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Abstract

Admissible and consistent heuristic functions are
usually preferred in single-agent heuristic search
as they guarantee optimal solutions with complete
search methods such as A* and IDA*. Larger
problems, however, frequently make a complete
search intractable due to space and/or time limita-
tions. In particular, a path-planning agent in a real-
time strategy game may need to take an action be-
fore its complete search has the time to finish. In
such cases, incomplete search techniques (such as
RTA*, SRTA*, RTDP, DTA*) can be used. Such
algorithms conduct a limited ply lookahead and
then evaluate the states envisioned using a heuristic
function. The action selected on the basis of such
evaluations can be suboptimal due to the incom-
pleteness of search and inaccuracies in the heuris-
tic. It is usually believed that deeper lookahead in-
creases the chances of taking the optimal action. In
this paper, we demonstrate that this is not necessar-
ily the case, even when admissible and consistent
heuristic functions are used.

1 Lookahead Pathologies in Real-time
Single-agent Search

Complete search methods such as A*[Hart et al., 1968] and
IDA* [Korf, 1985] produce optimal solutions when based on
an admissible and monotonic heuristic function. The primary
drawbacks are the exponential running time and the necessity
to wait until the search completes before the first action can
be taken[Korf, 1990]. This limits the applicability of com-
plete search in practice as the deliberation time per action can
be severely limited[Higgins, 2002], the domain model can
be expensive[Bulitko and Wilkins, 2002], the goal states can
be difficult to recognize[Levneret al., 2002]. Consequently,
despite numerous advances in improving heuristic functions
[Korf and Taylor, 1996; Culberson and Schaeffer, 1994;
Reinefeld, 1993; Korf, 1997], incomplete real-time/on-line
search methods remain the practical choice for complex real-
life problems.

Various incomplete search methods have been proposed
including: RTA* [Korf, 1990], RTDP [Barto et al., 1995],
SRTA*, and DTA* [Russell and Wefald, 1991]. Such algo-
rithms base their decisions on heuristic information collected

from a partial tree expansion (lookahead) prior to reaching
the goal state. Since the heuristic function is generally inac-
curate and the search is incomplete, suboptimal solutions can
be produced even with admissible and consistent heuristics.

It is widely believed that looking ahead deeper improves
the chances of taking the right action. Consequently, a con-
siderable amount of effort has been put into increasing the
lookahead depth by using selective search (search extensions)
and hardware and software optimizations.

In this paper we demonstrate that looking ahead deeper
can actuallydecreasethe chances of taking the optimal ac-
tion even when admissible and consistent heuristic functions
are used.

2 Related Past Research & Our Novel
Contributions

Lookahead pathologies within the mini-max search in two-
player games have been investigated extensively in the past.
In [Nau, 1982; 1983; Beal, 1980; 1982; 1983; Bratko and
Gams, 1982; Pearl, 1983], the primary cause of pathologies
was deemed to be the independence of heuristic values of
the leaf nodes. Such games were callednon-incremental.
Large branching factors were also considered contributing to
a pathology. Later,[Michon, 1983] addednon-inertness(i.e.,
the constant branching factor) to the “black list” of properties
that can cause a pathology.

The efforts presented in this paper differ from the past
work in several key areas: (i) we demonstrate lookahead
pathologies insingle-agentheuristic search; (ii) pathologies
are shown to take place even when the true and heuris-
tic values of sibling states are correlated (i.e., inincre-
mental domains); (iii) unlike research in[Schr̈ufer, 1986;
Beal, 1980] that dealt with two-valued (win/loss) heuristics,
we considerreal-valued heuristic functions; (iv) we show
pathologies with thesmallest non-trivial branching factor
(two); (v) pathologies are demonstrated foradmissible and
consistentheuristic functions.

3 Framework
In this study we consider a single-agent heuristic search in
a discrete state domain with a finite number of deterministic
actions. The states (setS) and actions (setA) form a directed
graph with certain specified vertices representing the goal
states. The edges (actions) are weighed with action costs:
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Figure 1:Illustration of p-ply binary lookahead tree. Through-
out the paper we display the true f∗ in the circles, the states or
heuristic f values are shown next to the circles, and the edges
are labeled with actions. Here a+ and a− are the optimal and
suboptimal actions respectively.

c : A → R. The agent is provided with a perfect domain
model:δ : S ×A → S.

We define the true distance-to-goal functionh∗(s) as the
sum of action costs along the shortest path from states to
the closest goal state. Generally speaking, the agent uses an
approximationh to the unavailableh∗. The approximation is
typically inaccurate insomuch as:∃s ∈ S [h∗(s) 6= h(s)] .

For a fixed starting states, functiong(s′) is defined as the
sum of action costs along the shortest path froms to s′. Fi-
nally, the sum ofh or h∗ andg is typically denoted byf or
f∗. It easy to see thatf∗ remains constant along any opti-
mal path from a fixed states to the closest goal. Also note
that, for any states′, action a1 is inferior to actiona2 iff
f∗(δ(s′, a1)) > f∗(δ(s′, a2)).

Located in states, the agent can use its perfect modelδ to
predict the states it will get to upon taking various sequences
of actions. A binary lookahead tree is illustrated in Figure 1.
For the sake of clarity and simplicity we will be using small
binary lookahead trees to illustrate the discussion throughout
the paper.

The lookahead policyπ(s, p) operates as follows: (i) start
in the current states; (ii) construct the lookahead search tree
of p plies deep by envisioning terminal states of all action se-
quences ofp actions (whenever possible); (iii) evaluate the
leaf nodes of the lookahead tree using thef function and se-
lect the minimum-valued state; (iv) output the single action
leading to selected leaf state (resolve ties randomly).

Depending on the lookahead tree, random tie resolu-
tion, and the approximate heuristicf , the action a =
π(s, p) output by π(s, p) can be suboptimal: ∃a∗ 6=
a [f∗(δ(s, a∗)) < f∗(δ(s, a))] . The probability of such an er-
ror for states ∈ S is denoted byErr(s, p). Additionally,
we will consider the expected value ofErr(s, p) over the
statess. Such state-independent quantity will be referred to
asErr(p).

The combination of domain and heuristic functionh (f ) is
calledpathologicaliff ∃p1 < p2 [Err(s, p1) < Err(s, p2)] .
The corresponding state-independent version is:∃p1 <
p2 [Err(p1) < Err(p2)] . The intuitive meaning is quite
transparent: lookahead search is pathological iff looking
deeper ahead is expected toincreasethe chances of taking
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Figure 2:The 7-node 2-ply lookahead tree used in the analy-
sis of pathologies with admissible and consistent heuristics.

a suboptimal action.
We adopt the following standard terminology. Functionh

is called admissible iff∀s ∈ S [h(s) ≤ h∗(s)] . It is called
consistent iff∀a ∈ A, s ∈ S [h(s) ≤ c(a) + h(δ(s, a))] .
It can be shown that consistency ofh is equivalent to
non-decreasing monotonicity off = g + h: ∀a ∈
A, s ∈ S [f(s) ≤ f(δ(s, a))] . In the following we will
assume that the trueh∗ satisfies the mini-min relation:
∀s [h∗(s) = mina∈A (c(a) + h∗(δ(s, a)))] and h∗ is, there-
fore, consistent and, trivially, admissible.

4 Admissible & Consistent Heuristics
Complete searches (e.g., A* and IDA*) produce optimal so-
lutions with admissible heuristics. Thus, much effort has
gone into derivation of admissible heuristics either manu-
ally or automatically (e.g.,[Korf and Taylor, 1996; Prieditis,
1993]). Consistency ofh leads to non-decreasing monotonic-
ity of f and often speeds up complete searches conducted by
A*/IDA*. Incomplete searches (e.g., RTA*) can produce sub-
optimal solutions even with consistent and admissible heuris-
tics. It is widely believed, however, that deeper lookahead
reduces chances of such errors. Remarkably, this is not nec-
essarily the case.

Consider the binary lookahead tree in Figure 2. Each
node is shown with its true valuef∗(s) inside the circle.
For each states, heuristic f(s) is drawn uniformly from
[f(sparent), f∗(s)] (indicated with the ‘∼’ in the boxes next
to the circles). The value (A) of the root state is drawn
from [0, f∗(sroot)]. This makes thef function admissible and
monotonically non-decreasing.

We will refer to the drawn values off as
A,B,C, D, E, F,G (illustrated in the figure). Assume
that uD > 1, uG > uF > 1. By definition, the lookahead
will be pathological iff Err(sroot, 2) > Err(sroot, 1). The
probability of taking the suboptimal action (i.e., going to the
right child of the root node) with the lookahead of one is:

Err(sroot, 1) = Pr(E < B)

=
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Similarly we derive an expression for the lookahead of two:
Err(sroot, 2) which can not be reproduced in this short pa-
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Figure 3: Admissible and consistent heuristics: non-
pathological and pathological lookahead trees.

per∗. By analyzing the difference of the two expressions we
arrive at a criterion of pathology.

A concrete illustration of this phenomenon can be found
in Figure 3. The tree on the left is non-pathological as:
Err(sroot, 1) ≈ 0.0945 > 0.0226 ≈ Err(sroot, 2). The
tree on the right, however, is indeed pathological. Averaged
over 10 million trials:Err(sroot, 1) ≈ 0.4607 < 0.4861 ≈
Err(sroot, 2).

5 Future Work & Conclusions
In practice, lookahead pathologies with real-time (single-
agent or two-player) search areinfrequentlyobserved even
when inadmissible heuristics are used (cf.,[Thompson, 1982]
for the game of chess). Consequently, future work directions
include: (i) identification of the properties of practically used
heuristic functions (e.g., Manhattan distance in the 8 puzzle)
that are responsible for thelack of pathologies, (ii) extension
of the current formal analysis to lookahead trees with a vari-
able branching factor and a deeper lookahead, (iii) methods
for on-line and off-line pathology detection and correction
and (iv) connections between the probability of taking sub-
optimal actions and a decrease in the cumulative expected re-
ward.
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