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Abstract

Automated image interpretation is an important
task in numerous applications ranging from security
systems to natural resource inventorization based
on remote-sensing. Recently, a second generation
of adaptive machine-learned image interpretation
systems have shown expert-level performance in
several challenging domains. While demonstrating
an unprecedented improvement over hand-engineered
and first generation machine-learned systems in terms
of cross-domain portability, design-cycle time, and
robustness, such systems are still severely limited.
This paper reviews the anatomy of the state-of-the-
art Multi resolution Adaptive Object Recognition
framework (MR ADORE) and presents extensions
that aim at removing the last vestiges of human
intervention still present in the original design of
ADORE. More specifically, feature selection is still
a task performed by human domain experts thereby
prohibiting automatic creation of image interpretation
systems. This paper focuses on autonomous feature
extraction methods aimed at removing the need for
human expertise in the feature selection process.

Keywords: AI approaches to computer vision, Feature
detection and feature extraction, Object recognition.

1 Introduction & Related Research

Image interpretation is an important and highly chal-
lenging problem with numerous practical applications.
Unfortunately, manually engineering an image inter-
pretation system entails a long and expensive design
cycle as well as subject matter and computer vision
expertise. Furthermore, hand-engineered systems are
difficult to maintain, port to other domains, and tend to
perform adequately only within a narrow range of op-
erating conditions atypical of real world scenarios. In
response to the aforementioned problems, variousau-
tomatedways of constructing image interpretation sys-
tems have been explored in the last three decades [1].

Based on the notion of “goal-directed vision” [2], a
promising approach for autonomous system creation
lies with treating computer vision as a control problem
over a space of image processing operators. Initial
systems, such as the Schema System[2], had control
policies consisting ofad-hoc, hand-engineered rules.
While presenting a systemic way of designing image
interpretation systems, the approach still required a
large degree of human intervention. In the 1990’s
the second generation of control policy-based image
interpretation systems came into existence. More
than a systematic design methodology, such systems
used theoretically well-founded machine learning
frameworks for automatic acquisition of control
strategies over a space of image processing operators.
The two well-known pioneering examples are a Bayes
net system [3] and a Markov decision process (MDP)
based system [4].

Our research efforts have focused on extending the lat-
ter system, called ADaptive Object REcognition sys-
tem (ADORE), which learned dynamic image interpre-
tation strategies for finding buildings in aerial images
[4]. As with many vision systems, it identified objects
(in this case buildings) in a multi-step process. Raw
images were the initial input data, while image regions
containing identified buildings constituted the final out-
put data; in between the data could be represented as
intensity images, probability images, edges, lines, or
curves. ADORE modelled image interpretation as a
Markov decision process, where the intermediate rep-
resentations were continuous state spaces, and the vi-
sion procedures were actions. The goal was to learn
a dynamic control policy that selects the next action
(i.e., image processing operator) at each step so as to
maximize the quality of the final image interpretation.

As a pioneering system, ADORE proved that a
machine learned control policy could be much more
adaptive than its hand-engineered counterparts by
outperforming any hand-crafted sequence of operators
within its library. In addition, the system was quickly
ported to recognize stationary (staplers, white-out, etc.)
in office scenes and again was shown to outperform



Figure 1:Artificial tree plantations result in simple forest
images. Shown on the left is an original photograph. The
right image is the desired labeling provided by an expert
as part of the training set.

operator sequences designed by human domain experts
[5]. This paper discusses the need for hand-crafted
features, which prevents the realization of fully
autonomous image interpretation systems. The project
that investigates approaches to fully autonomous
object recognition systems is named MR ADORE for
Multi-Resolution ADaptive Object REcognition.

The rest of the paper is organized as follows. First, we
review the requirements and design of MR ADORE,
in order to demonstrate the critical assumptions made
and the resulting difficulties. We then present frame-
work extensions that aim to completely replace domain
experts with automated feature selection methods and
conclude with a discussion of experimental results and
future research directions.

2 MR ADORE: A Brief Overview

In order to increase system portability, the framework
of MR ADORE was designed to use readily available
off-the-shelf image processing operator libraries
(IPLs). However, the domain independence of such
libraries requires an intelligent policy to control the
application of library operators. Operation of such a
control policy is a complex and adaptive process. It is
complexin that there is rarely a one-step mapping from
input images to final interpretation; instead, a series
of operator applications are required to bridge the gap
between raw pixels and semantic objects. Examples
of the operators include region segmentation, texture
filters, and the construction of 3D depth maps. Figure
2 presents graph depicting a partial IPL operator
library where nodes represent data types and edges
correspond to vision routines transforming input data
tokens into output data tokens.

Image interpretation is anadaptiveprocess in the sense
that there is no fixed sequence of actions that will work
well for most images. For instance, the steps required
to locate and identify isolated trees are different from
the steps required to find connected stands of trees. The
success of adaptive image interpretation systems there-
fore depends on the solution to the control problem: for
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Figure 2:Partial operator graph for the domain of forest
image interpretation. The nodes and the corresponding
example images depict data processing layers, which in
turn describe the type of MDP states present with MR
ADORE. The edges represent vision routines (actions)
that use input data tokens (states) to produce output
data tokens.

a given image, what sequence of operator applications
will most effectively and reliably interpret the image?

2.1 MR ADORE Operation

MR ADORE starts with a Markov decision process
(MDP) [6] as the basic mathematical model by casting
the IPL operators as MDPactions and the results of
their applications (i.e., data tokens) as MDPstates.
In order to recognize a target object, MR ADORE
employs the following off-line and on-line machine
learning techniques. First, the domain expertise is
encoded in the form of training data. Each training
datum consists of two images, the input image, and
its user-annotated counterpart allowing the output
of the system to be compared to the desired image
labeling (typically called ground-truth). Figure 1
demonstrates a training pair for the forestry image
interpretation domain. Second, during the off-line
stage the state space is explored via limited depth
expansions of all training image pairs. Within a single
expansion all sequences of IPL operators up to a
certain user-controlled length are applied to a training
image. Since training images are user-annotated with
the desired output, terminal rewards can be computed
based on the difference between the produced labeling
and the desired labeling. Systemrewards are thus
defined by creating a scoring metric that evaluates
the quality of the final image interpretation with
respect to the desired (used-provided) interpretation∗.
Then, dynamic programming methods [7] are used to

∗For the experiments presented, the intersection over union scor-
ing metric, A∩B

A∪B is used. This pixel-based scoring metric computes
the overlap between the set of hypothesis pixels produced by the
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Figure 3: Off-line training phase. Top: Exploration of
the state space is done by applying all possible operator
sequences to a set of training images for which ground
truth is provided. By comparing the interpretation
resulting from an application of a sequence of operators
to the ground truth, each hypothesis is assigned a quality
measure (i.e., reward). The rewards are then propagated
up the expansion tree in order to calculate Q-values
to the intermediate data tokens. Bottom: Function
approximators are trained on the features extracted from
the data tokens produced during the exploration phase.

compute the value function for the explored parts of
the state space. We represent the value function as
Q : S×A→ R whereS is the set of states andA is the
set of actions (operators). The trueQ(s,a) computes
the maximum cumulative reward the policy can expect
to collect by taking actiona in state s and acting
optimally thereafter. (Figure 3)

Features (f ), used asobservationsby the on-line sys-
tem component, represent relevant attributes extracted
from the unmanageably large states (i.e., data tokens).
Features make supervised machine learning methods
practically feasible, which in-turn are needed to extrap-
olate the sampled Q-values (computed by dynamic pro-
gramming on the explored fraction of the state space)
onto the entire space.

Finally, when presented with a novel input image, MR
ADORE exploits the machine-learned heuristic value

systemA and the set of pixels within the ground-truth imageB. If
setA andB are identical then their intersection is equal to their union
and the score/reward is 1. As the two sets become more and more
disjoint the reward decreases, indicating that the produced hypothesis
corresponds poorly to the ground-truth.

Figure 4: On-line operation. Using the machine leaned
Q-function approximators the on-line policy greedily se-
lects the state-action pair expected to yield maximum
reward. the process terminates then a interpretation
hypothesis is submitted to the user.

function Q( f (s),a) over the abstracted state space,
f (S), in order to intelligently select operators from the
IPL. The process terminates when the policy executes
the actionSubmit(〈labeling〉), which becomes the final
output of the system. (Figure 4).

2.2 Adaptive Control Policies

The purpose of the off-line learning phase within
MR ADORE is to construct an on-line control policy.
While best-first policies are theoretically capable of
much more flexibility than static policies, they depend
crucially on (i) data token features forall levels and
(ii) adequate amounts of training data to train the
Q-functions forall levels. Feature selection/creation
can be substantially harder for earlier data processing
levels, where the data tokens exhibit less structure
[1, 8]. Compounding the problem, a single user-
labeled training image delivers exponentially larger
numbers of training tuples,〈 state, action, reward 〉, at
later processing levels. However, the first processing
level gets the mere|A1| tuples per training image since
there is only one data token (the input image itself) and
|A1| actions. As a net result, best-first control policies
have been shown to backtrack frequently [4] as well as
produce highly suboptimal interpretations [9], due to
poor decision making at the top processing layers.

Rather than making control decisions at every level
based on the frequently incomplete information
provided by imperfect features, theleast-commitment
policiespostpone their decisions until more structured
and refined data tokens are derived. That is, all
operator sequences up to a predefined depth are
applied and only then the machine-learned control
policy is engaged to select the appropriate action.
Doing so allows the control system to make decisions



based on high-quality informative features, resulting
in an overall increase in interpretation quality. As a
side benefit, the machine learning process is greatly
simplified since feature selection and value function
approximation are performed for considerably fewer
processing levels while benefiting from the largest
amount of training data. In [10] such a policy was also
shown to outperform thebeststatic policy.

3 Automated Feature Extraction

Traditionally, machine learning algorithms require
informative features as input in order to encode a
control policy. However, manual feature extraction
is a tedious process requiring extensive domain and
vision expertise. Both, best-first and least-commitment
policies, presented in previous sections, need high-
quality features at all processing levels. While the
least-commitment policy was designed to minimize
human intervention, by requiring only a single set
of features, the need for domain expertise was only
reduced butnot eliminated. As a result, automatic
feature extraction procedures are highly desirable.
Unlike previous experiments on policy creation, which
used artificial neural networks (ANN) [11] and sparse
networks of winnows (SNoW) [12] to induce a control
policy, we attempt to use the k-nearest-neighbors
(KNN) [13]. In contrast to the previous machine-
learned approaches used, the KNN algorithm is a
case-based algorithm that approximates the Q-value
of an input token based on distance(s) to the nearest
training example(s). By defining a distance metric
based on pixel differences between input data and
training examples, feature extraction can be avoided all
together. On the other hand, the distance calculation
can be greatly simplified if images can be compressed.
By using the principle component analysis (PCA) [14]
algorithm to reduce the dimensionality of the input
data, the nearest-neighbor calculation is greatly
simplified as the projection coefficients act as features
describing each training example. Therefore, by
treating raw pixels or PCA projection coefficients as
features and employing the KNN algorithm it was
expected that policy creation could be fully automated.

3.1 Empirical Evaluation

In order to test the aforementioned approaches, the fol-
lowing five policies were implemented:

Static policy Does not use any features. The static
policy simply uses the best sequence of operators
found at training time.

1-NN + raw pixels One-nearest-neighbor algorithm
with a pixel based distance metric.

1-NN + PCA coefficients One-nearest-neighbor algo-
rithm were the distance metric operates on the pro-
jection coefficients.

1-NN + hand-crafted features One-nearest-neighbor
algorithm using HSV color histograms as
features. See [8] for more detail.

ANN + hand-crafted features Artificial neural
networks algorithm using HSV color histograms
as features.

A set of 20 plantation images (see Figure 1 for an ex-
ample) was randomly split into four sub-sets of five
images each. In a cross-validation study, to test each
of the five policies, one sub-set of images was used a
training set leaving the other three sub-sets for testing.
The experimental results are shown in Table 1.

Clearly the one-nearest-neighbor algorithm, using raw
pixels and PCA coefficients, does not perform nearly
as well as the best static sequence. The following
three reasons are thought to account for the poor
performance: (a) There are not enough training
samples to enable the 1-NN algorithm to approximate
rewards well. (b) The 1-NN algorithm coupled with the
Euclidean distance metric† simply cannot adequately
approximate the reward of a hypothesis. (c) The
features used by the 1-NN algorithms are not relevant.

In order to establish which of the three aforementioned
reasons caused the poor performance, we examine the
the performance of policies using 1-NN and artificial
neural networks (ANN) together with hand-crafted fea-
tures. Since the ANN algorithm using hand-crafted fea-
tures was able to achieve an accuracy of 83%, a lack of
training samples cannot explain the poor performance
of the 1-NN algorithm coupled with PCA coefficients
or raw pixels as features. On the other hand, compared
to ANN coupled with hand crafted features, the drop
in performance of the 1-NN algorithm using the same
hand-crafted features implies that nearest-neighbor al-
gorithm is a poor reward approximator. Finally, com-
pared to the performance of the 1-NN algorithm us-
ing hand-crafted features with PCA coefficients or raw
pixels, it is clear that the automatic features we have
defined need to be developed further in order for ma-
chine learning algorithms to approximate rewards. In
summary, the inferior performance of the 1-NN algo-
rithm coupled with automated feature creation tech-
niques, such as raw pixels or PCA projection coeffi-
cients, is a function of both the features and the ap-
proximation algorithm used. While changing the ma-
chine learning mechanism is relatively easy, automat-

†The results shown in Table 1 represent the best results obtained
by using a Euclidean distance metric. Additionally we have used
Manhattan, Angle and Maholonobis distance metrics, which did not
outperform the Euclidean distance metric. Finally, we varied the
number of nearest neighbors from 1-5 with 1-NN outperforming all
other algorithm settings.



Table 1: Performance results of policies using PCA
coefficients and raw Pixels as features compared to static
policy and policies using hand-crafted features. For
all experiments the 1-NN algorithm used the Euclidean
distance metric to approximate rewards. The results
shown are relative to off-line optimal performance. In
other words the table represents policy reward

optimal off-line reward ∗100.
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ically determining relevant features or removing fea-
tures altogether remains a difficult problem.

4 Future Directions

The analysis in the previous section implies that very
few labeled training examples are needed in order for
a machine learned function approximator to evaluate
a segmentation hypothesis. On the other hand, the k-
nearest-neighbor algorithm should perform better (un-
less all possible input images have been seen) as the
number of training examples increases. Initial exper-
iments with a 34 : 1 train/test ratio using 1-NN and
hand-crafted features did not produce a significant in-
crease in performance. Perhaps this counterintuitive
result is a clue to the poor performance of the 1-NN
algorithm. Our conjecture is that the input images used
exhibit far too much internal variation that cannot not
captured by the machine learning algorithms. Figure
1 clearly shows several target objects present in one
input image. By splitting the images into several, pos-
sibly overlapping, sub-images, each focused on a sin-
gle object, the performance of the system may be im-
proved by allowing the scene variance to be learned by
the function approximators. In order to do so focus-
of-attention mechanisms will need to be added to the
system. Incremental PCA methods, proposed in [15],
will need to be implemented in order for a larger train-
ing corpora, created by splitting the input images, to
be used in the future experiments. In addition much
more efficient KNN algorithms need to be used to ef-
fectively deal with the increase in the training data. Ap-
proaches such as finding approximate neighbors [16] or
using kd-trees [17] as efficient search structures offer
prospective starting points. In addition, adaptive dis-
tance metrics need to be designed that would enable a
more accurate reward approximation. For example, the
use of a weighted Euclidean [18] metric may improve

the performance of the KNN algorithm by removing
the influence of irrelevant features (in our case remov-
ing the influence of PCA coefficients that are not rele-
vant to the task of calculating rewards).

5 Conclusions

Conventional ways of developing image interpretation
systems often require that system developers posses
significant subject matter and computer vision
expertise. The resulting knowledge-engineered
systems are expensive to upgrade, maintain, and port
to other domains.

More recently, second-generation image interpretation
systems have used machine learning methods in order
to (i) reduce the need for human input in developing an
image interpretation system or port it to a novel domain
and (ii) increase the robustness of the resulting system
with respect to noise and variations in the data.

This paper presented a state-of-the-art adaptive image
interpretation system called MR ADORE. We then
reported on the performance of feature extraction
methods aimed at completely eliminating the need
to hand-craft features. The performance of instance-
based function approximators using automatically
constructed features (raw pixels or PCA coefficients)
was shown to be inferior compared to the policies
using hand-crafted features. A possible solution to the
feature extraction problem may perhaps come in the
form of feature extraction libraries, similar in nature to
the operator libraries currently used by MR ADORE.
Just as MR ADORE learned efficient operator
selection, the next generation object recognition
systems may need toselectwhich features are relevant
[19] for a given processing level through off-line
trial-and-error processes based, perhaps, on the very
same MDP framework used today to efficiently select
operator sequences. Clearly if such an approach is to
be employed a number of feature selection algorithms,
such as filter-based Relief [20, 21] or wrapper-based
[22] methods could be readily employed to remove the
last vestiges of human intervention from the outlined
framework for automatically constructing object
recognition systems.
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