has pro-
duced a great deal of attention and debate; cf., [Rei87]
[Mit80, RG87, Hau88].

To be useful, our representational system must re-
turn but a single answer. We therefore focus on a
credulous form of such theories, formed by embellish-
ing each default theory with an ordering on the defaults
[vA90, Bre89], with the understanding that only the
most preferred defaults(s) will be used to reach a unique
answer to each query; see Section 2.}

The obvious question then arises: what is the best
ordering of the defaults? We provide the obvious prag-
matic answer: use the ordering that is most likely to
be “correct” — i.e., is “optimally accurate”. Section 2
defines this correctness criterion more precisely. It also
shows that the optimally accurate ordering depends on
the the distribution of queries; i.e., one R; may be op-
timal for one distribution, whereas another R, may be
optimal for another. Unfortunately, this distribution in-

'We can allow a system to remain skeptical by using
highly-preferred defaults that conclude “IDK” (for “I Don’t
Know?”) in some situations; see Note6 in Section 3.



formation is usually not known a priori. Moreover, the
task of identifying the optimal ordering, even given that
distribution information, is generally intractable. Sec-
tion 3 then presents a method that side-steps these prob-
lems by using a set of query/answer pairs to estimate
the unknown distribution; and by hill-climbing to a lo-
cal optimum. In particular, it describes the OpTACC
algorithm that, given the parameters €,6 > 0, returns
a ordering whose expected accuracy is, with probability
greater than 1 — é, within € of a local optimum. That
section concludes by discussing some extensions to this
algorithm.

2 Framework

We assume that there is an underlying set of queries
that can be posed to the representational system R,
and that these queries are drawn at random from this
set according to some unknown but stationary distri-
bution P. We model this using an oracle O that,
on each call, returns a pair (¢,a) where ¢ is a query
drawn at random from P and a is the “correct” an-
swer to this query.? For now, we assume each cor-
rect answer is either “No” or “Yes[z; ~» V;]”, where the
mapping within the brackets is a binding list of ¢’s
free variables.> As examples, one call to the oracle
may return the pair (‘2+2=17x’, Yes[?x ~ 4]), and an-
other, (‘2+2=19’, No). To simplify our presentation,
we write O'[¢] = a whenever O returns (g, a); hence
0242 = z] = Yes[Tz~ 4].

We say an R’s answer to a query ¢,* written R(q), is
“correct” if R(¢) matches O'[¢], is “incomplete” if R(q)
is “IDK”, and is “incorrect” otherwise. We will use an
“accuracy function” ¢(R;, ¢) that assigns to each such
query a score of +1, 0, or —1, respectively:

v {7 Tzl
¢(Riyq) = 0 if Ri(¢) = IDK
—1 otherwise

While many parts of this analysis apply in general,
this paper will focus on a particular type of strati-
fied THEORIST-style representational system [PGAS86]
[Bre89, vA90]: Here, each R; can be expressed as a
set of factual information, a set of allowed hypotheses
(each a simple type of default) and a specific order-
ing of the hypotheses. As a specific example, consider
Ra = (Fo, Ho, Ta), where

Vz. E(z) & Ng(z) = S(z, G)
Vz. A(z) & Na(z) = S(z, W) (1)
Ve, =S(z, G) V —S(z, W)

A(Z), E(D), ...
is the fact set;
. hi: Ng(z)
Ho = { ha: N A(:c)
2This oracle can be the “real world”, which provides feed-
back to the representational system R, indicating the cor-
rectness of R’s responses.
?Note6 in Section 3 considers a more general framework.
*N.b., we assume that R will return a single answer. If

there are several compatible binding lists, then R will select
and return one of them; see extended paper [GS92].

Fo =

is the hypothesis set, and and T4 = (hy, ho) is the hy-
pothesis ordering.?

To explain how R 4 would process a query, imagine we
want to know the color of Zelda — i.e., we want to find
a binding for ?c such that ¢ = “S(Z, ?c)” holds. Ra
would first try to prove o from the factual information
Fo alone. This would fail, as we do not know if Zelda
is a normal elephant or if she is a normal albino (i.e., if
Ng(Zelda) or N4(Zelda) holds, respectively). Ra then
considers using some hypothesis — i.e., it may assert
an instantiation of some element of Hy if that propo-
sition is both consistent with the known facts Fy and
also allows us to reach a conclusion to the query posed.
Here, R4 could consider asserting either Ng(Z) (mean-
ing that Zelda is a “normal” elephant and hence is col-
ored Gray) or Na(Z) (meaning that Zelda is a “nor-
mal” albino and hence is colored White). Notice that
either of these options, individually, is consistent with
everything we know, as encoded by Fy. Unfortunately,
we cannot assume both options, as the resulting theory,
FoU{lNg(Z), Na(Z)} is inconsistent.

We must, therefore, decide amongst these options.
R 4’s hypothesis ordering, T 4, specifies the priority of
the hypotheses; here T4 = (hy1, hy) means that hy: Ng(z)
takes priority over hy: N4(z), which means that Ry
will return the conclusion associated with Ng(Z) — i.e.,
Gray, encoded by Yes[?c — (], as Fo U {Ng(2)} E
s(z, &).5

Now consider the Rp = (Fy, Ho, TB) representational
system, which differs from R4 only in terms of its hy-
pothesis ordering: As Rp’s Tp = (ha, h1) considers the
hypotheses in the opposite order, it will return the an-
swer Yes[?c — W] to this query; i.e., it would claim that
Zelda is white.

Which of these two systems is better? If we were
only concerned with this single Zelda query, then the
better (i.e., “more accurate”) R; is the one with the
larger value for ¢(R;, S(Z, ?c))— i.e,the R; for which
Ri(s(z, ?¢)) = 0O'[s(z, ?c)].

In general, however, we will have to consider a less-
trivial distribution of queries. To illustrate this, imag-
ine the “..” shown in Equation 1 corresponds to
{A(Zl), E(Zl), .. .,A(Zloo), E<2100)}; stating that each
Z; 1s an albino elephant; and the distribution of queries
are taken from “S(Z;, ?c)”, for various Z;s.

Now which R; is better? Knowing only the color of
Zelda no longer answers this question; we must also know
the actual colors of the other albino elephants. In gen-
eral, we must know the distribution of queries P (i.e.,
how often each “S(Z;, ?¢)” query is posed) and more-
over, know the correct answers (i.e., for which Z;s the or-
acle returns O'[S(Z;, ?c)] = Yes[?c — W] as opposed to
O'[s(Z;, ?c)] = Yes[?c+ G], or some other answer).

“Here Z refers to Zelda, A(y) means y is an albino, E(y)
means x is an elephant. The first three statements of Equa-
tion 1 state that normal elephants are gray, normal albinos
are white, and (in effect) that S is a function.

5 This uses the
instantiation  S(Z, G) = S(Z, ?c)/Yes[?c— G]. We will
also view “g/No” as “—¢”. Note6 in Subsection 3 discusses
how to produce the “IDK” answer to a query.



From this, we can compute the expected accuracy of
each system,

C[R;] = E[c¢(Ri, q)] = avgrage c(Riyq)  (2)
(If there are only a finite number of queries, Equation 2
corresponds to C[R;] = >, Plg] x ¢(Rs, q).) We can
then compare these two values, C[R4 ] and C[Rp ], and
select the R; system with the larger C[-] value.

Everything here can scale up, to deal with more com-
plex representational systems; in particular, R can in-
clude a much larger set of hypotheses; see Notel. The
ordering T in R = (F,H,T) continues to specify the
order in which to consider the hypotheses. We view it
as a simple ordered sequence of the elements in ‘H, with
the understanding that R will consider each hypothesis,
one at a time in this order, until finding one that is both
consistent with the underlying fact set F, and that pro-
vides an answer to the given query. More formally, write
T = (hx(1), - - hx(n)), and let i = 7(j) be the smallest
index such that Consist(F U {h;}) and F U {h;} = ¢/
for some answer A (which is either Yes[--] or No); here
R returns this A. If there are no such #’s, then R will
return IDK. (Notel and Note6 in Section 3 discuss how
to extend this approach, to handle yet more general con-
texts.)

Our basic goal is to find the hypothesis ordering whose
expected accuracy is maximal. Unfortunately, there are
two major obstacles that prevent us from attaining this
goal in practice.

1. The expected accuracy of any ordering depends crit-
ically on the natural distribution over query/answer
pairs occurring in the domain. It is unlikely that
this information would be known a priori.

2. Even if we knew the precise nature of this distribu-
tion, the task of identifying the optimal hypothesis
ordering is NP-complete. This holds even for the
simplistic situation we have been considering (where
any derivation can involve exactly one hypothesis,
every ordering of hypotheses is allowed, etc.”).

3 The OpTAcCC Algorithm

This section presents a learning system, OPTAcC, that
side-steps the two problems mentioned above. OpTACC
accomplishes this by using a set of sample queries to esti-
mate the distribution, and by hill-climbing from a given
initial Ry to one that is, with high probability, close to
a local optimum. That is, by sacrificing our desire to
achieve a globally optimal solution with certainty, and
accepting a near locally optimal solution with high prob-
ability, we obtain a system that can efficiently produce
a practical, useful result, even when the underlying do-
main statistics are unknown to us a priori. This section
first states the fundamental theorem that specifies Op-
TAcC’s functionality. It then discusses OpTAcCC’s code
and presents some elaborations and extensions to the
algorithm.

"All proofs appear in the expanded version [GS92].

Algorithm OpTAcc((F,H, Yo), €, 8)
e L —10 k—1
L1: Let S — {} Neigh « {7;(Te) }i;
L2: Get query/answer (gx, ax) from oracle O.
Let S — Su{g} E — k41
o If there is some Y’ € Neigh such that

2 : 2
(T, a0) = (T, 00) > \/2|S|1n (e

3)
then let  Yoy1 — Y, £—iL41.
Return to L1.
2|Neigh |2
o If || > L (%) and W

VY’ € Neigh, oY, gx) —c(Te, ) < 5L,

then halt and return as output Y,.

o Otherwise, return to L2.

Figure 1: Code for OPTACC

In more detail, OPTACC takes as arguments an ini-
tial representational system Rg = (F,H, To) along with
parameters €,6 > 0. It also uses 7 = {7 j }i<icj<n, a
particular set of O(n?) possible transformations, where

each 7; ; maps orderings to orderings: Given any order-
ing T = <h1,h2, .. .,hn>,

Tij(T) = (hv, . hicy, by hiy oo hjon, hyga, oo hy)
1.e., T; j moves the 4** term in the sequence to just before
the " term. The set 7[Y] = {7 ;j(T)};; define Y’s
neighbors. OpTAcc will climb from T; to one of its
neighbors, Y/ € T[Y], if this YT’ is statistically likely
to be superior to T;, based on the sequence of queries
and answers produced by the oracle. This constitutes
one hill-climbing step; in general, OpTAcc will perform
many such steps, climbing from Ty to T; to T, etc.,
until terminating on reaching Y,,.® Theorem 1 states
our main theoretical results:

Theorem 1 The OpTAcc({F, H,To), €, 8)
algorithm incrementally produces a series of orderings
Yo,Y1,..., Ty, (processing at most a polynomial num-
ber of samples at each stage) such that, with probability
at least 1 — 6,

1. each successive ordering in the series has an ex-
pected accuracy that is strictly better than its pre-
decessor’s; i.e., C[Y;] > C[Y;_1]; and

2. the final ordering Y,, n the series is an “-local
optimum”; i.e, VT € T, C[T,,] > C[7(Th) ] —€.

The basic code for OpTAcc appears in Figure 1.°
In essence, OpTAcc will climb from some T; to a
new Y;41 € T[Y;] if T4, is likely to be strictly
better than Y;; i.e., if we are highly confident that

& Actually, we only know that this algorithm will terminate
with high probability; see Note2.
°That code uses “c(Ta, ¢)” to refer to “c({F, H, Ta), q)”.



C[Yj41] > C[Y;]. As each query ¢; is selected inde-
pendently according to some fixed distribution, Chernoff
bounds [Cheb2, Bol85] show that the observed sample

average, %Ele ¢(Yy, ¢;), converges exponentially fast
to the population mean, C[T,].

The OpTAcc algorithm uses these bounds to deter-
mine both how confident we should be that C[Y'] >
C[Y,] (Equation 3) and whether any “7-neighbor” of
Y, (ie., any 7;;(Y,)) is more than € better than Y,
(Equation 4). The extended paper [GS92] discusses how
to compute the values of 3 ¢ c(7i;(Ye), q) — (Te, q)
for each 15, € 7.

Notel. Our descriptions have assumed that every or-
dering of hypotheses is meaningful. In some contexts,
there may already be a meaningful partial ordering of
the hypotheses, perhaps based on specificity or some
other criteria [Gro91]. Here, we can still use OP-
TACC to complete the partial ordering, by determin-
ing the relative priorities of the initially incomparable
elements.

In many situations, we may want to consider each
hypothesis to be the conjunction of a set of sub-
hypotheses, which must all collectively be asserted to
reach a conclusion. Here, we can view H = P[H] as
the power set of some set of “sub-hypotheses”, H.

Note2. As this OPTACC process can require general
theorem proving (e.g., to determine whether F U
{hi} E? ¢/O'[q]), it will in general be computation-
ally intractable. However, if this process is decidable
(e.g., if we are dealing with propositional theories),
then OpTAcc will terminate with probability 1, as
the space of strategies is finite; see [CG91]. Finally,
each iteration in the OPTAcCC algorithm is polytime
if the F U {h;} =7 q1 computation is polytime; e.g.,
if we are dealing with propositional Horn theories or
propositional 2-CNF | etc.

Note3. If we set ¢ = 0, the OpTAcc(Ryg, 0,6) process
will not terminate. Its behavior is still quite useful: it
will, with high probability, produce a series of better
and better strategies. Indeed, we can view this system
as an anytime algorithm [DB88] as, at any time, it will
return a workable result (here, the ordering produced
at the j%* iteration, Y;), with the property that the
longer we wait, the better the result.

Note4. Recall that, in general, we need to compute the
values of qus e(13;(Ye), ¢) — (e, q) for each 75 in
T . Above, we obtained this information by determin-
ing whether F U {h;} " ¢/O'[q] holds for each hy-
pothesis h;. There can, in some situations, be more
efficient ways of estimating these values, for example,
by using some Horn approximation to F U {h;}; see
[Gre92] and [GJ92]. We can also simplify the compu-
tation if the h; hypotheses are not independent; e.g.,
if each corresponds to a set of sub-hypotheses.

Noteb. This paper considers only one type of transfor-
mation to convert one representational system into
another — wiz., by rearranging the set of hypothe-
ses.  There are many other approaches, e.g., by
eliminating some inappropriate sets of hypotheses

[Coh90, Won91], or by modifying the antecedents of
individual rules (cf., [OM90]), etc. Each of these ap-
proaches can be viewed as using a set of transforma-
tions to navigate around a space of interrelated repre-
sentational systems. We can then consider the same
objective described above: to identify which element
has the highest expected accuracy.

Here, as above, the expected accuracy score for
each element depends on the unknown distribution,
meaning we will need to use some sampling process.
In some simple cases, we may be able to identify (an
approximation to) the globally optimal element with
high probability (4 la the a0 algorithm discussed in
[0G90, GO91]). In most cases, however, this identifi-
cation task is intractable. Here again it makes sense to
use a hill-climbing system (similar to the one shown
above) to identify an element that is close to a lo-
cal optimum, with high probability. (Of course, this
local optimality will be based on the classes of trans-
formations used to define the space of representational
systems, etc.)

Note6. There are several obvious extension to this

work: First, we have so far insisted that each answer
to a query is either completely correct or completely
false; in general, we can imagine a range of answers to
a query, some of which are better than others. (Imag-
ine for example that the correct answer to a particular
existential query is a set of 10 distinct instantiations.
Here, returning 9 of them may be better than return-
ing 0, or than returning 1 wrong answer. As another
situation, we may be able to rank responses in terms of
their precision: e.g., knowing that the cost of watchy is
$10,000 is more precise than knowing only that watch;
is expensive [Vor91].) We have also assumed that all
queries are equally important; i.e., a wrong answer to
any query “costs” us the same —1, whether we are
asking for the location of a salt-shaker, or of the tiger
currently stalking us.

One way of addressing all of these points is to use a
more general ¢(R, ¢) function — one that can incorpo-
rate these different factors, by differentially weighting
the different queries, the different possible answers,
etc. In fact, we could permit the user to specify his
own ¢(R, ¢) function.

Notice finally that we have completely discounted
the computational cost associated with arriving at
the answer. Within this framework, we can consider
yet more general ¢(-, -) functions, that can even in-
corporate the user’s tradeoffs between accuracy and
efficiency, etc. This would allow the user to pre-
fer, for example, a performance system that returns
IDK in complex situations, rather than spend a long
time returning the correct answer; or even allow it to
be wrong in some instances [GE91]. The OpTAcc-
variant may have to consider other transformations,
besides the simple “reordering the hypotheses” one
discussed above. For example, if being wrong was
much worse than being silent (i.e., returning “IDK”),
we could transform one representational system to an-
other by including a rule whose conclusion is IDK,
which applies in certain cases where the correct an-



swer is not known reliably. Such a system might,
perhaps, add to the hypothesis set an additional hy-
pothesis hg : Nap(z) and to the fact set the rule
V. A(z) & E(x) & Nap(x) = S(x, IDK). Here, a rep-
resentational system that accepts the Nqg(Zi15) hy-
pothesis will produce the answer IDK to the query
S(Z15, y)-

Note7. The motivation underlying this work is similar
to the research of [Sha89] and others, who also use
probabilistic information to order the various default
rules. Our work differs by providing a way of obtaining
the relevant statistics, rather than assume that they
are known a priori, or can be computed purely from
static analysis of ground facts in the database.

4 Conclusion

Many nonmonotonic reasoning systems are ambiguous,
in that they can produce many individually plausible
but collectively incompatible solutions to certain queries.
Unfortunately (at most) one of these solutions is correct;
the challenge then is to determine which one. This is the
essence of the multiple extension problem.

This report addresses this problem by considering the
set of credulous reasoning systems derived from a given
nonmonotonic theory (each formed by imposing a total
ordering on the hypotheses) and then preferring the cred-
ulous system that is correct most often — i.e., that has
the highest “expected accuracy”, with respect to the dis-
tribution of queries and correct answers. Unfortunately,
the natural distribution of queries is usually not known a
priori, and moreover, the task of identifying the optimal
system is intractable, even given this distribution. We
have defined a learning algorithm, OPTAcCc, that side-
steps these problems by using a set of samples (each
consisting of a query and its correct solution) to obtain
an estimate of the unknown distribution, and by using a
particular set of transformations to hill-climb to a cred-
ulous system that is, with high probability, arbitrarily
close to a local optimum. We also show that this algo-
rithm is efficient, in that it requires only a polynomial
number of samples to climb from one credulous system
to another.

References

[Bol85] B. Bollobas. Random Graphs. Academic Press,
1985.

[Bre89] G. Brewka. Preferred subtheories: An extended
logical framework for default reasoning. In

1JCAI-89, 1989.

[CGI1] W. Cohen and R. Greiner.
climbing. In CLNL-91, 1991.

[Cheb2] H. Chernoff. A measure of asymptotic efficiency
for tests of a hypothesis based on the sums of
observations. Annals of Mathematical Statistics,

23:493-507, 1952.

[Coh90] W. Cohen. Learning from textbook knowledge:
A case study. In AAAI-90, 1990.

Probabilistic hill

[DB88] T. Dean and M. Boddy. An analysis of time-
dependent planning. In AAAI-88, 1988.

[GE91] R. Greiner and C. Elkan. Measuring and im-
proving the effectiveness of representations. In
IJCAI-91, 1991.

[GJ92] R. Greiner and I. Jurisica. A statistical approach
to solving the EBL utility problem. In AAAI-92,
San Jose, 1992.

[GO91] R. Greiner and P. Orponen. Probably approx-
imately optimal derivation strategies. KR-91,

1991.

[Gre92] R. Greiner. Learning near optimal horn approx-

imations. In Knowledge Assimilation Sympo-
stum, 1992,

[Gro91] B. Grosof. Generalizing prioritization. In KR-
91, 1991.

[GS92] R. Greiner and D. Schuurmans. Producing more
accurate representational systems. TR, Siemens
Corporate Research, 1992.

[Hau88] D. Haussler. Quantifying inductive bias:
Al learning algorithms and Valiant’s learning
framework. Artificial Intelligence, 1988.

[Mit80] T. Mitchell. The need for bias in learning gen-
eralizations. TR CBM-TR-117, 1980.

[OG90] P. Orponen and R. Greiner. On the sample
complexity of finding good search strategies. In

COLT-90, 1990.

[OM90] D. Ourston and R. Mooney. Changing the rules:
A comprehensive approach to theory refinement.
TR, Dept of Computer Science, University of
Texas, 1990.

[PGA86] D. Poole, R. Goebel, and R. Aleliunas. Theo-
rist: A logical reasoning system for default and

diagnosis. TR CS-86-06, 1986.

[Rei87] R. Reiter. Nonmonotonic reasoning. In Annual
Review of Computing Sciences, volume 2, 1987.

[RG8T7] S. Russell and Benjamin N. Grosof. A declar-
ative approach to bias in concept learning. In
AAAI-87, 1987.

[Sha89] L. Shastri. Default reasoning in semantic net-
works: A formalization of recognition and inher-

itance. Artificial Intelligence, 39:283-355, 1989.

[SK75] H. Simon and J. Kadane. Optimal problem-
solving search: All-or-none solutions. Artificial

Intelligence, 6:235-247, 1975.

[Smi89] D. Smith. Controlling backward inference. Ar-
tificial Intelligence, 39(2):145-208, June 1989.

[VA90] P. van Arragon. Nested default reasoning with
priority levels. In CSCSI-90, 1990.

[Vor91] D. Vormittag. Evaluating answers to ques-
tions, May 1991. Bachelors Thesis, University
of Toronto.

[Won91] J. Wong. Improving the accuracy of a repre-
sentational system, May 1991. Bachelors Thesis,
University of Toronto.



