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The companion abstract “Learning Accurate Belief Nets using Explicitly-Labeled Queries”
provides an algorithm for learning the CPtables for a given belief structure from a set of
labeled queries IQ = {(X;=x;; Y; =yi; pi)}M,, with the understanding that each
(X; =x;; Y; =y;; pi) corresponds to the claim that the “correct” value for the query
P(X; =x;|Y; =y;) is p; € [0,1], where of course X;,Y; are subsets of the variables,
whose legal values include x; and y; respectively. The goal there is to find the belief net

B}, = argming{ e/r\r(DQ)(B )} with minimum error:
— 1
ar?(B) = X [Bxly)-pF
(x;y; P)ELQ

Note this I) is a sample, drawn from the distribution of queries, sq(-) (which we as-

sume to be stationary, but unknown to the user); and so this €r\r(IQ)(B) score is an
approximation to the true error

errg, p(B) = Y sq(x;y) - [B(x|y)—P(x|y))

That abstract argued that this idea, of learning belief nets (BN) from explicitly-labeled
queries, has several advantages over the standard approach of finding the belief net that
is most likely, given a set of domain tuples. First, queries are naturally available because
people use BNs to answer queries. Therefore query data is intuitive to use and easily
obtained. Second, a query contains extra information on what variable is queried and
what variables are observed. This extra information allows the learning algorithm to
focus on updating only the parameters relevant to improving the BN’s performance on
answering these queries; this means the learning process can be more (sample) efficient.
Third, training BNs on queries is a more correct approach if the trained BNs will later
be used to answer queries.

That algorithm, however, requires knowing the correct labels for a set of queries —
i.e., the learner must know the label p; = P(x;|y;) in the given (x;;¥y;;p;) “training”
data. Such values may not be easy to obtain. In some situations, for example, we may
only know that a specific patient had cancer, given certain information and evidence
(e.g., cancer given 35yo, female, and smoker). A doctor might record this in a table
— see the first line of Table 1. The other rows correspond perhaps to other patients,
etc. Note that this table does not specify the exact probability p; that a patient has a
disease given evidence, but instead provides just the instances. Also, the data in this
table is quite “sparse”, as it only includes values for the evidence and query variables for
the questions that were asked.

1See also [ZG99]. We assume the reader knows about belief nets (aka Bayesian networks); see [Pea88].



Age Gend Smok Temp LivBio Btest EKG | Cancer Menin

35 F Y * * * * Yes *

25 M N * * * * No *
* * * * True * * Yes *
* F * * False True * * Yes
* F * High True * * * No

Table 1: Sample of Implicitly Labeled Queries

We therefore consider the task of learning a good BN, given such a table, together with
the knowledge that Cancer and Menin are queried variables and the rest are evidence
variables. As we assume the most-likely outcomes typically occur, it makes sense to seek
a BN that maximizes the “conditional likelihood” of the queried variables, given the
evidence. We therefore define the “(empirical) conditional log likelihood” of a belief net
B as i 1

e (B) = o L lee(Pa(xly) (1)
(x.y)elQ

which of course is an approximation to the “(true) conditional log likelihood” of a belief
net B, given the true query distribution sq(-) and true underlying distribution P(-):

CLLy,p(B) = Y sqg(x;y) - log(P(x|y))

{x,y)

Our learner seeks the belief net that maximizes this score.
Unfortunately,

Theorem 1 [t is NP-hard to find the values for the CPtables of a fired BN-structure
that produce the largest (empirical) conditional likelihood (Equation 1) for a given set of
implicitly-labeled queries. |

Motivated by [BKRK97], we therefore built a hill-climbing algorithm, called ILQ, that
climbs along the gradient
(I
o L™ (BN) 1

= [B(q7r|an)_B(qar|y)]
9 ¢ylr Cqlr

Our experiments show that this IL() learner performed well on many different problems.

As one illustrative example, consider the net Baxc = , in the context
when the X variable is never present; here the data D contained m copies of (1% 1)
and m copies of (0x0). Given that C was a query variable and A was evidence, our
IL@Q algorithm correctly instantiated the B4 x¢ network by making A = X = C, which
clearly is appropriate.

In contrast, other standard algorithms, such as the APN gradient-ascent algorithm
[BKRK97] or standard EM, performed poorly here, repeatedly returning the values ¢, , =
Cgl-a and ccz = Cgnp = 0.5, where in general ¢, , is CPtable associated with the
Z — W link. [ZG99] proves that those values are in fact (respectively) points of 0-
derivative and fixed-points. ([ZG99] also provides other examples that illustrate IL@’s
effectiveness.)



Open problems: 1. Produce efficient learning algorithms that return CPtable entries
that produce a good approximation to the optimal ones. 2. Extend these results to
consider ways to learn the structure of a belief net (as well as CPtable entries).
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