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Bayesian belief nets (BNs) are typically used to answer a range of queries, where
each answer requires computing the probability of a particular variable (e.g., possible
diagnosis) given some specified evidence. An effective BN-learning algorithm should,
therefore, learn an accurate BN — i.e., one that returns the correct answers to these
specific queries. Qur earlier [GGS97] motivated this objective, arguing that it makes
effective use of the data that is encountered, and that it can be more appropriate than
the typical “maximum likelihood” algorithms for learning BNs [Hec95]. This abstract
will summarize, and extend, those results: first overviewing the complexities inherent in
this task and then providing an effective algorithm.

We assume there is a stationary underlying distribution P(-) over N (discrete) ran-
dom variables V = {V;,...,Vn}. A user can “interact” with this distribution by asking
queries, each of the form “What is value of P(X =x|Y =y)?”, where X, Y C V.
The “label” of each such query is the (numeric) probability value of this conditional
event, over the underlying distribution — e.g., “0.65” is the label of the labeled query
“P( cancer| female, 35yo, smoker) = 0.65”. We assume there is a (stationary) distri-
bution sq(-) over the set of all possible legal queries, where sq(X =x;Y =y) is the
probability that the query “What is the value of P(X=x|Y =y )?” will be asked.

N.b., the query distribution sq( - ) can be completely unrelated to the underlying distri-
bution P(-) — e.g., even though “What is P( Cancer | female, 35yo, smoker ) #” is asked
35% of the time, the actual value of P(Cancer |female, 35y0, smoker) could be 0, or 1,
or any other value.

We can evaluate any belief net B by its “expected Lo-error”, with respect to the actual
query distribution sq(-) and underlying distribution P(-):

errg, p(B) = > sq(x;y) - [B(x|y)—P(x|y))’

where the sum is over all assignments x,y to all subsets X, Y of variables V, each P(x|y)
corresponds to the label for this query and B(x|y) to the value that B assigns to this
query. (Typically sq(x; y) will be 0 for most x, y pairs.) The learner seeks a belief net
that minimizes this score:

B:rr = a‘rgmin{ errsqqp(B) }
B

We focus on the task of filling-in the CPtables © = {Cq(i)‘r(i)}z' of a given belief net

structure G (where each ¢, corresponds to the BN’s value of P(Q = ¢|R =r), where

R C V is the set of )’s parents in G)) when the learner is given an explicit set of “labeled

1See also [ZG99], which also considers 2 other learning models. We assume the reader is familiar with
belief nets (aka Bayesian networks); see [Pea88].



queries”, I) = {(X;=xi; Yi =y pi)}iL,, where these [X; = x;, Y; = yi] queries
are drawn from the query distribution sq(-), then “labeled” p; € [0,1] based on the
underlying probability P(-). This IQ set will not include every possible query, and in
particular will omit any query that sq(-) assigns 0 probability.

To address the two obvious learning challenges: First, note that learning is typically
difficult when conditioning events are extremely small; we therefore define, for any v > 0,

BM@E’Y(G) = {B € BM(G) | chlr € G)acqlr 2 '7}

to be the subset of BNs (instantiating the structure G) whose CPtable entries are bounded
above 7. Then

Theorem 1 Given any belief net structure G, requiring the specification of K CPTable
entries © = {cq,r; }1<y, let B € BN oy~ (G) be the BN that has minimum empirical score

—~ 1
e (B) = g D [Blxly) =
(x;y; PYELQ
with respect to a sample IQ) of
18 2 6 K
Mrg(e, 6,v) = 6—2<log3 + Klog?>

labeled queries from sq(-). Then, with probability at least 1 — 4, B will be no more than
€ worse than the optimal member of BN oy~ (G), B* — i.e.,
P[ errsq,p(B) < errgg,p(B*)+€] > 1-46. ]

This sample complexity remains polynomial even if y = 1/2%.
While the sample complexity is not bad, the computational complexity is problematic:

Theorem 2 [t is N P-hard to compute the CPTables for a given belief net structure that
produce the BN with the minimum error wrt a given set of labeled queries IQ). This
hardness result holds even if we consider only members of E/\f@tl/w Q) .

N.b., we cannot simply fill in the CPtables using the frequency estimates [Hec95,
” 2

CH92], as our training data does NOT include such “tuples”.
This hardness result inspired us to build a hill-climbing algorithm, that changes the
CPtables along this gradient. One obvious approach, inspired by [BKRK97], is simply to
5 &9 (B)
o Cq|,.
the constraints that ¢, > 0 and > cq;lr = 1. We therefore used the parameterization
Bair

Cailr = S Fae and sought the optimal values of {8, r}. This required the result:

update each individual CPtable entry ¢, based on . However, that ignores

20f course, we could consider using a sample of tuples to approximate the “p;” labels — i.e., learn
from only “unlabeled” queries and tuple samples. Even here using the frequency estimates is problematic,
as it may produce a belief net that has unnecessarily high error if the given BN-structure is incorrect,
and even if the structure is correct, it may still converge very slowly to the appropriate CPtable values;
see [GGS9I7].



Theorem 3 Given a set of queries IQ) = {[x;,y:,pi]}, the total gradient wrt a single
Bgr term (corresponding to the CPtable entry cy;) is

OP(X|Y)
OBqr

where B(x |y ) is the value the belief net B assigns to the “P(x|y)” query.

= P(X,q,r|Y) - P(X[Y)P(q,r|Y) —cqe[P(X,7|Y) = P(X|Y)P(r|Y)]

We implemented this algorithm, and demonstrated that it worked effectively over a
variety of both artificial and real domains; see [ZG99).

Open problems: 1. Remove the annoying “© > 4” restriction. 2. Produce learning
algorithms that are guaranteed to return CPtable entries that produce a good approz-
imation to the optimal ones. 3. Extend these results to consider ways to learn the
structure of a belief net (as well as CPtable entries).
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