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Abstract. A default theory can sanction different, mutually incompat-
ible, answers to certain queries. We can identify each such theory with
a set of related credulous theories, each of which produces but a single
response to each query, by imposing a total ordering on the defaults. Our
goal is to identify the credulous theory with optimal “expected accuracy”
averaged over the natural distribution of queries in the domain. There
are two obvious complications: First, the expected accuracy of a theory
depends on the query distribution, which is usually not known. Second,
the task of identifying the optimal theory, even given that distribution
information, is intractable. This paper presents a method, OPTACC, that
side-steps these problems by using a set of samples to estimate the un-
known distribution, and by hill-climbing to a local optimum. In par-
ticular, given any error and confidence parameters €,6 > 0, OPTACC
produces a theory whose expected accuracy is, with probability at least
1 — 6, within € of a local optimum.

1 Introduction

A “representation system” R is a program that produces an answer to each given
query. We of course prefer “accurate” answers — i.e., answers that correspond
correctly to the world. As obvious examples, we prefer that our R returns the
answer “4” to the query “find x such that 2+ 2 = 2”, produces the appropriate
bid for each hand in bridge, finds the correct diagnosis from a given set of patient
symptoms, and so forth. We define R’s “expected accuracy” as the percentage
of answers that it produces that are correct, averaged over the distribution of
queries posed. Our goal is to find the representation system with the largest
possible expected accuracy.

Most representation systems base their answers on their store of factual in-
formation. When this body of accepted information is insufficient to entail an
answer to some queries, many of these systems will consider augmenting this
initial information with some new hypothesis (or conjecture or default) that is
plausible but not necessarily true; each particular collection of facts and hy-
potheses is a “default theory” [Rei87]. Unfortunately, there can often be more
than one such hypothesis, and these hypotheses (and hence the conclusions they
respectively entail) may not be compatible; consider for example the Nixon di-

amond [Rei87, p155]:



By default, Quakers tend to be pacifists, while Republicans tend to be
non-pacifists. Given that Nixon is both a Quaker and a Republican,
should we believe that he is, or is not, a pacifist?

This is called the “multiple extension problem” in the knowledge representation
community, and corresponds to the “bias” and “multiple explanation” problems
in machine learning, and the “reference class problem” in statistics. In each, it
has produced a great deal of attention and debate; cf., [Rei87, Mor87] [Mit80,
RG87, Hau88], [Kyb82, Lou88].

In general, an effective representation system will return a single (and we
hope, correct) answer to each query, rather than remain silent or propose a
set of incompatible answers. We therefore focus on a credulous theories, here
formed by embellishing a standard default theory with an ordering on its defaults
[vA90, Bre89], with the understanding that only the most preferred default(s)
will be used to reach a unique answer to each query; see Section 2.3 As a theory
that produces the correct response for one query may be incorrect for other
queries, it is not obvious which of the different credulous theories is best.

We of course prefer theories that are likely to be correct, over the natu-
ral distribution of queries encountered in the domain. This leads us to define
the best theory as the one whose “expected accuracy”, over this distribution of
queries, is optimal. Section 2 defines this accuracy criterion more precisely. It
also shows that the optimally accurate ordering depends on the the distribution
of queries; i.e., one R; may be optimal for one distribution, whereas another
R» may be optimal for another. Unfortunately, this distribution information is
usually not known a priori. Moreover, the task of identifying the optimal order-
ing, even given that distribution information, is generally intractable. Section 3
develops a learning method that side-steps these two problems by (i) using a
set of query/answer pairs to estimate the unknown distribution; and (%) by hill-
climbing to a local optimum. In particular, it describes the OpTAcCC algorithm
that, given error and confidence parameters ¢, 6 > 0, returns an ordering of the
hypotheses whose expected accuracy is, with probability at least 1—§, within € of
a local optimum. Section 4 then discusses several extensions to both our frame-
work and this algorithm. We close this section by describing other research that
is related to our work.

Related Research: Our underlying task, of producing a theory that is as cor-
rect as possible, is the sine qua non of essentially all research on inductive learn-
ing; cf., [MCM83, HV88, Hin89]. While many of these systems learn descrip-
tions based on bit vectors or simple hierarchies, our work deals in the context
of propositions; here too there is a history of results, dating back (at least) to
Shapiro [Sha83], and including FoIL [Qui90] and the body of work on inductive
logic programming [MB88]. While much of that research deals with monotonic
(usually propositional or first order logic) theories and discusses ways of extend-
ing such theories, producing new theories that can return additional answers, we

Subsection 4.4 presents one way of allowing a “credulous” system to remain skeptical
in certain situations.



instead deal with default theories, which distinguish between hard, unquestion-
able facts versus plausible but possibly erroneous defaults, and describe a way
of restricting a given (default) theory, to produce fewer answers; here, seeking a
“weakened” variant that will produce only the correct answer to each question,
and not the incorrect one. Many other bodies of research also seek weakened
theories (i.e., theories which admit fewer conclusions), albeit in the framework
of standard monotonic theories. (1) One branch of explanation-based learning
(EBL) research seeks the appropriate “specialization” (read “weakenings”) of
a given theory [FD89, OM90, Paz88, Coh92]; however, (i) the underlying per-
formance task [BMSJ78] for the EBL systems is classification (i.e., determining
whether a given element is, or is not, a member of some target class) rather
than general derivation; and (i¢) each uses negation-as-failure [Cla78] (a hard-
wired form of non-monotonicity) to classify negatively any sample that cannot
be proved to be in the class. By contrast, our work can accommodate general
queries, and deals with general default theories. (2) If we coalesce our facts and
defaults, we have in essence an inconsistent (monotonic) theory, from which
we want to extract the best consistent sub-theory. From this perspective, our
work is also related to one form of “theory revision”, d la [Gar88, AGMS85] and
many others. Two major distinctions are () our work explicitly constrains the
set of propositions that can be affected (wiz., only hypotheses can be deleted);
and (4¢) we use an explicit notion of expected accuracy to dictate which of the
possible revisions (read “weakenings”) to use. (3) The work on “approximation”
[BE89, SK91, DE92, GS92] also seeks good weakenings. Its goal however is an ef-
ficient encoding; by contrast, we are seeking an accurate representation. Finally,
the motivation underlying our work is similar to the research in [Sha89] and
elsewhere, which also uses probabilistic information to identify the best default
theory. Our research differs by using statistical sampling techniques to obtain
estimates of the required distribution, and by coping with the computational
complexity inherent in this identification process.

2 Framework

This section first provides the general framework for our analysis, then describes
the class of representation systems we will use.

2.1 General Analytic Framework

Following [Lev84] and [DP91], we view a representation system R as a func-
tion that maps each query to its proposed answer; hence, R: @ — A, where
Q is a (possibly infinite) set of queries, and A is the set of possible answers.
Here, we focus on A = { No, IDK, Yes[?z; — V;]}, where IDK stands for the
non-categorical answer “I Don’t Know”, and the mapping within the Yes’s
brackets is a binding list of free variables.* Hence, perhaps Ri(“2+2 = ?27) =

* Section 4 presents several extensions to this framework. Also, by convention, the

@R

name of each variable will start with a , as in “7z” here.



Yes[?z — 4], R1(“24+ 2 = 19”) = No, and R;(“P = NP”) = IDK. Of course,
different representation systems can return different answers to a given query
(e.g., Ri(“Pacifist(Nixon)”) = Yes[] and Ry(“Pacifist(Nixon)”) = No)
and they can be incorrect; e.g., Ry(“Pacifist(Ghandi)”) = No, or Ra(“2+
2 =17") = Yes[], etc. We will assume that there is a single correct, categorical
answer to each question; and represent it using the Oy : Q@ +— A real-world
oracle. (This oracle can be the “real world” that provides the real answers to
queries posed. Notice Oy,[ -] is categorical, meaning it will never return “IDK”.)

In general, we will consider a given set of possible representation systems,
R = {R;}; below each R; € Ry is a different credulous system, formed from
a given standard default system X. Our goal is to determine which of these
representation systems is the closest to Oyq[-]. To quantify this, we first define
an “accuracy function” ¢(-, ), where ¢(R, ¢) quantifies the quality of the answer
provided by the representation system R to the query g¢:

1 if R(q) = Ogalq]
(R, q) Z L ifR(g)=1IK
0 otherwise

Hence, ¢(R1, “24+ 2 = 72”) = 1 as R; provides the correct answer here ¢( Ry,
“P = NP”) = 1/2 as Ry is silent on this question, and ¢(Ry, “24+2=7")=0
as Rg provides an incorrect answer.

Hence, ¢(R, ¢) measure R’s accuracy for a single query ¢. In general, we
expect our representation system to deal with a range of queries. We model this
using a given stationary probability function, P: @ +— [0, 1], where P[q] is the
probability that the query ¢ will occur.® Given this distribution, we can compute
the “expected accuracy” of each system,

C[R] = E[e(R,@)] = Y Plalx (R, q) - (1)

qeQ

Our challenge is to find the system R,p; in R whose expected accuracy is optimal;
le.,

find Ropt € Ry such that VR € Ry, C[Rop:] > C[R].

2.2 Prioritized THEORIST-Style Representation Systems

While much of our analysis applies to representation systems in general, this
paper focuses one particular form: stratified THEORIST-style representation sys-
tem [PGAS86] [Bre89, vA90]. Here, each R; can be expressed as a set of factual
information, a set of allowed hypotheses (each a simple type of default) and an

® We assume Q is at most countably infinite to simplify the presentation, and to avoid
measure-theoretic technicalities.



ordering of the hypotheses. As a specific example, consider R4 = (Fo, Ho, Ta),
where

Ve. E(z) & Ng(z) = S(z, G)

Ve. A(z) & Na(z) = S(z, W) 2)
Vz. =8(z, G) V —S(z, W)

A(D), E(D), ...

. hy: Ng(z)
Ho = { hy: Na(z)
is the hypothesis set, and and T4 = (h1, h2) is the hypothesis ordering.
To explain how R4 would process a query, imagine we want to know the

color of Zelda — i.e., we want to find a binding for ?c such that o = “S(Z, 7¢)”
holds. R4 would first try to prove o from the factual information Fy alone. This

Fo =

is the fact set;

would fail, as we cannot prove that Zelda is a normal elephant nor that she is
a normal albino (as neither Ng(Zelda) nor N4(Zelda) hold, respectively). Ra
then considers using some hypothesis — i.e., it may assert an instantiation of
some element of H if that proposition is both consistent with the known facts
Fo and also allows us to reach a conclusion to the query posed. Here, R 4 could
consider asserting either Ng(Z) (meaning that Zelda is a “normal” elephant
and hence is colored Gray) or N4(Z) (meaning that Zelda is a “normal” albino
and hence is colored White). Notice that either of these options, individually, is
consistent with everything we know, as encoded by Fy. Unfortunately, we cannot
assume both options, as the resulting theory, Fo U {Ng(Z), Na(Z) } would be
inconsistent.

We must, therefore, decide between these options. R4’s hypothesis order-
ing, Ta, specifies the priority of the hypotheses; here T4 = (1, ho) means that
hi: Ng(z) takes priority over hy: Na(z), which means that Ry will return
the conclusion associated with Ng(Z) — i.e., Gray, encoded by Yes[?c — (], as
Foullig(2)} Esz, &).7

Now consider the Rp = (Fo, Ho,TB) representation system, which differs
from R 4 only in terms of its hypothesis ordering: As Rp’s Tp = (ha, h1) considers
the hypotheses in the opposite order, it will assert that Zelda is a normal albino
(i.e., N4(Z)) and so will return the answer Yes[?c — W] to this query; i.e., it
would claim that Zelda is white.

Which of these two systems is better? If we were only concerned with this
single Zelda query, then the better (i.e., “more accurate”) R; is the one with
the larger value for ¢(R;, S(Z, ?c)) — i.e., the R; for which R;(S(Z, ?¢)) =
0[Sz, 7¢)].

In general, however, we will have to consider a less-trivial distribution of
queries. To illustrate this, imagine the “...” shown in Equation 2 corresponds to

6 Here Z refers to Zelda, A(y) means y is an albino, E(y) means y is an elephant. The
first three statements of Equation 2 state that normal elephants are gray, normal
albinos are white, and (in effect) that S is a function.

" This uses the instantiation $(Z, G) = S§(Z, ?c)/Yes[?c — G]. We will also view
Lﬁq/No77 as K(_|q7’.



{4(21), E(Z1),...,A(Z100), E(Z100) }, stating that each Z; is an albino elephant;
and the distribution of queries are taken from “S(Z;, 7?¢)”, for various Z;s.

Now which R; is better? Knowing only the color of Zelda no longer answers
this question; we must also know the actual colors of the other albino elephants.
In general, we must know the distribution of queries P (i.e., how often each
“S(Z;, ?7¢)” query is posed) and moreover, know the correct answers for each
(i.e., for which Z;s the oracle returns Q,,[S(Z;, ?¢)] = Yes[?c — W] as opposed
to O4q[S(Z;, 7¢)] = Yes[?c — G], or some other answer). From this, we can
(using Equation 1) compute the expected accuracy of each system. We can then
compare these two values, C[R4] and C[Rp], and select the R; system with
the larger C[ -] value.

In general, a prioritized default system R = (F,H,Y) can contain a much
larger set of hypotheses H. The ordering 7" continues to specify the order in
which to consider the hypotheses. We view it as a simple ordered sequence of
the elements in ‘H, with the understanding that R will consider each hypoth-
esis, one at a time in this order, until finding one that is both consistent with
the underlying fact set F, and provides an answer to the given query. To be
more precise, write ' = (hy, ... hy), and let ¢ be the smallest index such that
Consist(FU{h;}) and FU{l;} |= ¢/A for some answer A (which is either Yes[- - ]
or No); here R returns this A. If there are no such #’s, then R will return IDX.
(Subsection 4.2 discusses how to extend this approach, to handle more general
contexts.)

Our basic goal is to find the hypothesis ordering whose expected accuracy
is maximal. Unfortunately, there are two major obstacles that prevent us from
attaining this goal in practice:

1. The expected accuracy of any ordering depends critically on the natural
distribution over queries occurring in the domain. It is unlikely that this
information will be known a priori.

2. Even if we knew this distribution, the task of identifying the optimal hypoth-
esis ordering is NP-complete. This holds even for the simplistic situation we
have been considering, where every derivation requires exactly one hypoth-
esis, every ordering of hypotheses is allowed, and so forth; see [Gre93].

3 The OpTACC Algorithm

This section presents a learning system, OpTAcc, that side-steps the two prob-
lems mentioned above. OPTACC copes with the problem of an unknown query
distribution by using a set of sample query /answer pairs to estimate the distribu-
tion; and copes with the intractability of finding the globally optimal hypothesis
ordering by hill-climbing from a given initial ordering to a new one that is, with
high probability, close to a local optimum. Here, by accepting a near locally opti-
mal solution with high probability (rather than insisting on achieving a globally
optimal solution with certainty), we obtain a system that can effectively pro-
duce a practical, useful result, even when the underlying domain statistics are



not known a priori. This section first overviews OPTAcCC’s behavior and shows
its code, then states the fundamental theorem that specifies its functionality.
Section 4 then presents several extensions to the algorithm.

OpTAcCC takes as arguments an initial representation system (read “prior-
itized default theory”) Ro = (F,H,Yy) along with parameters ¢,6 > 0. Each
possible ordering 7; of the set of hypotheses H = {hy, ha, ..., h,} corresponds
to a different representation system R; = (F,H,7;). This set of alternative rep-
resentation systems can be organized into a search space by specifying a set
of transformation functions between orderings, thus imposing a neighborhood
structure on the set. In particular, OPTACC uses a set of O(n?) possible trans-
formations 7 = {TZ'J'}lSZ"an, where each 7; ; maps orderings to orderings: Given

any ordering T = (b1, ha, .. ., hn),
Tiyj(T)I<h1,...,hi_1,h h h_l, h]'+1,...,hn>

i.e., 7;; moves the 4** term in the hypothesis sequence to just before the it”
term. The set T[] ={ 5 ;(T) };; defines the set of 7’s neighbors. Notice these
transformations fully connect our space of representation systems.

Algorithm OPTACC((F, H, o), €, 8)
Let K =[2]
For k=0..(K—-1) do
Let 7[Yx] — {7(Xx) € Rz |7 €T},
[& m 2202 TTDY g =0
Lr = { L% In %—I otherwise}

Draw Lj sample queries from the P[] distribution, Sk = {q1,..., 9z, }

ForEach 7' € 7[T:] do
Let C[T'] — 1%F ¢

(If k =0, then
Let C[T0] — L1377 (Yo, q) . )
If I e T st C[Y'] > O[N] + ¢
Then Let Yy41 — 1’
Else Return[ 7% ].
End For
End OpTACC

Fig.1. Code for OPTACC

OpPTACC’s code appears in Figure 1. In essence, OpTAcc will climb from
T to one of its neighbors, 77 € T[T%], if this T is statistically likely to be



superior to T%; i.e., if we are highly confident that C[Y%41] > C[7%].% This
constitutes one hill-climbing step; in general, OpTAcc will perform many such
steps, climbing from 7y to 77 to 1%, and so on, until terminating on reaching
Yon, for some m < K. Here, we are confident that none of 1;,,’s neighbors T[]
is more than € better than T,,,. Theorem 1 specifies OpTAcCC’s behavior more
precisely; its proof appears in the appendix.

Theorem 1. The OpTAcc((F,H,Yo), €, &) algorithm incrementally produces a
series of hypothesis orderings Yo, 11, ..., im such that, with probability at least
1— 6, both

1. the expected accuracy of each successive ordering in the series is strictly
better than its predecessors’; i.e.,

Vi>j, (%] > A7)
2. the final ordering 1\, in the series is an “e-local optimum?”; i.e.,
VreT, ClTm] > Cl7(Twm) ] — €.

Moreover, OPTACC requires only a number of query/answer samples that is
polynomial in 1/¢, 1/6 and |H|. O

4 Issues and Extensions

This section discusses: other algorithms related to OpTAcc, ways for OrTAcCC
to accommodate more general THEORIST-style representations, efficiency issues,
and alternative performance measures and types of transformations.

4.1 Related Algorithms

We can view OPTACC as a variant on anylime algorithms [BD88, DB88] as, at
any time, OPTACC provides a usable result (here, the theory produced at the k"
iteration, 7%), with the property that later systems are (probably) better than
earlier ones; i.e., ¢ > j means C[2;] > C[T;] with high probability. OpTAcc
differs from standard anytime algorithms by terminating on reaching a point of
diminishing returns.

OprTAcC works in a “batched incremental” mode, as it iteratively uses a set
of samples to decide whether to climb to a new theory, or to terminate. There
is also a strictly-incremental variant of this algorithm [Gre92b], which observes
samples one-by-one, and decides after each individual sample, whether to climb,
terminate, or simply draw an additional sample; hence this variant can, in some
situations, climb to better theories after fewer samples.

8 Here, as in Figure 1, “C[Ya]” refers to “C[{F, H, Ta)]?; “c(Ta, q)” refers to
“c((F, H, Ta), ¢)7; and R 7wy refers to the set of all credulous default theories
formed from the underlying standard default theory (F,H).



4.2 Accommodating More General THEORIST-Style Representations

The descriptions above have assumed that every ordering of hypotheses is mean-
ingful. In some contexts, there may already be a meaningful partial ordering of
the hypotheses, perhaps based on specificity or some other criteria [Gro91]. Here,
we can still use OPTAcCC to complete the partial ordering, by determining the
relative priorities of the initially incomparable elements.

In some situations, we may be unable to answer certain queries without
adding in several new assertions. We can model this by viewing H = P[H] as
the power set of some set of “sub-hypotheses”, H. If we then define orderings
on the hypotheses H that correspond to lexographic extensions of orderings over
H, we can then move about this subset of H-orderings by simply modifying
H-orderings.

4.3 Efficiency

As OpTAcc must determine whether F U {h;} E’ ¢/O4a[¢q], it can require gen-
eral theorem proving. This derivation process is the critical factor in determining
OpTAccC’s computation cost: if the derivation process is decidable (e.g., if we are
dealing with propositional theories), then OPTAcc will necessarily terminate;
and if it is polytime (e.g., if we are dealing with propositional Horn theories or
propositional 2-CNF), that the OpTAcc algorithm will be polytime.

Notice next that OPTAcCC requires the values of C[Y] = qus (Y, q) for
each T/ € T[Y:]. We can, in general, obtain this information by determining
whether FU {h;} E /044l q] holds for each hypothesis k;. There can, in some
situations, be more efficient ways of estimating these values, for example, by
using some Horn approximation to F U {h;}; see [Gre92a] and [GJ92]. We can
also simplify the computation if the #; hypotheses are not independent; e.g., if
each corresponds to a set of sub-hypotheses.

4.4 Alternative Performance Measures and Transformations

We have so far insisted that each categorical answer to a query be either com-
pletely correct or completely false; in general, we can imagine a range of answers
to a query, some of which are better than others. (Imagine for example that the
correct answer to a particular existential query is a set of 10 distinct instantia-
tions. Here, returning 9 of them may be better than returning 0, or than returning
1 wrong answer. As another situation, we may be able to rank responses in terms
of their precision: e.g., knowing that the cost of watchy; is $3,000 is more precise
than knowing only that watchy is expensive [Vor91].) We have also assumed
that all queries are equally important; i.e., a wrong answer to any query “costs”
us the same 0, whether we are asking for the location of a salt-shaker, or of the
tiger currently stalking us.

One way of addressing all of these points is to use a more general ¢(R, ¢)
function — one that can incorporate these different factors, by differentially



weighting the different queries, the different possible answers,; etc. In fact, we
could permit the user to specify his own ¢(R, ¢) function.

Notice also that we have completely discounted the computational cost asso-
ciated with arriving at the answer. Within this framework, we can consider yet
more general ¢(-, -) “utility functions”, which can even incorporate the user’s
tradeoffs among accuracy, categoricity, efficiency, and perhaps other aspects.
This would allow the user to prefer, for example, a performance system that
returns IDK in complex situations, rather than spend a long time returning the
correct answer; or even allow it to be wrong in some instances [GE91].

Of course, the OPTAcc-variant may have to consider other transformations,
besides the simple “reordering the hypotheses” one discussed above. For example,
if being wrong was much worse than being silent (i.e., returning “IDK”), we
could transform one representation system to another by including a rule whose
conclusion is IDK, which applies in certain cases where the correct answer is
not known reliably. Such a system might, perhaps, include k3 : Nag(z) in its
hypothesis set and include the rule Vz. A(z) & E(z) & Nag(z) = S(z, IDK) in
its fact set. A representation system that accepts this Ngg(Z15) hypothesis will
produce the answer IDK to the query S(Zis, 7y).

There are yet other types of transformations, for converting one representa-
tion system into another — for instance eliminating some inappropriate sets of
hypotheses [Coh90, Won91], or modifying the antecedents of individual rules (cf.,
[OM90]), etc. Each of these approaches can be viewed as using a set of transfor-
mations to navigate around a space of interrelated representation systems. We
can then consider the same objective described above: to identify which element
has the highest expected accuracy (or in general, “highest expected utility”).

Here, as above, the expected utility score for each element depends on the
unknown distribution, meaning we will need to use some sampling process. In
some simple cases, we may be able to identify (an approximation to) the globally
optimal element with high probability (¢ la the Pao algorithm discussed in
[0G90, GO9I1]). In most cases, however, this identification task is intractable.
Here again it makes sense to use a hill-climbing system (similar to OpTAcc) to
identify an element that is close to a local optimum, with high probability. (Of
course, this local optimality will be based on the classes of transformations used
to define the space of representation systems.)

5 Conclusion

Many specifications of nonmonotonic theories are ambiguous, in that they sanc-
tion many individually plausible but collectively incompatible solutions to cer-
tain queries; this is the essence of the multiple extension problem. This report
addresses this problem by considering the set of credulous reasoning systems
derived from a given nonmonotonic theory (each formed by imposing a total or-
dering on the hypotheses) and then attempting to identify the credulous system
that is correct most often — i.e., which has the highest “expected accuracy”,
with respect to the distribution of queries and correct answers. Unfortunately,



the natural distribution of queries is usually not known a priori, and moreover,
the task of identifying the optimal system is intractable, even given this distribu-
tion. We present a learning algorithm, OpTAcc, that side-steps these problems
by using a set of query/answer samples to obtain an estimate of the unknown
distribution, and by using a set of transformations to hill-climb to a credulous
system that is, with high probability, arbitrarily close to a local optimum. We
also show that this algorithm is efficient, in that its sample complexity is only a
low-order polynomial in the size of the initial theory and the (reciprocal) error
and confidence terms; and its computational complexity is dominated by the
cost of the underlying derivation process.
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A  Proof of Theorem 1

Theorem 1 The OPTACC({F,H,T0), €, §) algorithm incrementally produces a series
of orderings Yo0,711, ..., m such that, with probability at least 1 — 6, both

1. the expected accuracy of each successive ordering in the series is strictly better than
its predecessor’s; i.e.,

Vi), (%] > 1]
2. the final ordering T, in the series is an “c-local optimum”; i.e.,
VreT, C[Tn] > Clr(Tm)] — €.

Moreover, OPTACC requires only a number of query/answer samples that is polynomial

inl/e, 1/6 and |H]|.

Proof: To deal with OpTAcc’s efficiency: Notice that it will stay at any 1%

performance element for L samples, a quantity that is clearly polynomial in
IT[Y;]] = O(JH[*), L and $. Also observe that OPTAccC can climb at most
K — 1 times: It will only climb from 7} to a new 1}y if the empirical estimate
C[Tr41] is at least ¢/2 over C[ 7} ]; hence, after £ climbs, C[12] > C[ Yo ]+ fe/2.
After K — 1 climbs, the empirical average of the resulting Tx_; is at least
ClTx-1] > C[To] + (K —1& > 0+ (2-1)§ = 1—£. As C[T] can be
at most 1 for any theory, no theory can be strictly more than £ better than this
Tk _1 theory, and so there can be no additional climbs.

To prove Parts 1 and 2, notice there are two types of mistakes that OpTAccC
can make on a single stage of the OPTAcC algorithm, when it is dealing with

Tk:



Ar. OpTAcc climbed from 7% to some 7' = 7(1%) as ¥’ appeared to be better
than 7%, but in reality, 7’ was not better; or

By,. OpTAcC terminated as no 7' = 7(1%) appeared to be more than € better
than 7}, but there was some such 7" that is much better.

Notice that neither Ay nor By can occur if C[17] = ﬁ > 4es, o1, q), the
empirical estimate of C[T”] obtained using the samples Sy, is within £ of the
C[Y'] for each relevant T7; i.e., if

VY e {1 UuTY], |C[Y']-Clr]| < i (3)

(Proof: For Ay, if C[T']> C[T% ]+ 5, then

CIT]-C[Y'] = (C[T]-CIN]) + )
(C[T]-ClT']) + (C[T']-C[T'])
< fH-5+f =0
and for Bk,ifC[TI]SC[Tk]—i—g,then
Clr]-C[Te] = (C[T]-C[T]) + A
(C[T"]-C[T:]) + (C[T%] - C[T3])
< i + % + i = €. )

We therefore need only show that Equation 3 holds with probability at least
1- %, as that means that the probability of making either type of mistake on
the k*? iteration is at most %, and so the total probability that OpTAcc will
make any mistake, on any iteration, is at most K% =4.

These claims follow immediately from Hoeffding’s inequality (a variant of
Chernoff bounds): As each query g¢; is selected independently from a fixed dis-
tribution, the values {¢(, ¢;)}; are independent, identically-distributed ran-
dom values. Hoeffding’s inequality states that their observed sample average,
ﬁ Eq,eS 7, ¢) = C[T’], converges exponentially fast to the population mean,
C[T]: i.e., the probability that “C[T'] is not within  of C[T]” goes to 0 expo-
nentially fast as |S| increases; and, for a fixed |S|, exponentially as 7 increases.
Formally,®

Pr HC[T’] evad

>q] < 2 (4)

In the £ = 0 situation, as OPTACC uses Ly = L% In ww samples

Sp, the probability that any C[T’] is not within €/4 of C[T”] (for any theory
Y =Yyor Y €T[Yy]) is

PTHC[T'] - C[r']| > %] < 9e-2ke (%)
< 9 _92.8 mW 2
e €2 16
PV s
T OT2K (4TI T K (14[7[X]D ¢

? See [Bol85, p. 12]. Zy.b., these inequalities hold for arbitrary bounded random vari-
ables, and thus for C[7'] as 0 < (Y, ¢:) <1 Vg € Q.



Hence, the probability that any of the 1 4 |7 [Y3]] estimates C[7”] is not within
€/4 of the corresponding C[T"'] is (1 + |T[T0]|)m =L

Now consider any k£ > 1, and observe that we have already obtained the
estimate C[ 7} | during the k—1°¢ stage, and are already confident that it is within
/4 of C[1}]. We therefore need only show that our estimates of the accuracy
of each T" € T[T%] is within €/4 of the correct value; this again follows trivially

from the Equation 4 and the fact that OpTAcc draws Ly = [6% In %

samples. O (Theorem 1)
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