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Abstract

Automated image interpretation is an important task in
numerous applications ranging from security systems to
natural resource inventorization based on remote-sensing.
Recently, a second generation of adaptive machine-learned
image interpretation system (ADORE) has shown expert-
level performance in several challenging domains. Its ex-
tension, MR ADORE, aims at removing the last vestiges of
human intervention still present in the original design of
ADORE. Both systems treat the image interpretation pro-
cess as a sequential decision making process guided by a
machine-learned heuristic value function. This paper em-
ploys a new leveraging algorithm for regression (RESLEV)
to improve the learnability of the heuristics in MR ADORE.
Experiments show that RESLEV improves the system’s per-
formance if the base learners are weak. Further analysis
discovers the difference between regression and decision-
making problems, and suggests an interesting research di-
rection.

Keywords: adaptive image interpretation system, leverag-
ing for regression, boosting, sequential decision making.

1. Introduction

Image interpretation is an important and highly challeng-
ing problem with numerous practical applications. Hand-
crafted image interpretation systems suffer from expensive
design cycle, a high demand for human expertise in both
subject matter and computer vision, and the difficulties with
portability and maintenance. Over the last three decades,
various automated ways of constructing image interpreta-
tion systems have been explored. A recent review can be
found in [8].

One of the promising approaches to automatic acquisi-
tion of image interpretation systems lies with treating com-
puter vision as a control problem over a space of image pro-
cessing operators. Early attempts used the schema theory
[2, 3]. While presenting a systemic way of designing image

interpretation systems, the approach was still ad-hoc in its
nature and required extensive manual design efforts [10].

In the 1990’s the second generation of control policy
based image interpretation systems came into existence.
More than a systematic design methodology, such systems
used theoretically well-founded machine learning frame-
works for automatic acquisition of control strategies over a
space of image processing operators. The two well-known
pioneering examples are a Bayes net system [24] and a
Markov decision process (MDP) based system [9].

The latter system ADORE (ADaptive Object REcogni-
tion) [9] and its extension MR ADORE (Multi-Resolution
ADaptive Object REcognition) [20] learn dynamic image
interpretation strategies for finding target objects in images.
As with many vision systems, they identify objects in a
multi-step process. The input is a raw image, and the output
is an interpretation identifying target objects in the image;
in between, the data can be represented as intensity images,
probability images, edges, lines, or curves. The systems
model image interpretation process as a Markov decision
process, where the intermediate representations are continu-
ous state spaces, and the vision procedures are actions. The
goal is to learn a dynamic control policy that selects the next
action (i.e., image processing operator) at each step so as to
maximize the quality of the final interpretation. Instead of
learning the policy directly, the system learns a value func-
tion as the heuristics for the MDP-based policy.

In this paper we consider the problem of ensemble learn-
ing (in particular, leveraging [22]) in the context of MR
ADORE. The task of recognizing tree canopies from aerial
photographs (i.e., labeling pixels belonging to tree canopies
in an input image) is used as the testbed.

The rest of the paper is organized as follows. Section 2
reviews the requirements and design of MR ADORE, and
then reports on the solution approaches employed to date.
Section 3 gives a brief overview of the related work and
the leveraging method employed in this paper. Section 4
presents and discusses the experimental results. Finally,



Figure 1. Artificial tree plantations result in
simple forest images. Shown on the left is
an original photograph. The right image is its
desired labeling provided by an expert as a
part of the training set.

2. MR ADORE Overview

2.1. Design Objectives

MR ADORE [20] was designed with the following ob-
jectives as its target: (i) rapid system development for a
wide class of image interpretation domains; (ii) low de-
mands on subject matter, computer vision, and AI expertise
on the part of the developers; (iii) accelerated domain porta-
bility, system upgrades, and maintenance; (iv) adaptive im-
age interpretation wherein the system adjusts its operation
dynamically to a given image; (v) user-controlled trade-offs
between recognition accuracy and resources utilized (e.g.,
time required).

These objectives favor the use of readily available off-
the-shelf image processing operator libraries (IPL). How-
ever, the domain independence of such libraries requires an
intelligent policy to control the application of library oper-
ators. Operation of such control policy is a complex and
adaptive process. It is complex in that there is rarely a one-
step mapping from image data to image label; instead, a se-
ries of operator applications are required to bridge the gap
between raw pixels and semantic objects. Examples of the
operators include region segmentation, texture filters, and
the construction of 3D depth maps. Figure ?? presents a
partial IPL operator dependency graph for the forestry do-
main.

Image interpretation is an adaptive process in the sense
that there is no fixed sequence of actions that will work well
for all/most images. For instance, the steps required to lo-
cate and identify isolated trees are different from the steps
required to find connected stands of trees. Figure 3 demon-
strates two specific forestry images that require significantly
different operator sequences for satisfactory interpretation
results.

The success of adaptive image interpretation systems
therefore depends on the solution to the control problem:
for a given image, what sequence of operator applications
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Figure 2. Data types (the boxes) and im-
age processing operators (the arcs) in MR
ADORE. Representatives of data tokens of
each types are shown next to the nodes.

will most effectively and reliably interpret the image?

2.2. Operation

MR ADORE starts with the Markov decision process
(MDP) as the basic mathematical model by casting the IPL
operators as the MDP actions and the results of their appli-
cations as the MDP states. In the context of image inter-
pretation, the formulation frequently leads to several chal-
lenges absent in the standard heuristic search/MDP domains
such as the grid world, the 8 puzzle [22], etc. (i) Each
individual state is so large (on the order of several mega-
bytes), that we cannot use standard machine learning algo-
rithm to learn the heuristic function. Selecting optimal fea-
tures for sequential decision-making is a known challenge
in itself. (ii) The number of allowed starting states (i.e., the
initial high-resolution images) alone is effectively unlim-
ited for practical purposes. In addition, certain intermedi-
ate states (e.g., probability maps) have a continuous nature.
(iv) There are many image processing operators (leading to
a large branching factor); moreover, many individual op-
erators are quite complex, and can take hours of computa-
tion time each. (v) Goal states are not easily recognizable
as the target image interpretation is usually not known a
priori. This renders the standard complete heuristic search
techniques (e.g., depth-first, A*, IDA* [19]) inapplicable
directly.

In response to these challenges MR ADORE employs the
following off-line and on-line machine learning techniques.
First, we can use training data (here, annotated images) to
provide relevant domain information. Each training datum
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(a) Input image (b) Desired output
Figure 1. The left image is an original pho-
tograph. The right one is the corresponding
desired labeling provided by an expert as a
part of the training set.

Section 5 concludes the paper and points out some future
directions.

2. MR ADORE design
MR ADORE was designed with the following objec-

tives: (i) rapid system development for a wide class of im-
age interpretation domains; (ii) low demands for subject
matter, computer vision, and AI expertise on the part of the
developers; (iii) accelerated domain portability, system up-
grades, and maintenance; (iv) adaptive image interpretation
wherein the system adjusts its operation dynamically to a
given image; (v) user-controlled trade-offs between recog-
nition accuracy and resources utilized (e.g., time required).
2.1. Overview

These objectives above favor the use of readily avail-
able off-the-shelf image processing operator libraries (IPL).
However, the domain independence of such libraries re-
quires an intelligent policy to control the application of li-
brary operators. Operation of such a control policy is a
complex and adaptive process. It is complex in that there
is rarely a one-step mapping from input images to their in-
terpretations; instead, a series of operator applications are
required to bridge the gap between raw pixels and semantic
objects. Examples of the operators include region segmen-
tation, texture filters, and the construction of 3D depth maps
(see Figure 2 for a small example).

Image interpretation is an adaptive process in the sense
that there is no fixed sequence of actions that will work well
for most images. For instance, the steps required to locate
and identify isolated trees are different from the steps re-
quired to find connected stands of trees. Figure 3 demon-
strates two specific forestry images that require significantly
different operator sequences for satisfactory interpretation
results.

The success of MR ADORE therefore depends on its
control policy: given an input image, how to select a se-
quence of operator to interpret the image most effectively
and reliably ?
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Figure 2. Data types (the boxes) and im-
age processing operators (the arcs) in MR
ADORE. Representatives of data tokens of
each types are shown next to the nodes.

2.2. Learning control policies

MR ADORE starts with the Markov decision process
(MDP) as the basic mathematical model by casting the IPL
operators as the MDP actions and the results of their appli-
cations as the MDP states. In the context of image inter-
pretation, the formulation frequently leads to several chal-
lenges absent in the standard heuristic search/MDP domains
such as the grid world, the 8 puzzle [23], etc. First, each
individual state is so large (on the order of several mega-
bytes), that we cannot use standard machine learning algo-
rithm to learn the heuristic function. Selecting optimal fea-
tures is a known challenge in itself. Second, the number of
allowed starting states (i.e., the initial high-resolution im-
ages) alone is effectively unlimited for practical purposes.
In addition, certain intermediate states (e.g., probability
maps) have a continuous nature. Third, There are many im-
age processing operators leading to a large branching factor;
moreover, many individual operators are quite complex, and
can take hours of computation time each. Lastly, goal states
are not easily recognizable as the target image interpreta-
tion is usually not known a priori. This renders the standard
complete heuristic search techniques (e.g., depth-first, A*,
IDA* [19]) inapplicable directly.

In response to these challenges, MR ADORE employs
the following off-line and on-line machine learning tech-
niques. First, we can use training data (here, annotated im-
ages) to provide relevant domain information. Each training
datum is a source image, annotated by an expert with the de-
sired output. Figure 1 demonstrates a training datum in the
forestry image interpretation domain.

Second, during the off-line stage the state space is ex-
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Figure 3. Adaptive nature of image recognition: two different input images require significantly
different satisfactory operator sequences. Each node is labeled with its data type. Each arc between
two data tokens is shown with the operator used.

plored via limited depth expansions of training images.
Within a single expansion, all sequences of IPL operators
up to a certain user-controlled length are applied to the
training image. Since training images are user-annotated
with the desired output, terminal rewards can be computed
based on the difference between the produced labeling and
the desired labeling. Then, dynamic programming methods
[4] are used to compute the value function for the explored
parts of the state space. We represent the value function as
Q : S × A → R where S is the set of states (image tokens)
and A is the set of actions (IPL operators). The true Q(s, a)
computes the maximum cumulative reward the policy can
expect to collect by taking action a in state s and acting op-
timally thereafter [26]. As the states are themselves very
large, we first abstract each state s into a set of features
f(s) using an abstraction function f(·). Then supervised
machine learning extrapolates the sample values computed
by dynamic programming on the explored fraction of the
state space onto the entire space.

Finally, when presented with a novel input image to
interpret, MR ADORE first computes the abstracted ver-
sion f(s), then applies the machine-learned approxima-
tion to the value function Q(·, ·) to compute Q(f(s), a)
for each IPL operator a; it then performs the action
a∗ = arga max Q(f(s), a). The process terminates when
the policy executes action submit(〈labeling〉) where
〈labeling〉 becomes the system’s output.

3. Boosting and leveraging methods
Boosting is a powerful technique that can boost weak hy-

potheses to arbitrarily strong hypotheses [25]. This ability
is called PAC-boosting property [13]. Boosting algorithms
work by modifying training data to build different base hy-
potheses. At the end of training, these base hypotheses are
combined to form a better final hypothesis. A well-known
example is ADABOOST [16] that has enjoyed a great suc-
cess both in practice and in theory.

A class of highly related techniques called “leveraging”
work very similarly to boosting methods, except that they
can often produce a better ensemble hypothesis, but cannot
be guaranteed to have the PAC-boosting property [13]. Sev-
eral boosting/leveraging methods have been developed and
studied during the past decade [7, 11, 12, 14, 16, 15, 18].

Recently a simple and straightforward leveraging algo-
rithm called RESLEV (Figure 4) [21] has demonstrated the
ability to improve the performance of a hypotheses by itera-
tively learning the previous ensemble hypothesis’ residuals
(i.e., errors) of predictions on training data. Experiments on
the Friedman datasets [17] indicate the algorithm’s effec-
tiveness.
Definitions: Given a set of training data

S = {(x1, y1), (x2, y2), · · · , (xN , yN )}

and a hypothesis h, the sample error of h on S is defined
as:
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ResLev (S, R, Tmax)

Input: A set of training samples
S = {(x1, y1), (x2, y2), · · · , (xN , yN)};

A base regressor R;
Maximum number of iterations Tmax

1. Initialize ensemble hypothesis H0 ≡ 0

2. For t = 1, · · · , Tmax Do

(a) Apply R on S and produce a base hypothesis ht

(b) Ht = Ht−1 + ht

(c) Modify data in S: ∀i, yi = yi − ht(xi)

3. Output final ensemble hypothesis HTmax

1

Figure 4. RESLEV: Residual Leveraging

êrrS(h) =
1

N

N∑

i=1

[yi − h(xi)]
2

Let P be a probability distribution on the whole instance
space, the generalization error of h with respect to P is
defined as:

errP(h) = EP [y − h(x)]2

where (x, y) is drawn randomly according to P .

Theorem 1. Given any training set T =
{(u1, v1), (u2, v2), · · · , (uM , vM )}, if the learner L

produces a hypothesis h that satisfies

M∑

i=1

v2

i >

M∑

i=1

(vi − h(ui))
2 = M · êrrT (h) (1)

then RESLEV will reduce the sample error with the base
learner L. [21]

RESLEV reduces sample error by repeatedly reducing
the residuals of predictions over the training data. Assum-
ing that the training data and test data are both drawn from
an unknown distribution P , it is expected that a small sam-
ple error implies a small generalization error [1], provided
that the ensemble hypothesis is sufficiently simple 1.

4. Empirical evaluation
We applied RESLEV to learning the function Q(·, ·) in

MR ADORE. Thirty two forestry aerial images with user-
annotated labeling were available in our experiments. Since
the training data are quite limited, leave-one-out cross val-
idation was used to evaluate the machine learning algo-
rithm. In each run, one image was selected for testing
while the other thirty one images were for training MR
ADORE. Three measures (i.e., sample/generalization errors

1The risk of overfitting increases if a hypothesis is too complex.

on Q(·, ·), and relative reward of the produced labeling)
were used for evaluation. Different sets of features (e.g.,
HSV-HISTOGRAM, RGB-MEAN, etc.) were extracted to ab-
stract the states. Figure 5 shows the experimental results.

For comparison, experiments with the random policy
(i.e., the system randomly selects an operator to apply on
the current token) were tried and an average relative re-
ward of 26.3% was attained. Obviously, learning with each
feature set increases the system’s performance: with good
features (FEATURE-1), the average relative reward is in-
creased to over 75%; even with non-representative features
(FEATURE-2 and FEATURE-3), the average relative reward
is over 44% and 48%, respectively. The diagrams also show
that, the ensemble hypothesis tends to be better if the base
hypotheses are weaker. For FEATURE-2, the generaliza-
tion error decreases; for FEATURE-3, the relative reward
increases.

Decreases in sample/generalization errors can only be
observed in the second case (Figure 5(2a)). This is very
different from the results in [21], where both sample and
generalization errors go down in each experiment. The phe-
nomenon can be explained by further investigation of the
results, which shows that condition (1) is frequently vi-
olated in the experiments with MR ADORE. With better
regressors the condition will hold in most cases and the
sample/generalization errors are expected to decrease, as
Theorem 1 predicts. Candidates of such regressors include
CART [5] and k-nearest neighbor [6].

Despite the relatively large increases of sample and gen-
eralization errors, the relative rewards either decrease by
only a small amount (Figure 5(1b)(3b)), or even increase
quite significantly (Figure 5(2b)). This interesting phe-
nomenon suggests the difference between regression prob-
lems and decision-making problems:
Claim: decision-making problems behave differently from
regression problems in terms of boosting/leveraging meth-
ods applied to the value function.

Ideally speaking, for a decision-making problem, if the
regressor is good enough to learn the target function (here,
Q(·, ·)) very well, with given training samples, then the gen-
eralization error approaches zero and the accumulative re-
wards or the control strategies tend to be optimal. Then
decision-making problems tend to behave similarly to re-
gression problems. But in many real world domains such as
image interpretation, problems are usually complex and/or
training data are often limited, both resulting in a relatively
large generalization error of the final hypothesis. In such
cases, as is shown in Figure 5, it is inappropriate to eval-
uate a hypothesis for decision making with the error mea-
sures usually used for regression. For this reason, other new
boosting/leveraging methods incorporating error measures
related to the overall performance of the decision-making
system are to be developed.
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Figure 5. Experiments on MR ADORE using RESLEV. Three sets of features are extracted to abstract
the states, and two measures (i.e., sample/generalization error and average relative reward) are
shown.
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5. Conclusions and future directions

Future Work: Primary future directions include: (i) eval-
uating other regression algorithms so that the condition (1)
in Theorem 1 can be satisfied and thus RESLEV can be of
help; (ii) modifying RESLEV to improve its generalization
ability, so that its variation has the PAC-boosting property,
and can also work well with a real-world sequential deci-
sion maker such as MR ADORE; (iii) comparing the ef-
fectiveness of RESLEV to that of other boosting/leveraging
algorithms; (iv) developing new boosting/leveraging algo-
rithms that directly optimize the overall decision-making
performance as opposed to the regression error (such as
sample/generalization errors) of the value function.
Contributions: In this paper, we describe MR ADORE,
a state-of-the-art adaptive image interpretation system. A
new leveraging algorithm for regression is applied to learn-
ing the value function in the Markov decision-based system.
Experiments show that, the ensemble hypothesis produced
by RESLEV results in improved decision-making perfor-
mance if the base hypotheses are weak. More importantly,
we show empirically that decision-making problems be-
have differently from regression problems. Therefore, new
boosting/leveraging algorithms that directly optimize the
overall decision-making performance are needed.
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