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ABSTRACT
There are a number of recommendation systems that can suggest
the webpages, within a single website, that other (purportedly sim-
ilar) users have visited. By contrast, our goal is a system that can
recommend “information content” (IC) pages — i.e., pages that
containinformation relevant to the user— from anywhere in the
web. This paper describes how we addressed this challenge, We
first collected a number of annotated user sessions, whose pages
each include a bit indicating whether it was IC. Our system, ICPF,
then used this collection to learn the characteristics of words that
appear in such IC-pages, in terms of the word’s “browsing features”
(e.g., did the user follow links whose anchor included this word,
etc.).

This paper describes the ICPF system, as well as a tool (AIE)
we developed to help users annotate their sessions, and a study we
performed to collect these annotated sessions. We also present em-
pirical data that validate the effectiveness of this approach.

1. INTRODUCTION
While the World Wide Web contains a vast quantity of informa-

tion, it is often difficult for web users to find the information they
really want. This paper presents a recommendation system, ICPF,
that identifies “information content” (IC) pages— i.e., pages the
user must examine to accomplish her1 current task. Our system can
locate these IC-pagesanywhere in the Web.

Like most recommendation systems, our ICPF watches a user as
she navigates through a sequence of pages, and suggests pages that
(it hopes) will provide the relevant information [13, 14]. ICPF dif-
fers in several respects. First, as many recommendation systems
are server-side, they can only provide information about one spe-
cific website, based on correlations amongst the pages that previous
users have visited. By contrast, our client-side ICPF is not specific
to a single website, but can point users to pagesanywhere in the
Web. The fact that our intended coverage is the entire Web leads
to a second difference:support. As any single website has a rela-
tively small number of pages, a website-specific recommendation
system can expect many pages to have a large number of hits; it can
therefore focus only on these high support (read “highly-visited”)
pages. Over the entire WWW, however, very few pages will have
high support. Our system must therefore use a different approach
to finding recommended pages, based on the users’ abstract brows-
ing patterns; see below. The third difference deals with the goal of

1We will use the female pronouns (“she” and “her”) when referring
to users, of either gender.
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the recommendation system: Many recommendation systems first
determine other users that appear similar to the current userB, then
recommend thatB visit the pages that other similar users have vis-
ited. Unfortunately, there is no reason to believe that these cor-
related pages will contain information useful toB. Indeed, these
suggested pages may correspond simply to irrelevant pages on the
paths that others have taken towards their various goals, or worse,
simply to standard dead-ends that everyone seems to hit. By con-
trast, our goal is to recommend only “information content” (IC)
pages; i.e., pages that are essential to the user’s task. To determine
this, we first collected a set of annotated web logs (where the user
has indicated which pages are IC), from which our learning algo-
rithm learned to characterize the IC-page associated with the pages
in any partial subsession. After examining the pages a user has vis-
ited in a (partial) session, our ICPF will then recommend only the
associated IC-pages.

1.1 Overview of ICPF

Our goal is to help the user find “IC-pages” — i.e., pages that
the user must examine to accomplish her task. This is clearly rel-
ative to her current information need; we estimate this from her
current click-stream, based on properties of thewordsthat appear
there. That is, imagine the user has examined the URLs in the
sequence〈U1, U2, . . . , U7 〉, and observed that the word “work-
shop” appeared in each of the 4 most recent pages. Moreover,U5

contained the results of a Google search (see Figure 6), which the
user followed toU6 (which is “Workshop Home Page”). Here, we
observed that the title and snippet aroundU5 also contained “work-
shop”. We would associate the word “workshop” with the “brows-
ing properties” that it appeared in (1) all 4 recent pages, (2) a re-
sult’s title and (3) a snippet that was followed.

Our ICPF can use this browsing information to help determine
IC-pages as it has earlier learned a model of user browsing patterns
from previous annotated web logs (defined below).2 In particular,
imagine it had learned that

If the wordw appears in at least 2 recent pages,
andw appears in a snippet that was followed,

thenw will tend to appear in IC-pages.
(1)

Given this rule, ICPF would assert that “workshop” is likely to
be anIC-word — i.e., a word that appears in an IC-page. ICPF

would similarly compute browsing properties for essentially all of
the words that appear in any of the pages{U1, . . . , U7}, and then
use this model to predict the user’s current information need: a list

2We use the term “ICPF” to refer to both the learner which pro-
duces a page classifier from training data (viz., the annotated web
logs), and also to the resulting classifier that predicts possible web
pages from the user’s current click stream; the classifier’s interface
is shown in Figure 1.



Figure 1: ICPF: IC-page Prediction

of word-probability pairs{ 〈w, p(w) 〉 }, wherep(w) estimates
the probability that the wordw will be an IC-word. It presents such
information to the user; see the top portion of Figure 1. The check-
boxes allow the user to identify which of the suggested words are
actually part of her current information need. This figure shows two
ways that ICPF could use this information: First, it could “scout
ahead”: follow the outward links from the current page (recur-
sively, in a breadth-first fashion) seeking pages that include many of
these IC-words. It would then recommend such IC-word-rich pages
to the user. Alternatively, ICPF could send an appropriate query to
a search engine (e.g., Google), then possibly scout forward from
the pages returned. Our companion paper [20] discusses this issue
in greater depth; it also considers whether these browsing-patterns
are specific to individuals.

1.2 Outline
To build our ICPF system, we need client-side information, in

the form of annotated web-logs: the sequence of webpages that
users have visited, together with an “IC” label for each page: was
this paper an IC-page or not? We use this data to train our ICPF,
and later in our experiments, to verify that ICPF in fact worked ef-
fectively. N.b., our performance system doesnot require the user to
explicitly label pages as IC or not; this is done only from a control
population, during the training phase.

Section 2 describes the client-side tool,AIE , that we developed
for collecting this training data.AIE allows the user to explicitly
indicate which pages were IC-pages for her specific current task.
This section also describes the empirical study we ran to collect the
data.

Section 3 shows how ICPF uses this collected information to
learn an IC-word classifier: Given the user’s current click stream,
this classifier will predict which words will be in the IC-page. Here
we discuss some challenges of dealing with this imbalanced dataset
and show the results on this task. Section 4 evaluates this method,
and shows that our ICPF works fairly well.

As mentioned above, there are many recommender systems that
perform a related task. Section 5 discusses the most relevant of
these systems, and describes how they differ from our objectives
and approach.

Figure 2: The AIE Browser (top portion)

2. AIE AND EMPIRICAL STUDY

2.1 Specific Task
To help us determine which pages are IC — i.e., contain infor-

mation the user requires to complete her task — we first collected a
set ofannotated web-logs: each a sequence of webpages that a user
has visited, and labeled with a bit that indicates whether she con-
sidered this page to be IC. We enlisted the service of a number of
students (from the School of Business at the University of Alberta)
to obtain these annotated web-logs. Each participant was asked to
perform a specific task:

1. Identify 3 novel vacation destinations — i.e., places you have
never visited.

2. Plan adetailedvacation to each destination specifying travel
dates, flight numbers, accomodation (hotels, campsite, . . . ),
activities, etc.

Each participant was given about 45 minutes, and given access
to our augmented browsing tool (AIE ; see Section 2.2), which
recorded their specific web-logs, and required them to provide the
“IC-page” annotation. The participants also had to produce a short
report summarizing the vacation plans, which needed to explicitly
cite the specific webpages (“IC-pages”) that were involved in these
decisions; hereAIE made it easy to remember and insert these ci-
tations. To help motivate subjects to take this exercise seriously,
we told them that two (randomly selected) participants would win
$500 to help pay for the specific vacation they had planned.

We chose this specific task as

• It represents a fairly standard way of using the web

• It was goal-directed, in contrast to simply asking the partici-
pants to “meander about the web”

• The contents of many travel websites are fairly constant

• A diverse set of web-pages may be relevant — flight sched-
ules, travel brochures, recent news (terrorist attacks), . . .

• It is easy to motivate students to do this task, as they will get
a chance to actually go on this trip

• The task is fairly well-defined and delimited

2.2 AIE: Annotation Internet Explorer
To enable us to collect the IC information, we built an enhanced

version of Microsoft Internet Explorer, calledAIE (shown in Fig-
ure 2), which we installed on all computers in the lab we used for
our study. As with all browsers, the user can see the current web
page. This tool incorporates several relevant extensions — see the
toolbar across the top of Figure 2. First, the user can declare the



Figure 3: AIE PopUp Window, used to declare a page as “IC”

current page to be “important” (read “IC”), by clicking theImpor-
tantbutton on the top bar. When doing this,AIE will pop up a new
window (Figure 3) that shows this URL, and two fields that allow
user input: a mandatory field requiring the user to enter an alias for
this page (e.g., “AirCanada Edmonton-Beijing ticket prices”) and
an optional field for writing a short description of why this page
was important (e.g., “the URL is relevant as it gives the cost of the
plane tickets”).

The History button on the toolbar brings up the side-panel (as
shown in Figure 2), which shows the user the set of all pages seen
so far, with a flag indicating which pages the user tagged as IC
(important). The user can click on one of these to return to that
IC-page; she can also reset its “importance” designation.

The Reportbutton will switch fom the “Browse view” to the
“Report editor”, which participants can use to enter their report.
Here, each subject has access to the pages she labeled as important
during her browsing, which she can use in producing her report. (In
fact, the participant can only use such pages in her report.3)

After completing her report, the user can then submit her en-
tire session using theSubmitbutton. This sends over the entire
sequence of websites visited, together with the user’s “IC-page”
annotations, as well as other information, such as time-stamps for
each page, etc.4

2.3 Features of the Annotated Web Log Data
Collectively, the 129 participants in the study requested 15,105

pages, and labeled 1,887 pages as IC, which corresponds to 14.63
IC-pages per participant. This involved 5,995 distinct URLs, mean-
ing each URL was requested 2.52 times on average. Of these, 3,039
pages were search pages (from 11 different search engines); if we
ignore these, we find that each non-search-engine page was visited
only 2.02 times on average. Figure 4 shows how often each page
was visited; notice 82.39% of the URLs were visited only one or
two times.

Clearly very few URLs had strong support in this dataset; this
would make it very difficult to build a recommendation system
based on only correlations across users in terms of the pages they
visit. (See Section 5.)

3She does have the option of returning to the “browse” mode, and
adding new pages to the list of important pages. She can also ex-
amineall pages visited earlier, and re-assign the pages — i.e., take
a page considered non-IC, re-declare it to be IC, and then use that
page in her report.
4In addition to collecting these sessions, we also downloaded a
copy of every page visited by any of the participants, and we also
explored the web site from the visited page down to 5 levels; this
required about 9.1GB. We plan to use this later, to help analyse the
structure of the websites visited, when they were visited.

Figure 4: Frequency of URLs

3. LEARNING TASK
As motivated above, we are seeking general patterns that de-

scribe how the user locates useful information (IC-pages). For rea-
sons described above (see also Section 5), these patterns are not
based on a specific set of pre-defined words, but rather on the user’s
observable behavior in response to the information within the pages
visited — i.e., how the words contained in these pages influence her
navigation behavior. For example, if she follows a hyperlink to a
page, but later backs up, this suggests that the snippet or anchor
around the hyperlink contains words that seem very relevant (think
“IC-words”), but the content of the page itself does not satisfy her
information need.

We therefore collect this type of information about the words —
how they appeared on each page, and how the user reacted. This
is based on our assumption that there are general models of goal-
directed information search on the web — some very general rules
that describe how users locate the information they are seeking. If
we can detect such patterns, and use them to predict a web user’s
current information need, we may provide useful content recom-
mendations.

The previous section describes the source of our basic training
data — annotated web logs. This section shows how we use that
data to build a classifier for characterizing whichwordswill appear
in the IC-page. The first step (Section 3.1) is to segment each user’s
complete clickstream into a set of so-calledIC-sessions— each
of which is a sequence of pages that ends with an IC-page. Sec-
tion 3.2 discusses some techniques we use to clean this data. Within
each IC-session, we extract all the words in the preliminary non-IC-
pages, then collect various “browsing features” of each word (see
Section 3.3). By examining the associated IC-page, we also label
each such word as an IC-word or not. Section 3.4 shows how our
ICPF uses this information to train a classifier to predict when a
word will be an IC-word.

3.1 IC-session Identification
Each user will be pursuing several different information needs as

she is browsing. To identify and distinguish these needs, we must
first separate the pages into a sequence of “IC-sessions”, where
each such IC-session pertains to a single information need. In gen-
eral, each IC-session is a consecutive sequence of pages that ends
with an IC-page, or the end of the user’s entire session.

Chen et al. [3, 4] terminated each session on reaching a Max-
imum Forward Reference (MFR) — i.e., when the user does not
follow any outlinks from a page. Of course, these final MRF pages
need not correspond to IC-pages. Cooley et al. [6] used time-outs to
identify sessions: if the time between consecutive page requests is
greater than a threshold, they assume that a new session has started.
While the fact that a user remained at a single page may suggest that
that page could be IC, there could also be other reasons. Note that
neither set of authors claims that these final pages addressed the
user’s information need, and so they provide no evidence that these
pages were IC-pages.



Algorithm ICSI:(URLsequenceU = 〈u1, u2, . . . , un 〉):
outputs Sequence of IC-sessions

F : Boolean;% true iff current page is immedicately after an IC-page
L: Queue; % stores the current session

BEGIN
SetL := empty queue; F := false
For i=1..n do
If ui is an IC-page then

If L is not empty, OutputL
F := true;

Else
If(F ) then

If ui is a search query page then Empty(L);
If ui is in L then Pop offL every page after this firstui;
F := false

Appendui to L
If L is not empty, OutputL.

END
Figure 5: ICSI Algorithm

In our case, since we focus on goal-directed browsing, we ter-
minate a session on reaching an IC-page. However, it is not clear
that the next session should begin on the subsequent page. For ex-
ample, imagine reaching an index pageI after visiting a sequence
of pagesA → B → C → I, and moreover,I contains a num-
ber of useful links, sayI → P1 and I → P2, where bothP1

andP2 are ICs. Here, each IC-session should contain the sequence
before the index page since they also contribute to locating each
of the IC-pages — i.e., given the browsing sequenceA → B →
C → I → P1 → I → P2, we would produce the two IC-sessions
A → B → C → I → P1 andA → B → C → I → P2.

To identify meaningful IC-sessions, we used the heuristic that if
the page after an IC-page is a new search query, then a new session
starts, since it is very common that when one task is done, users will
go to a search engine to begin the next task. Figure 5 summarizes
our IC-session identification algorithm.

3.2 Data Cleaning
Our system parses the log files to produce the sequence of pages

that have been downloaded. Unfortunately some of these pages are
just advertisements, as many web pages will launch a pop-up ad
window when they are loaded. As few of these advertisement pages
will contribute to the subject’s information needs, leaving them in
the training data might confuse the learner. We therefore assembled
a list of advertisement domain names, such as:ads.orbitz.com ,
ads.realcities.com , etc. We compare each URL’s domain
name with the ad server list and ignore a URL if it is in the list.

We defined each IC-session as composed ofpageviews, where
a pageview is what the user actually sees. In the case of frames,
a pageview can be composed of a number of individual URLs.
When a frame page is being loaded, all of its child pages will be
requested by the browser automatically; and thus instead of record-
ing only the frame page in the log file, all of its child pages will
be recorded too. This is problematic when the participant browses
within a frame page.

Finally, while we did record the time information, we were un-
able to use it in the learning process. This is because many sub-
jects switched modes (to “Report mode”) on finding each IC-page,
which means that much of the time between requesting an IC-page
and the next page was not purely viewing time, but also includes
the time spent writing this part of the report. Unfortunately, we did
not anticipate this behavior, and so we did not record the time spent
in Reportmode.

3.3 Attribute Extraction
We consider all words that appear in all pages, removing stop

Figure 6: Title-Snippet State in the Search Result Page

words and stemming, using standard algorithms [15]. We then
compute the following 25 attributes for each wordwi, from each
IC-session: (In all cases, if the URL refers to a frame page, we
calculate all the following measures based on the page view.)

3.3.1 Search Query Category
As our data set includes many requests to search engines, we

include several attributes to relate to the words in the search result
pages.

Each search engine will generate a list of results according to
the query, but the content of each result may differ for different
search engines. We consider only information produced byevery
search engine:viz., the title (i.e., the first line of the result) and the
snippet (i.e., the text below the title). For example, in Figure 6, the
title of the first result is “Workshop Home Page”, and its snippet
is “Workshop on Web Mining April 7, 2001 on all aspects of Web
mining. . . . ”.

We tag each title-snippet pair in each search result page as one
of: Skipped, Chosen, andUntouched. If the user follows a link,
the words in its title and snippet will be considered “Chosen”. The
words that appear around the links that the user did not follow, be-
fore the last chosen one, will be deemed “Skipped”,5 and all results
after the last chosen link in the list will be “Untouched”. Figure 6
shows 2 “Skipped”, 2 “Chosen”, and 1 “Untouched” results. No-
tice this corresponds to several visits to this search result page: The
second entry “Web Mining” is the first one followed; the user later
clicks back to the search page, and chooses the fourth entry, “The
Data Mining Group”. Also, for pages in general, we say a hyper-
link (in pageU ) is backedif the user followed that link to another
page, but went back to pageU later. A page isbackwardif that
page has been visited before; otherwise we say a page isforward.

The actual features used for each wordw appear below. Each is
with respect to a single IC-session. Notice that most have numeric
scores and many are simple integers — e.g., how many timesw is
in some specified category.
5These are the links that the user probably saw, but actively chose
not to follow.



isKeywordCnt Number of times thatw appeared within the query’s key-
word list.

skippedTitleCnt Number of skipped titles containingw.
skippedSnippetCnt Number of skipped snippets that containw.
chosenTitleCnt Number of chosen titles that includew.
chosenSnippetCnt Number of chosen snippets that includew.
untouchedTitleCnt Number of untouched titles that includew.
untouchedSnippetCnt Number of untouched snippets that includew.

unknownCnt Number of times thatw appears in the anchor of a chosen
link that is not one of the listed results — e.g., when the user clicks
the hyperlink in the advertisement area.

bkTitleCnt Number of chosen titles that includew, but where the user
later goes back to the same search result page, presumably to try
another entry there. In Figure 6, the “Web Mining” entry is backed,
as the user then went back to go to “The Data Mining Group”.

bkSnippetCnt Number of chosen snippets that includew but were later
“backed”.

3.3.2 Sequential Attributes
All the following measures are extracted from the pages in an IC-

session except the search result pages and the last IC-page. We also
compute the “weight” of each wordw, in each page, asweight(w) =∑

j Nj(w)× vj , whereNj(w) denotes the number of occurences

of w in thejth “HTML context” [17]: andvj is the weight associ-
ated with this context, shown as

h1 10
h2 9
h3 8
h4 7
h5 6

h6 5
a 50
title 20
cite 10

strong 15
big 20
em 15
i 15

b 15
u 10
blink 20
s 5

(2)

ratioWordAppearance Number of pages containingw divided by number
of pages.

avWeight Average weight ofw across the whole IC-session.
varWeight w’s weight variation across the whole sequence.
trendWeight The trend of the word’s weight in the whole sequence:{ as-

cend, descend, unchanged}. If the word’s weight becomes higher
along the IC-session, it is expected to be IC-word with high proba-
bility.

ratioLinkFollow For the hyperlinks whose anchor text containw, (fol-
lowed hyperlinks whose anchor text containw)/ (hyperlinks whose
anchor text containw).

ratioFollow How oftenw appeared in the anchor text of hyperlinks that
followed — (number of followed hyperlinks whose anchor text con-
tainw) / (length of IC-session - 1).

ratioLinkBack For the clicked hyperlinks whose anchor text containw:
(number of hyperlinks that were backed later) / (number of hyper-
links followed).

ratioBackward For these pages that containw, (number of pages that are
revisited) / (number of pages).

avWeightBackward The average weight ofw in the backward pages.
varWeightBackward The variance ofw’s weight in the backward pages.

ratioForward For the pages that containw, (number of pages that are for-
ward) / (number of pages).

avWeightForward The average weight ofw in the forward pages.
varWeightForward The variance ofw’s weight in the forward pages.
ratioInTitle For those pages that containw , (number of pages that contain

w in the title) / (number of such pages).
ratioInvisible For these pages that containw, (number of pages wherew

is invisible) / (number of pages). We only count the words in META
tags (keyword & description) as invisible.6

6We thought this might be very important, as many websites ensure
that all the relevant words appear in the META elements of the
page, as a way to help establish a good position in search engine
results pages.

Figure 7: Feature Vector for some Extracted Words

For each wordw in an IC-session, we compute each of these at-
tributes, and also indicate whetherw appears in the IC-page or not.
Figure 7 shows the feature vectors for some words. We summarize
the browsing properties of all the words along the entire IC-session,
with the goal of anticipating what the user is seeking. (Hence, this
differs from simply summarizing a single page [19].) Note that
when we train the classifier, we do not use the words themselves,
but instead just these attribute values and whether the word appears
in the IC-page.

3.4 IC-word Prediction
After preparing the data, ICPF used Weka [18] to produce a

NäıveBayes (NB) classifier. Recall that NB is a simple belief net
structure which assumes that the attributes are independent of one
another, conditioned on the class label [7]. NB also runs fast, and
acquires the best performance compared to other classifiers, such
as decision tree and Support Vector Machines (SVM). To deal with
continuous attributes, we use estimation [8] instead of discretiza-
tion [11], as we found the former works better.

4. EMPIRICAL RESULTS
Section 4.1 first provides a simple way to evaluate the quality

of our predictions, determining whether we can predict the words
on the IC-page based on the entire prior sequence. Section 4.2
then extends this to the general case; determining whether we can
predict the IC-words well before then.

To train the classifer, we first identify IC-sessions (Figure 5),
then extract the browsing properties of all the words in the IC-
session except the last page, i.e., the IC-page. We use that final
page to label each word as either IC or not. The classifier can then
be trained to predict which words are IC-words given their brows-
ing properties.

Note that the performance system does NOT require that the user
annotate the webpages; this was just done in the training phase.
However,if the user is willing to do this labelling (i.e., useAIE),
we could hone the system to the nuances of the current user, and
obtain superior results (compared to a generic system, based on
only the base population of users.)

4.1 Simple Evaluation
According to the labelled log data, only 12.5% of the pages

were IC. Moreover, the number of non-IC-words is far greater than
that of IC-words. To deal with this imbalanced dataset, we have
tried both down-sampling [12] and over-sampling [9], and found
that down-sampling produced more accurate classifiers than over-
sampling. (E.g., it produced about 20% higher recall of IC-word
prediction than over-sampling.) We then randomly selected an equal
number of positive (IC-word) and negative (Non-IC-word) instances



Figure 8: Non-IC and IC-word Prediction Results

as testing data, then generated our training data from the remain-
ing data by randomly removing negative instances until obtaining
a number equal to the number of positive instances.

For each IC-sessionU = 〈u1, u2, u3, . . . , uN 〉, whereuN

is the only IC-page, we letUN−1 = 〈u1, u2, . . . , uN−1 〉 be the
preliminary non-IC-pages. In general, letW (U) be all the words
in the set of pagesU .

For eachR = 2, 3, . . . 10, we randomly selected 20 different
groups of sizeR from the set of participants. Note that we allowed
overlap among these 20 groups. For now, we restrict our attention
to only those sessions withW (uN ) ⊆ W (UN−1) — i.e., where all
words that appeared in the IC-pages occur somewhere inUN−1.

For each of these9 × 20 groups, we call the recommendation
function onUN−1 to generate the word set predicted as IC-words,
which we denote asWP ( UN−1 ). (These are the wordsw ∈
W (UN−1) whose posterior probability of being an IC-word is greater
than0.5.)

We computed four quantities for each group — precision and
recall, for both IC-words and non-IC-words:

ICprecision(U) =
|WP ( UN−1 )

⋂
W (uN )|

|WP ( uN )|

ICrecall(U) =
|WP ( UN−1 )

⋂
W (uN )|

|W (uN )|

nonICprecision(U) =
|WP ( UN−1 )

⋂
W (UN−1)|

|WP ( UN−1 )|

nonICrecall(U) =
|WP ( UN−1 )

⋂
W (UN−1)|

|W (UN−1)|

(3)

whereW (·) is the obvious complement.
We built 10-fold training/testing datasets for each of the9 × 20

groups. For each of the 9 values ofR, and each of the 4 quantities
(Equation 3), we computed the median of the 20 associated values.

(We used median as it is less sensitive to outliers than the mean.)
Figure 8 shows the means and standard deviations of these me-

dian values. The high precision and recall, in some cases, suggest
that there is some commonality across users, which our algorithm
is finding. Notice this is not based on one website or a specific set
of words, but rather on how web users find useful information. This
high level of generality means our model can be applied to different
websites and different users. (Our companion paper [20] discusses
the single-user case, which shows that information learned from a
single user can be helpful to that user.)

Even though the average recall of IC-words is only about 45%,
this is still good enough to find IC-pages, which of course is our
ultimate goal. Section 1.1 presented two methods that ICPF can
use to locate IC-pages given IC-words. ICPF can scout ahead to
find the IC-pages that match the predicted IC-words; knowing 45%
of the words on that page makes it easy for the scout to correctly
identify the page based on its content, or at least some pages very
similar to it. Alternatively, ICPF might try to build search queries
using the predicted IC-words. Given the high precision of our IC-
word prediction, even with recall around 45%, we can anticipate
finding tens of words that will surely be in the IC-page. Since the
predicted IC-words are exclusive of stop words, they will be quite
relevant to the IC-page’s content. We therefore suspect that a query
with these relevant words will help retrieve the relevant IC-page.
(We are currently exploring these, and other ways to find IC-pages
from IC-words.)

4.2 General Evaluation Method
Clearly a good recommendation system should predict all-and-

only the IC-pages. It would also be useful to predict these pages
early — i.e., it is better to recommend the IC-pageu7 after the
user has traversed only〈u1, u2 〉, rather than wait until the user
has visited all of〈u1, u2, u3, . . . , u6 〉, as this would save the user



Figure 9: Evaluation Specification

the need to visit the 4 intervening pages. We therefore define an
evalution method based on these two objectives.

For each sessionU = 〈u1, u2, u3, . . . , uN 〉 of lengthN
(whereuN is the IC-page), there areN − 1 initial subsessions,
where each subsessionU` = 〈u1, u2, . . . , u` 〉 is the first con-
secutivè pages, for1 ≤ ` < N .

We will call the recommendation function on each subsession
U` to generate a propsed set of IC-words,WP ( U` ). We extend
Equation 3 to be

ICprecision(U, `) = |WP ( U` )
⋂

W (uN )|
|WP ( U` )|

ICrecall(U, `) = |WP ( U` )
⋂

W (uN )|
|W (uN )|

We then define the following F-Measure [16]

F(U, `) =
2× ICprecision(U, `)× ICrecall(U, `)

ICprecision(U, `) + ICrecall(U, `)

Using the fact that the distance betweenu` anduN is N − ` (see
Figure 9), we finally define

score(U, `) ={
|WP ( U` )| × penalty if WP ( U` )

⋂
W (uN ) = {}

F(U,`)
|WP ( U` )| × (N − `) otherwise.

Thepenalty∈ <− term basically penalizes the system for being
silent; here we used−0.05. Notice thisscore(·, ·) increases the
earlier the system can make a prediction, provided that prediction
is accurate (based on the F-measure). We divide by the number of
predicted words|WP ( U` )| to discourage the system from simply
suggesting everything.

For each IC-sessionU , let

coverage(U) =
|W (uN )

⋂
W (UN−1)|

|W (uN )|

be the overlap between the words in the IC-page and the words
in the other pages. (Noticecoverage(U) = 1 corresponds to the
W (uN ) ⊆ W (UN−1) condition mentioned earlier.)

We randomly select 90% of the IC-sessions as training data, and
use the others for testing. For each testing IC-session, we calcu-
late the averagescoreover all subsessions, provided there were any
recommendations. (That is, we provide no recommendation if our
system finds no word qualifies as an IC-word.) We then compute
the average score for all testing IC-sessions as the final score for
this trial. Figure 10 graphs this information, as a function of the

Figure 10: Evaluation Result

coverage. We find that in most cases, while the coverage increases,
W (UN−1) grows very fast, which is the main reason that the score
gets worse.

We compare our method with two other very simple techniques:
let the IC-words be (1) all words in the subsessionWP ( U` ), or
(2) all feature words, which are those words enclosed by some spe-
cific HTML tags, such as “a”, “title”, “b”, “h1”, etc. Figure 10
shows that our approach did significantly better.

As a final observation about these data: When we compared the
training data with the associated testing data, we found that only
30.77% of IC-pages in the testing data appeared anywhere in the
training data; and that the average support for these in-training IC-
pages is only 0.269. This is why we cannot use standard recom-
mendation systems that only use page frequency: about 70% of the
IC-pages would never be recommended, and even for the remain-
ing 30%, there is only a small chance that they would be selected
as recommendations; see below.

5. RELATED WORK
Many groups have built various types of systems that recom-

mend pages to web users. This section will summarize several of
those systems, and discuss how they differ from our approach.

Our system is seeking the web pages that provide the informa-
tion that the user wants — i.e., that satisfy the user’s Information
Need. Chi et al. [5] construct Information Need from the context
of the hyperlinks that the user followed, and view it as the informa-
tion that the user wants; this appears very similar to our approach.
However sometimes the context of the hyperlink gives only some
hints for the destination information, but not useful information
(e.g., “click here”). Moreover, there is no reason to believe that
the context around the followed hyperlink is sufficient to convey
the user’s intention; notice this does not consider the hyperlinks
that are skipped, nor when the user backed up, etc. By contrast, our
approach is based on the idea that some browsing properties of a
word (e.g., context around hyperlinks, or word appearing in titles
or . . . ) indicate whether a user considers a word to be important;
moreover, our system haslearned this from training data, rather
than making an ad-hoc assumption.

One model, by Billsus and Pazzani [2], trained a Naı̈veBayes
classifier to recommend news stories to a user, using a Boolean
feature vector representation of the candidate articles, where each
feature indicates the presence or absence of a word in the article.
That model used a set of words that werehand-selectedto ensure
that they covered all the topics in these articles. Their research,
however, provided no explicit feedback from the subject; instead



Figure 11: NäıveBayes Models for (a) IC-page Identification
using Specific Words; (b) IC-word Identification using Word
Features (our approach)

they only inferred the interestingness of the news story from the
listener’s actions, such as channel changes. Moreover, their use of
hand-selected words poses two problems: First, it places a burden
on the user (or system developer) to provide these words. Second,
it is difficult to guarantee that the selected words can cover all pos-
sible articles — i.e., it is not clear the trained model would be able
to make predictions if the user began visiting a completely different
set of WWW pages or news stories.

Jennings and Higuchi [10] trained one neural network for each
user to represent a user’s preferences for news articles. For each
user, the neural network’s nodes represent words that appear in sev-
eral articles liked by the user and the edges represent the strength
of association between words that appear in the same article.

In our research, we also view IC prediction as a classification
task, but instead of building our model based on some pre-specified
words, our model is based on “browsing features” of the words,
such as how many times the word is in the hyperlink’s anchor text,
how many times the word is in the search keyword list, etc.; see
Section 3.3. After training, our system may find some patterns like
“any word that appears in the three consecutive pages will be in the
IC-pagé’; see also Equation 1. Note this is different from systems
that produce association rules [1] — e.g.,

If a user visits page H,
then she will also examine page J.

as those association rules can only predict pages that have been
seen; note we can apply our system to make predictions about pages
that have not been visited.

Our approach is also different from systems that involve a set of
predefined words — e.g.,

After observing a sequenceU
If “ web” ∈ W (U) with weight 0.9, and
“software ” ∈ W (U) with weight 0.8, . . . ,

then pageT may be interesting.

We are not looking for patterns based on specific words or only for
specific users, but rather for more general patterns across different
sessions and different people, which we expect to be useful even in
a new web environment. Figure 11 shows the difference between

IC-page prediction based on specific words and our method based
on word features.

Our research identifies “Information Need” with the distribution
over IC-words, which relates to the words that will be in the IC-
page. Some other systems define the user’s information need as
a learned combination of a set of (possibly pre-defined) words —
e.g., a NäıveBayes model [7] that classifies each webpage as IC or
not, using a set of words as the features [2]. Our method differs as
we do not limit the set of words, but instead label each individual
word in the user’s current session pages with a measure of its likeli-
hood of appearing within an IC-page. We can use this information
to score any given page (e.g., the ones found by our scout) based
on the number of high-scored words it contained, or we could form
a query to a search engine as a list of the highly-scored words; see
[20].

6. CONCLUSION
Future Work
Most of the results reported here are based on a study involving a
travel-planning task. We are planning further studies, to test the
generality of our approach in other contexts — e.g., researching
academic information or applying to graduate school. We also plan
to make a general version ofAIE publicly available, to help us
collect extensive data from different users, in natural environments.

We are implicitly viewing the list of IC-words as the intention
of the web user. It would be tempting to ask users to indicate their
own information need directly. However, they will often view this
as an unwanted interruption and be reluctant to do so. In addition, it
may not always be easy for individuals to express their information
need. Our system is designed to run in the background, without any
explicit user input. It observes a user’s behavior and recommends
IC-pages.

We are also currently investigating more effective ways to predict
IC-words, and hence IC-pages, perhaps based on yet other features
of the IC-session, such as other page content information, or per-
haps timing information, etc. We are also exploring the best way
to connect our ICPF with a scouting system and/or multiple search
engines, and perhaps yet other ways to provide specific page rec-
ommendations to the user.

We also plan to explore Natural Language processing systems
to extend the range of our IC-words, and other machine learning
algorithms to make better predictions, and help us to cope better
with our imbalanced dataset.

Contributions
Many recommendation systems apply to only a single website, and
basically tell the current user where other similar users have vis-
ited. Our goal is a complete-web client-side recommendation sys-
tem that can actually point a user to the webpages that contain the
information that she will need to accomplish her current task, wher-
ever those pages appear, anywhere on the web. To accomplish this,
our ICPF first learns a model of general web users. It does this by
first extracting properties (“browsing features”) of the words that
appear in a training set of the user’s annotated web logs. These
become the features; our ICPF learns which combinations of these
features determine whether the associated word is likely to be in-
cluded in the IC-page. As our system only depends oncharacter-
istics of words, and not on the specific words themselves, it can
be used to classify the completely different set of words associated
with a completely different page sequence, and can recommend
pages from anywhere on the Web.

To assess the usefulness of this system, we conducted a labora-



tory study to collect realistic annotated data. In this study, subjects
perform a series of information-search tasks on the web, and in-
dicate which of the pages they view are IC-pages. Our ICPF then
determines under what circumstances a word will be in the IC-page.
Our empirical results show that our system works effectively.
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