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Abstract

We investigate the problem of using function ap-
proximation in reinforcement learning (RL) where the
agent’s control policy is represented as a classifier map-
ping states to actions. The innovation of this paper lies
with introducing a measure of state’s decision-making
importance. We then use an efficient approximation to
this measure as misclassification costs in learning the
agent’s policy. As a result, the focused learning process
is shown to converge faster to better policies.

Introduction
Reinforcement learning (RL) (Sutton & Barto 1998) pro-
vides a general framework for many sequential decision-
making problems and has succeeded in a number of im-
portant applications. Two primary approaches to learning
agent’s policy have been investigated. Methods based on
value functions learn an approximation to the long-term re-
turn and then use it greedily (Sutton & Barto 1998; Watkins
1989). Policy-search methods, on the other hand, seek an
approximation to the optimal policydirectly in the policy
space (Kearns, Mansour, & Ng 2000; Ng & Jordan 2000;
Suttonet al. 2000; Williams 1992).

Recent developments in the latter group of methods in-
clude application of modern classifiers (Fern, Yoon, & Givan
2004; Lagoudakis & Parr 2003; Langford & Zadrozny 2003;
Yoon, Fern, & Givan 2002). In the framework, acquisi-
tion of agent’s policy is expressed via learning a classifier
labeling states with optimal actions. Recent implementa-
tions of this idea have demonstrated promising performance
in several domains by learning high-quality policies through
high-accuracy classifiers. It should be noted, however, that
in sequential decision-making the classification error isnot
the target performance measure of a reward-collecting agent.
Consequently, increasing the classification accuracy may ac-
tually lower the policy value (Li 2004). The intuition be-
hind this phenomenon lies with the fact that not all states
are equally important in terms of preferring one action to
another. Therefore, the efficiency of classification-based re-
inforcement learning methods can be increased byfocusing
the learning process onmore importantstates, which is the
problem investigated in this paper.
Copyright c© 2004, American Association for Artificial Intelli-
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Related Work
Throughout this paper, the state and action spaces are de-
noted byS and A, respectively. The agent starts from
some states0 ∈ S according to a start-state distribution
D. At each time stept, it perceives the current statest,
takes an actionat ∈ A, receives an immediate reward
rt+1 ∈ R, and reaches the next statest+1; then it repeats
the same process from statest+1. The goal of the agent
is to find a policyπ : S 7→ A to maximize its expected
discounted long-term return starting froms0 by following

π: E
{∑∞

t=0 γkrt+1

∣∣∣s0, π
}

. Given a policyπ, we define

V π(s), the state-value function, as the expected return re-
ceived by followingπ from states. Similarly, the action-
value functionQπ(s, a) is defined as the expected return re-
ceived by taking actiona in states and followingπ there-
after. In the paper, we usepolicy valueV (π) as the measure
of a policy’s performance, which is defined as the expected
return obtained by followingπ from the start states0 drawn
according toD (Ng & Jordan 2000):

V (π) = E
s0∼D

{V π(s0)} . (1)

A reinforcement learning agent tries tolearn the optimal
policy with the maximum value:π∗ = arg maxπ V (π). The
corresponding optimal state- and action-value functions are
denoted byV ∗(s) andQ∗(s, a). Another way to measure
the quality of a policy is throughpolicy loss:

L(π) = V (π∗)− V (π). (2)

Since V (π∗) is a constant for a given problem,
arg maxπ V (π) ≡ arg minπ L(π). Therefore, policy value
and policy loss are two equivalent measures.

There are two primary approaches to computing the opti-
mal policy. Value-function based methods approximate the
optimal value functionV ∗ assuming that the greedy policy
πV with respect to the approximationV will be close toπ∗

whenV is close toV ∗. In particular, a class of algorithms
called temporal difference learning(TD(λ)) (Sutton 1988)
implement this approach by updating the approximate value
functionV iteratively online.

On the other hand, policy-search methods work directly
in a policy spaceΠ and build an approximation̂π∗ ∈ Π to
the optimal policyπ∗. Recent examples include (Kearns,
Mansour, & Ng 2000; Ng & Jordan 2000; Suttonet al.
2000; Williams 1992). In this paper we will focus on
classification-basedpolicy-search RL methods where the
policy is represented as a classifier mapping states to actions.



Reinforcement Learning As Classification
When the state space is small, the policy can be stored in a
lookup table with one entry per state. In such a case,policy
iteration (Howard 1960) has been found efficient in solv-
ing MDPs. Two steps are involved in each policy iteration.
In policy evaluation, the agent evaluates the value function
of its current policyπ, such asQπ(s, a); then inpolicy im-
provement, it computes thegreedy policyπ′ from π by (3).
This process repeats until convergence.

π′(s) = arg max
a

Qπ(s, a), ∀s ∈ S. (3)

It can be shown thatV (π′) > V (π), unlessπ′ = π = π∗ in
which caseV (π′) = V (π) = V (π∗).

If the state space is prohibitively large, however, func-
tion approximation has to be used to represent the policy or
the value function. A general framework of approximation
within policy iteration is known asapproximate policy iter-
ation (API) (Bertsekas & Tsitsiklis 1996), which is similar
to policy iteration, except that (i) the policy and value func-
tions are represented by function approximators such as neu-
ral networks (in contrast to lookup tables in policy iteration),
and/or (ii) the value function is not computed exactly but is
estimated. Consequently, the greedy policyπ̂′ computed in
the inner loop of API is an approximation toπ′. Unlike π′,
π̂′ may be worse than the original policyπ, due to the er-
rors introduced by the approximation. By using classifiers
to represent policies, API has been successfully applied in
several domains (Lagoudakis & Parr 2003).

Challenges to Existing Methods
Recent implementations of classification-based API attempt
to acquire a high-quality policy by employing high-accuracy
classifiers (Fern, Yoon, & Givan 2004; Lagoudakis & Parr
2003; Yoon, Fern, & Givan 2002). While promising, this
approach is susceptible to two problems.

First, increasing accuracy of the classifier can actually re-
sult in policies with lower values. This is so because in
sequential decision-making the classification accuracy (i.e.,
the probability that a policyπ outputs the optimal action) is
not the target performance measure of a reward-maximizing
agent. Consequently,increasingclassification accuracy in
the sense of supervised learning may actuallylower the pol-
icy value. The underlying intuition is that not all states are
equally important in terms of preferring one action to an-
other (Li 2004). In playing chess, for example, a player
should pay more attention to avoiding mistakes in critical
positions where a wrong move will likely lead to material
loss, while in many other positions suboptimal moves are
less important. Therefore, it would be helpful for the agent
to focusthe learning process on more important states.

The second problem lies with the fact that decisions
in some states make very little difference in terms of
the expected returns. Therefore, an importance-insensitive
classification-based RL agent can use learning time and re-
sources inefficiently by trying to approximate the optimal
policy in all states.

A similar idea has been suggested for theT -step RL prob-
lem in (Kim, Langford, & Ng 2003; Langford & Zadrozny
2003). Our work is different in that (i) our results apply to

MDPs of any horizon; (ii) we define the state importance in
a way that enables an exact relation with policy values; and
(iii) we train only one classifier as the policy, instead ofT
classifiers each per time step.

Novel Approach
In this section, we formalize the idea of focused learning
by introducing the novel concept ofstate importance. The
policy switching theorem will be presented first; then two
classes of RL problems, batch RL and online RL, are in-
vestigated. The performance advantage of our approach is
guaranteed by several theorems. Due to space limitation,
proofs of the theorems and detailed empirical evaluation re-
sults are omitted, and only binary-action RL problems with
deterministic policies are examined. A detailed account can
be found in (Li 2004).

The Policy Switching Theorem
Theorem 1 below forms the basis of our proposed meth-
ods. It established how the policy value is changed when
a switch between two policies is implemented. A concept
similar toGπ(s, π → τ), defined below, was introduced in
(Baird 1993) and called advantage. The following theorem
parallels a result in (Kakade & Langford 2002).

Theorem 1 Letπ andτ be two arbitrary policies for a dis-
counted, infinite-horizon MDP;µτ,D

t (s) is the state visita-
tion distribution, i.e., the probability that states is visited
at time t by following policyτ with start states drawn ac-
cording to D. Definedτ,D(s) =

∑∞
t=0 γt · µτ,D

t (s) and
Gπ(s, π → τ) = Qπ(s, τ(s))−Qπ(s, π(s)), then

V (τ)− V (π) =
∑
s∈S

(
Gπ(s, π → τ) · dτ,D(s)

)
. (4)

Focused Batch Reinforcement Learning
In this section, we will consider a simpler class of RL prob-
lems calledbatch reinforcement learning, where the agent
is presented with afixed set of experiences and the goal
is to compute a control policyoffline. Such a learning
problem is useful in the domains where online learning is
not feasible (e.g., when the reward data are limited (Lev-
ner & Bulitko 2004)), and therefore a fixed set of experi-
ences has to be acquired and used for offline policy learn-
ing. Specifically, we assume that the state space issam-
pledand the optimal action values,Q∗(s, a), for these sam-
pled states can be computed or estimated through full tra-
jectory tree expansions (Kearns, Mansour, & Ng 2000).
Indeed, such a method is computationally expensive, but
it can be useful in some cases (Levner & Bulitko 2004;
Wang & Dietterich 1999). A more comprehensive discus-
sion is found in (Li 2004). In summary, the problem consid-
ered in this section is to compute a policy with the maximum
value by inducing a classifier from a set of training data in
the following form:

TQ∗ = {〈s, Q∗(s, a)〉 | s ∈ T , a ∈ A}. (5)

whereT ⊂ S is the sampled state space. We denote the op-
timal action in states by a∗(s), and the other (sub-optimal)
action byā(s).

An importance-insensitive RL agent induces a classifier
π̂∗CI from the training setTCI = {〈s, a∗(s)〉 | s ∈ T } by



minimizing the classification error:

π̂∗CI = arg min
π̂∗

I(π̂∗(s) 6= a∗(s))

|S| , (6)

whereI(·) is theindicator functiondefined as:

I(A) =
{

1, A is true
0, A is false .

We will now introduce an appropriate measure of state im-
portance. Intuitively, a state is important from the decision-
making perspective when making a wrong decision in it can
have significant repercussions. Formally, theimportanceof
a states, G∗(s), is defined as the difference in the optimal
values ofa∗(s) and the other action̄a(s) (as previously men-
tioned, we focus on the binary-action case in this paper):

G∗(s) = Q∗(s, a∗(s))−Q∗(s, ā(s)). (7)

Similarly, G∗(s, π) is defined as:

G∗(s, π) = Q∗(s, a∗(s))−Q∗(s, π(s))

= G∗(s) · I(π(s) 6= π∗(s)). (8)

From Theorem 1, the following corollary can be obtained.

Corollary 1 It holds true for any policyπ that

L(π) =
∑
s∈S

(
G∗(s, π) · dπ,D(s)

)
. (9)

This result is still, however, of a limited practical use since
the visitation distributionµπ,d

t is usually unavailable to the
agent. Thus, we instead minimize the upper bound ofL(π):

L(π) ≤
∑
s∈S

(
G∗(s, π) ·

∞∑
t=0

γt

)
=

1

1− γ

∑
s∈S

G∗(s, π)

Consequently, a practical approach is proposed:

arg min
π

L(π) ≈ arg min
π̂∗

1

1− γ

∑
s∈S

G∗(s, π̂∗)

= arg min
π̂∗

∑
s∈S

G∗(s, π̂∗). (10)

Thus, given a set of training dataTQ∗ described in (5), the
agent can first computeG∗(s) for all statess ∈ T by (7),
build a training setTCS = {〈s, a∗(s), G∗(s)〉 | s ∈ T }, and
then solve the optimization problem:

π̂∗CS = arg min
π̂∗

∑
s∈S

G∗(s, π̂∗). (11)

By replacingG∗(s, π) in (11) with (8), solvinĝπ∗CS is turned
precisely in the cost-sensitive classification problem with the
misclassification costsconditional on individual cases (Tur-
ney 2000). Indeed, in the RL settings,s is the attribute,
a∗(s) is the desired class label, andG∗(s) is the misclas-
sification cost.

A problem of both theoretical and practical interest is
therefore: Is it preferable to solvêπ∗CS as oppose tôπ∗CI?
Theorem 2 below provides an upper bound of the policy loss
of π̂∗CS. In contrast, Theorem 3 establishes thatπ̂∗CI can be
arbitrarily poor in the sense that the policy loss can be arbi-
trarily close to its upper bound,

∑
s∈S G∗(s)/(1− γ).

Theorem 2 If π̂∗CS has a sufficiently high quality, i.e.,

∃ε > 0, s.t.

∑
s∈S G∗(s, π̂∗CS)∑

s∈S G∗(s)
< ε,

then

L(π̂∗CS) ≤ ε

1− γ

∑
s∈S

G∗(s).

Theorem 3 Let ε be the classification error (6) of̂π∗CI, then
∀ε > 0, ∀ξ > 0, there exists an MDP and̂π∗CI, s.t.

L(π̂∗CI) >
1− ξ

1− γ

∑
s∈S

G∗(s).

Focused Online Reinforcement Learning
In this section, we extend the idea of focused learning
to the online RL problem, where the agent interacts with
the environment online, has experiences in the form of
〈st, at, rt+1, st+1〉, and theQ∗(s, a) are not available for
any (s, a)-pair. Our work is based on the API implementa-
tion in (Lagoudakis & Parr 2003), which will be referred to
asCI-cRL (Cost-Insensitive classification-based RL) hence-
forth. Note thatCI-cRL does not compute the exact greedy
policy π′ (3). Instead, it uses a learning algorithm in each
iteration to construct a classifierπ̂′CI−cRL as the approximate
greedy policy by solving:

π̂′CI−cRL = arg min
π̂′

I(π̂′(s) 6= π′(s))

|S| . (12)

Although it is guaranteed thatV (π′) ≥ V (π) whereπ′ is
the greedy policy ofπ, it is possible that the value of the pol-
icy constructed byCI-cRL decreases:V (π̂′CI−cRL) < V (π),
due to the errors introduced by the approximation. Thus,
in order to improve the value of approximate greedy policy
in each iteration, we prefer a policy whose value is close to
V (π′). Similar to the batch RL case, we define the impor-
tance of a state as:

Gπ(s) = Qπ(s, a∗π(s))−Qπ(s, āπ(s))

= Gπ(s) · I(π̂′(s) 6= π′(s)). (13)

wherea∗π(s) andāπ(s) are the greedy and non-greedy ac-
tions ins with respect toπ. Intuitively, Gπ(s) measures how
much additional reward can be obtained by switching the ac-
tion from āπ(s) to a∗π(s) in states, and then following the
policy π thereafter. Likewise, we define

Gπ(s, τ) = Qπ(s, a∗π(s))−Qπ(s, τ(s))

=
{

Gπ(s), τ(s) 6= a∗π(s)
0, τ(s) = a∗π(s)

. (14)

Corollary 2 If during policy improvement a policyπ is
changed tôπ′ which is an approximation to the greedy pol-
icy π′, and

∀s ∈ S, |dπ′,D(s)− dπ̂′,D(s)| < ε, (15)

then

V (π′)− V (π̂′) ≤
∑
s∈S

Gπ(s, π̂′) · dπ̂′,D(s) + ε
∑
s∈S

Gπ(s). (16)



This corollary boundsV (π′) − V (π̂′) via Gπ(s, π̂′)
in each individual state. Note thatπ′ and V (π′) are
constant if π is fixed. Therefore,arg maxπ̂′ V (π̂′) ≡
arg minπ̂′ [V (π′)− V (π̂′)]. In other words, we can mini-
mizeV (π′)−V (π̂′) instead of maximizingV (π̂′). The rep-
resentation (16) is, however, still of a limited practical value
sincedπ̂′,D(s) and ε are usually unavailable to the agent.
Thus, a similar practical approximation is proposed:

π̂′CS−cRL = arg min
π̂′

∑
s∈S

Gπ(s, π̂′) (17)

≈ arg min
π̂′

[
V (π′)− V (π̂′)

]
. (18)

We prefer to solvêπ′CS−cRL as it takes state importance
into account which is highly related to the policy value ac-
cording to Corollary 2. Again, by replacingGπ(s, π) in
(17) with (13), solvingπ̂′CS−cRL is turned precisely into a
cost-sensitive classification problem, wheres is the attribute,
a∗π(s) is the desired class label, andGπ(s) is the misclassi-
fication cost. The analysis above becomes the basis ofCS-
cRL (Cost-Sensitive classification-based RL) in (Li 2004),
which is a cost-sensitive version ofCI-cRL. Advantage of
a similar idea was also suggested by (Fern, Yoon, & Givan
2004) independently, but lacks analysis.

The following two theorems establish (i) whether (18) is
reasonable, and (ii) whether it is preferable to solveπ̂′CS−cRL

as opposed tôπ′CI−cRL. Theorem 4 states that ifε is not large
and if π̂′CS−cRL is of a sufficiently high quality, then it will be
close toπ′ in terms of policy value. In contrast, Theorem 5
asserts that as long aŝπ′CI−cRL has a non-zero classification
error, the differenceV (π′) − V (π̂′CI−cRL) can be arbitrarily
close to its upper bound,

∑
s∈S Gπ(s)/(1− γ).

Theorem 4 If π̂′CS−cRL has a sufficiently high quality, i.e.,

∃ε > 0, s.t.

∑
s∈S Gπ(s, π̂′CS−cRL)∑

s∈S Gπ(s)
< ε,

and assume the notation in (15), then

V (π′)− V (π̂′CS−cRL) ≤ (
ε

1− γ
+ ε)

∑
s∈S

Gπ(s).

Theorem 5 Letε be the classification error (12) of̂π′CI−cRL,
then∀ε > 0, ∀ξ > 0, there exists an MDP and̂π′CI−cRL, s.t.

V (π′)− V (π̂′CI−cRL) >
1− ξ

1− γ

∑
s∈S

Gπ(s).

Empirical Evaluation
In this section, we report the empirical results in a 2D grid-
world domain to evaluate the advantages of importance-
sensitive classification-based reinforcement learning. This
domain is a variation on that in (Dietterich & Wang 2002).
We consider grid-worlds ofN × N cells with no walls.
Each state is represented as a tuple,(x, y) wherex, y ∈
{1, · · · , N}. Start states are randomly chosen in the leftmost
column,(1, y). At every step, the agent has two possible ac-
tions, north-east andsouth-east, which deterministically
take the agent from the position(x, y) to (x + 1, y + 1) or
(x + 1, y − 1), respectively. If the agent attempts to step

(a) reward (b) importance
Figure 1: A typical distribution of immediate reward and
importance values in the 2D grid-world.

out of the grid-world (i.e.,y − 1 or y + 1 exceeds the range
[1, N ]), it will continue to move along the boundary. An
episode is terminated when the agent reaches the rightmost
column.

Experiment I: Batch Learning
In the first experiment,N = 100. In order to make the op-
timal policy have a positive value (which is more intuitive),
we assigned a small positive reward of2 to each action (note
that this does not change any policy). Additionally,3000
units of negative rewards, each with a value of−1, are ran-
domly positioned in the grid-world according to a distribu-
tion scheme. If more than one reward was placed in the
same cell, then the rewards were accumulated. The distri-
bution scheme used in our experiment was a mixture of a
uniform distribution and a two-dimensional Gaussian distri-
bution centered at the cell(50, 50) with the varianceσ = 10
in each dimension. The uniform and Gaussian distributions
carried the weights of0.4 and0.6, respectively. Formally,
for all x, y ∈ {1, 2, · · · , 100}, the weight of cell(x, y) is
computed by:

d(x, y) =
0.4

100× 100
+

0.6

2πσ
exp

{
(x− 50)2 + (y − 50)2

2σ2

}
.

Figure 1 illustrate an example of the reward and importance
value distribution in the100× 100 grid world, respectively.
This problem is a non-discounted finite-horizon MDP. The
goal of the agent is to learn a policy to maximize its cumu-
lative rewards by avoiding the negative rewards throughout
the grid-world.

Two methods are compared. The first one, calledCI, is
the baseline algorithm that solves the importance-insensitive
optimization problem (6); the other, calledCS, solves the
importance-sensitive classification problem (11). We used a
feed-forward multi-layer artificial neural network (ANN) as
the classifier. The topology and parameters of the ANN were
fixed throughout the experiments, so that both classifiers,π̂∗CI
andπ̂∗CS, have the same learning ability. Cost-sensitivity in
classification can be achieved in different ways (Zadrozny
& Langford 2003). We adopted simple resampling which
samples training data according to the distribution:

Pr(select states ∈ T for training) =
G∗(s)∑

s′∈T G∗(s′)
.

Each of the algorithms was evaluated along the two per-
formance measures:



Figure 2: Policy value and misclassification cost in the grid-
world experiment, with standard deviations plotted.

• Relative Policy Value(RPV)1, defined asV(π)/V(π∗);

• Average Misclassification Cost(MCC) over the entire
state space, defined as

∑
s G∗(s, π)/|S|.

The true objective of our reinforcement learning agent is to
maximize RPV while the classifier’s objective is to reduce
MCC.

In the experiments,T contained1000 states randomly
sampled from the original state space:700 of them were
used for training, and the other300 were used for validation
to guard against overfitting. Ten random100 × 100 grid-
worlds were generated according to the reward distribution,
and20 learning sessions were conducted in each of them re-
sulting in a total of400 trials for each algorithm. The results
are plotted in Figures 2 with standard deviation as the error
bars. Several observations are in order.

First, note that the importance-sensitive algorithmCS
increased the policy value substantially faster than the
importance-insensitiveCI. The significant advantage was
observed early in the learning process. Note that the im-
portance values of the grid-world states vary significantly,
as shown in Figure 1(b). For many states, the importance is
negligible or even zero; on the other hand, some of the states
have much greater importance which makes them more sig-
nificant in affecting the policy value and deserve more at-
tention in learning. This observation leads to the conjecture
thatCS can learn even better when there is a high variance
in the importance distribution over the state space.

Second, we note that the importance-sensitive learnerCS

1NB: sinceV ∗(π) is guaranteed to be positive, higher RPV in-
dicates a better policy.

Figure 3: Policy values in the first ten policy iterations, av-
eraged over50 runs.

Figure 4: (Weighted) classification errors on the training set
in the first ten policy iterations, averaged over50 runs.

was able to reduce the average misclassification cost (MCC)
faster thanCI 2. The superior ability to reduce MCC appears
to be the reason for a more rapid RPV improvement exhib-
ited byCS.

Finally, we find that the standard deviation of the policies
obtained byCS is lower (Figure 2(a)). This seems to be due
to the fact thatCS pays more attention to more important
states.

Experiment II: Online Learning
For the online learning experiment, smaller mazes of50×50
cells were used.2000 pieces of rewards each with a value
of 1 were placed in the state space according to a similar
reward distribution. The center of the Gaussian distribution
was moved to the cell(25, 25) and the variance wasσ = 5.
The training state setT contained500 randomly selected
states. We used support vector machines3 as the classifiers.
In the original form, SVMs are cost insensitive and do not
take the misclassification costs into account. We again used
the simple resampling technique as in the previous section.

Three metrics were used to evaluate the approximate
greedy policŷπ′ in each iteration:

• Policy Value(PV): V(π̂′);
• Classification Error(CE):

∑
s∈S I(π̂′ 6= π′)/|S|.

• Weighted Classification Costs(WCE), the classifica-
tion error weighted by the state importanceGπ(s):
2Note that MCC is different from the standard uniform classi-

fication error insomuch as it is weighted by state importance (i.e.,
the misclassification cost).

3We used LS-SVMlab (Suykenset al. 2002), a publicly avail-
able implementation of SVMs in the MATLAB environment.



Table 1: Statistics of the policy value improvements ofCS-
cRL obtained from50 runs of experiment.∑

s∈S Gπ(s)I(π̂′ 6= π′)/
∑

s∈S Gπ(s).

In the experiment, a maze was randomly generated and50
runs of experiments were conducted. In each run,500 states
were randomly selected as the training state setT . The aver-
age policy value ofCI-cRL andCS-cRL in the first10 API
iterations are shown in Figures 3.

First, observe thatCS-cRL successfully increased the
policy values by10–20% on the second to fifth iterations4,
compared withCI-cRL. In most runs,CS-cRL did produce
better policies. Statistics for the second to the fifth iter-
ations are given in Table 1, including the average policy
value improvement ofCS-cRL (with variances) defined as
V(π̂′CS−cRL)−V(π̂′CI−cRL), as well as the probability that the
true value ofCS-cRL’s policy was higher.

Next, we examine the relations between CE/WCE and PV
in the experiments to see whether it is helpful to focus on
more important states. Figure 4 gives the results (CE/WCE)
on the training set. It is clear thatCS-cRL managed to de-
crease the WCE while it has an almost identical performance
with CI-cRL in terms of reducing CE. These results together
with Figure 3 suggest that the proposed method is able to
focus on more important states, which appeared to be the
reason why important-sensitive learning is beneficial.

Conclusions and Future Work
In this paper we investigated the problem of focusing atten-
tion in classification-based RL. Two classes of RL problems
were investigated and two suitable state importance mea-
sures were defined. The advantages, as supported by several
theoretical and empirical results, include faster convergence
to better policies. The promising initial results open several
avenues for future research. First, by placing a threshold on
the importance level of a training state we can further prune
down the training data set. An immediate advantage is a
reduction of training time. However, it remains unknown
whether this reduction will cause overfitting. Another direc-
tion for future research is to investigate other ways of defin-
ing state importance. Note that Corollary 2 depends on the
factor ε, and approximation steps were taken in (10) and
(18). It is possible to find better measures of state impor-
tance and/or better approximation (e.g., estimatingdπ,D(s))
leading to more efficient RL algorithms. Finally, we are
presently extending the idea of focused learning to value-
function based RL methods, such as SARSA (Sutton & Barto
1998) andQ-learning (Watkins 1989).
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