
1

Learning Bayesian Networks from Data:

An Information-Theory Based Approach

Jie Cheng1 , Russell Greiner and Jonathan Kelly

Department of Computing Science, University of Alberta

David Bell and Weiru Liu

Faculty of Informatics, University of Ulster

November 1, 2001

Abstract

This paper provides algorithms that use an information-theoretic analysis to learn Bayesian

network structures from data. Based on our three-phase learning framework, we develop efficient

algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of

conditional independence (CI) tests in typical cases. We provide precise conditions that specify

when these algorithms are guaranteed to be correct as well as empirical evidence (from real world

applications and simulation tests) that demonstrates that these systems work efficiently and

reliably in practice.

Keywords

Bayesian belief nets, learning, probabilistic model, knowledge discovery, data mining, conditional

independence test, monotone DAG faithful, information theory

1 Now at Global Analytics, Canadian Imperial Bank of Commerce, Toronto, Canada.

2

1 Introduction

Bayesian networks (BNs; defined below) are a powerful formalism for representing and reasoning

under conditions of uncertainty. Their success has led to a recent furry of algorithms for learning

Bayesian networks from data. Although many of these learners produce good results on some

benchmark data sets, there are still several problems:

• Node ordering requirement. Many BN-learning algorithms require additional information –
notably an ordering of the nodes to reduce the search space (see [Cooper and Herskovits,

1992; Heckerman et al., 1994]). Unfortunately, this information is not always available.
We therefore want a learner that can exploit such prior information if it is available, but

which can still learn effectively if it is not.

• Computational Complexity. Practically all BN learners are slow, both in theory [Chickering

et al., 1994] and in practice – e.g., most dependency-analysis based algorithms (defined

below) require an exponential numbers of “conditional independence” tests.

• Lack of publicly available learning tools. Although there are many algorithms for this

learning task, very few systems for learning Bayesian networks systems are publicly
available. Even fewer can be applied to real-world data-mining applications where the data

sets often have hundreds of variables and millions of records.

This motivates us to develop more effective algorithms for learning Bayesian networks from

training data. Using ideas from information theory, we developed a three-phase dependency
analysis algorithm, TPDA.2 This TPDA algorithm is correct (i.e., will produce the perfect model of

the distribution) given a sufficient quantity of training data whenever the underlying model is
monotone DAG faithful (see below). Moreover, it requires at most O(N4) CI tests to learn an N-

variable BN. In the special case where a correct node ordering is given, we developed a related

algorithm, TPDA-Π, that requires O(N2) CI tests and is correct whenever the underlying model is

DAG-faithful. These algorithms employ various other heuristics that enable it to work well in
practice, including the use of the Chow-Liu algorithm to produce an initial structure; see Section

2 “TPDA” stands for Three-Phase Dependency Analysis and the suffix “-Π”indicates that this algorithm expects an

ordering of the nodes. We will later use “SLA” for Simple Learning Algorithm.

3

7.1. A more general TPDA* algorithm, which is correct under DAG-faithfulness assumption, is also

briefly introduced. We show that the efficiency of TPDA* is actually very similar to TPDA in most

real world applications.

Both TPDA and TPDA-Π algorithms have been incorporated into the Bayesian Network

PowerConstructor system, which has been freely available on the Internet since October 1997 and

has already been downloaded over 2000 times, with very positive feedback from the user

community. To make these algorithms more useful to practitioners, both algorithms can exploit

other types of prior knowledge that human experts may supply – such as the claim that there must

(or must not) be an arc between two nodes [Darken, 1999]. The user can also specify various
special cases for the structures – e.g., that it must be a tree-augmented Naïve Bayesian net (TAN)

structure, or a Bayesian network augmented Naïve Bayesian net (BAN) structure [Friedman et al.,
1997; Cheng and Greiner, 1999]. We have also used this system to win the KDD Cup 2001

datamining competition (task one) – the Bayesian network model we learned gives the best
prediction accuracy among 114 submissions on a very challenging biological data set [Page and

Hatzis, 2001].

The remainder of the paper is organized as follows. Section 2 introduces Bayesian network

learning from an information theoretic perspective. Its Table 1 provides a succinct summary of the
terms that will be used. The subsequent two sections present simplified versions of the algorithms,

to help illustrate the basic ideas. Section 3 presents the simple SLA-Π learning algorithm, which

applies when a correct node ordering is available. That section also describes when SLA-Π is

provably correct and analyses its complexity. Section 4 presents a more general algorithm, SLA, to

handle the situation when the user does not provide a node ordering. It also proves the correctness
of this algorithm, and analyses its complexity. Section 5 presents our actual algorithms – called

TPDA for the general case, and TPDA-Π for the algorithm that takes a node ordering as input –

which incorporate several heuristics to be more efficient. Section 6 presents and analyses the

experimental results of both algorithms on real-world data sets. In addition to showing that our
algorithms work effectively, we also show that the heuristics incorporated within TPDA make the

system more efficient. Section 7 relates our learning algorithms to other Bayesian network learning
algorithms, and Section 8 lists our contributions and proposes some future research directions. The

4

appendices provide proofs of the theorems, discuss our “monotone DAG-faithful” assumption, and
quickly introduce our general Bayesian network learning system, called the BN PowerConstructor.

As a final comment, please note that our complexity results (eg, O(N2) or O(N4)) refer to the
number of CI tests required. These results say nothing about the order of each such test, and so do

not necessarily bound the computational complexity of the algorithm. In practice, however, these
quantities are very informative, as they indicate the number of times the algorithm must sweep
through the dataset, and we have found that such sweeps are in fact the major cost of these

algorithms; see Section 6.

2 Learning Bayesian Networks Using Information Theory

A Bayesian network is represented by BN = 〈N, A, 〉, where 〈N, A〉 is a directed acyclic graph

(DAG) – each node n∈N represents a domain variable (corresponding perhaps to a database

attribute), and each arc a∈A between nodes represents a probabilistic dependency between the

associated nodes. Associated with each node ni∈N is a conditional probability distribution

(CPtable��� FROOHFWLYHO\� UHSUHVHQWHG�E\� ^θi}, which quantifies how much a node depends on its

parents (see [Pearl, 1988]).

Learning a Bayesian network from data involves two subtasks: Learning the structure of the
network (i.e., determining what depends on what) and learning the parameters (i.e., the strength of

these dependencies, as encoded by the entries in the CPtables). As it is trivial to learn the
parameters for a given structure from a complete data set (the observed frequencies are optimal with

respect to the maximum likelihood estimation [Cooper and Herskovits, 1992]), this paper therefore
focuses on the task of learning the structure.

We view the BN structure as encoding a group of conditional independence relationships among
the nodes, according to the concept of d-separation (defined below). This suggests learning the BN

structure by identifying the conditional independence relationships among the nodes. Using some
statistical tests (such as chi-squared or mutual information), we can find the conditional

independence relationships among the nodes and use these relationships as constraints to construct a
BN. These algorithms are referred as dependency analysis based algorithms or constraint-based

5

algorithms [Spirtes et al. 1993; Cheng et al. 1997a]. Section 7 compares this approach with the

other standard approach, based on maximizing some score.

2.1 Overview of the Learning Algorithms (SLA, TPDA)

Our goal is to find “what is connected to what” – that is, which nodes should be joined by arcs. As

explained below, our algorithms each work incrementally: at each point, it has a current set of arcs,
and is considering adding some new arc, or perhaps deleting an existing one. Such decisions are
based on “information flow” between a pair of nodes, relative to the rest of the current network. To

elaborate this “flow” metaphor:

We can view a Bayesian network as a network of information channels or pipelines, where each

node is a valve that is either active or inactive and the valves are connected by noisy information

channels (arcs). Information can flow through an active valve but not an inactive one. Now

suppose two nodes – say X and Y – are not directly connected within the current network structure.

If this structure is correct, then there should be no information flow between these nodes after

closing all of the existing indirect connections between X and Y. Our learning algorithms will

therefore try to close off all of these connections, then ask if the dataset exhibits additional

information flow between these nodes. If so, the learner will realize the current structure is not

correct, and so will add a new arc (think “pipeline”) between X and Y.

To be more precise, a path between nodes X and Y is closed, given some evidence C, if X and Y

are conditionally independent given C. Graphically, this is defined by the concept called direction

dependent separation or d-separation [Pearl, 1988]. Based on this concept, all the valid

conditional independence relations in a DAG-Faithful distribution can also be directly derived from

the topology of the corresponding Bayesian network.

That is,

Definition 1: Adjacency path, d-separation, collider, cut-set, d-connected: For any two nodes X,Y

∈ V, an “adjacency path” kaaaP ,...,, 21= between a1=X and ak=Y is a sequence of arcs that, if

viewed as undirected edges, would connect X and Y.

6

For a DAG G = (N,A), for any nodes X,Y ∈ N where YX ≠ , and “evidence” C ⊆ N\{X,Y}, we say

that “X and Y are d-separated given C in G” if and only if there exists no open adjacency path

between X and Y, where any such adjacency path P is considered open iff

(i) every collider on P is in C or has a descendent in C and

(ii) no other nodes on path P is in C.

where a node v is a collider of the path 〈a1 , … ai-1=(X, v), ai=(Y,v), …, ak 〉 if the two directed arcs

associated with that node, here ai-1=(X, v) and ai=(Y,v), ‘collide’ at v.3

Here we call this set C a cut-set. If X and Y are not d-separated given C we say that X and Y are d-

connected given C. []

In Figure 1, C-E-D is an adjacency path connecting C and D, even though the arcs are in different

directions; we also say that E is a collider in the path C-E-D. Given empty evidence (ie, the empty
cut-set {}), C and D are d-separated.

A B
C

D

E

Figure 1 A simple multi-connected

In our analog, putting a node into the cut-set is equivalent to altering the status of the
corresponding valves – hence, putting the collider E into the cut-set will open the path between C

and D; while putting the non-collider B into the cut-set will close both the A-B-C-E and the A-B-D-E
paths, thereby d-separating A and E.

Hence, to decide whether to add a new arc between nodes A and E, with respect to this graph, our
learning algorithms (eg, TPDA) will try to block the information flow from every other indirect set

of pipelines, by making inactive at least one valve in each path. Here, this can be accomplished by

3 The other nodes are called non-colliders of the path. Note that the concept of collider is always related to a

particular path, as a node can be a collider in one path and a non-collider in another path.

7

adding B to the cut-set. As noted above, if there is residual information flow between these nodes

given this cut-set, TPDA will then add an arc directly connecting A-E.

In general, we measure the volume of information flow between two variables (read “nodes”) A

and B using mutual information

 ∑=
ba bPaP

baP
baPBAI

,)()(

),(
log),(),(, (2.1)

and the conditional mutual information, with respect to the set of “evidence” variables (condition-

set) C,

)|()|(

)|,(
log),,()|,(

,, cbPcaP

cbaP
cbaPCBAI

cba
∑= . (2.2)

The mutual information between variables A and B measures the expected information gained

about B, after observing the value of the variable A. In Bayesian networks, if two nodes are
dependent, knowing the value of one node will give us some information about the value of the

other node. Hence, the mutual information between two nodes can tell us if the two nodes are
dependent and if so, how close their relationship is.

Given the actual probability distribution P(x), we would claim that A and B are independent iff
I(A,B)=0. Unfortunately, our learning algorithms do not have access to the true distribution P(x),

but instead use empirical estimates)(ˆ xPD , based on the dataset D. We therefore use ID(A,B), which

approximates I(A,B) but uses)(ˆ xPD rather than P(x). Our algorithms will therefore claim that A is

independent of B whenever ID(A,B)< ε, for some suitably small threshold ε>0. We will similarly

define ID(A,B|C), and declare conditional independence whenever ID(A,B|C)< ε.

Note the computational cost of computing ID(A,B|C) is exponential in the size of C – ie, requires
time proportional to the product of the sizes of the domains of A, B, and of all of the nodes of C. It

is also linear in the size of the dataset D, as our learner will sweep through the entire dataset to

gather the relevant statistics (to determine, in parallel, all necessary)(ˆ xPD values).

Finally, we will later use the following two definitions:

Definition 2: Ngbr, AdjPath: For any graph G = (V,A), let

8

NgbrG(a) = Ngbr(a) = { v ∈ V | (v,a) ∈ A or (a,v) ∈ A }

be the set of nodes connecting node a ∈ V by an edge. Also, for any pair of nodes A,B ∈ V, let

AdjPath(A,B) = AdjPathG(A,B)

 be the set of nodes in the adjacency paths connecting A to B within G.

AdjPathG(A,B) Nodes appears on adjacency path connecting nodes A to B within graph G, See
Definition 2.

Adjacency path An open path, ignoring the directions of the edges. See Definition 2

Arc Directed edge (within a graph)

Bayesian network A kind of graphical model of a joint distribution. See Section 2.

CI test Conditional independence test --- Equations 2.1 and 2.2.

Collider A node on a path where two arcs “collide”. The node “C” in A→C←B. See Section 2

Condition-set The “C” in “P(A|C)”. See Equation 2.2

Cut-set In graph G, if a set of nodes S can d-separate X and Y, we say that S is a cut-set
between X and Y in G.

DAG-faithful A dataset is DAG-faithful if its underlying probabilistic model is DAG structured. See
Section 2.2

DAG-Isomorph A distribution that can be represented by a DAG. See Section 2.2.

Dependency-map (D-
map)

A graph that can express all the dependencies of the underlying model. See
Definition 3 (Section 2.2).

Drafting A phase in our Bayesian network learning algorithm TPDA (and TPDA-Π) where a
draft graph is generated by using pair-wise statistics. See Section 5.

d-separation Directed separation of two nodes in a graph according to a set of rules. See Definition
1 (Section 2).

Edge Connection between a pair of nodes (not necessarily directed).

EdgeNeeded* An (potentially exponential-time) routine that determines if a direct edge between
two nodes is needed. This routine is guaranteed correct given DAG-faithful
assumption. See Section 4.2.1.

EdgeNeeded_H A routine that determines if a direct edge between two nodes is needed. This routine
uses a heuristic. See Section 4.2.2.

EdgeNeeded A routine that determines if a direct edge between two nodes is needed. This routine
is guaranteed correct given monotone DAG-faithful assumption. See Section 4.2.3.

Independency map (I-
map)

A graph that can express all the independencies of the underlying model. Definition 3
(Section 2.2)

Monotone DAG-faithful The underlying model satisfies a stronger assumption than DAG-faithful. See
Definition 5 (Section 4.1)

Node ordering The temporal or causal ordering of the nodes. See Definition 4 (Section 3.1)

OrientEdges A routine is used in TPDA to orient edges. See Section 4.3.

9

PathG(X,Y) The set of adjacency paths between X and Y in G. See Definition 5 (Section 4.1).

Perfect map (P-map) A graph that is both a D-map and an I-map. See Definition 3 (Section 2.2).

SLA A simple learning algorithm for learning Bayesian networks when the node ordering
is not given. See Section 4.

SLA-Π A simple learning algorithm for learning Bayesian networks when node ordering is
given. See Section 3.

Thickening A phase in our Bayesian network learning TPDA (and TPDA-Π) that tries to add
more edges as a result of CI tests. See Section 5.

Thinning A phase in our Bayesian network learning TPDA (and TPDA-Π) that tries to remove
edges from the current graph as a result of CI tests. See Section 5.

TPDA A three phase learning algorithm for learning Bayesian networks when node ordering
is not given. See Section 5.1.

TPDA-Π A three phase learning algorithm for learning Bayesian networks when node ordering
is given. See Section 5.3.

v-structure A structure where two nodes are both connected to a third node and the two nodes are
not directly connected. See Section 2.1 (aka “unshielded collider”).

Table 1: Terms used

2.2 Input, Output and Assumptions

Our goal is to use the training data to learn an accurate model of the underlying distribution; here,

this reduces to identifying exactly which arcs to include. We can state this more precisely using the

following ideas:

Definition 3: Dependency map, independency map and perfect map: A graph G is a dependency

map (D-map) of a probabilistic distribution P if every dependence relationship derived from G is

true in P; G is an independency map (I-map) of P if every independence relationship derived from

G is true in P. If G is both a D-map and an I-map of P, we call it a perfect map (P-map) of P, and

call P a DAG-Isomorph of G [Pearl, 1988]. Here we say that P and G are faithful to each other

[Spirtes, et al., 1993]. []

While our goal, in general, is a graph that is a P-map of the true distribution, this is not always

possible; there are some distributions whose independence relations cannot all be represented. For

instance, let Z stand for the sound of a bell that rings whenever the outcomes of two fair coins, X

and Y, are the same [Pearl, 1988]. Clearly the only BN structures that can represent this domain

must contain X → Z ← Y. Notice these networks, however, are not perfect, as they do not represent

the facts that X and Z (resp., Y and Z) are marginally independent.

10

While we can create distributions that have no P-maps (such as this X → Z ← Y), Spirtes et al.

(1993) argue that most real-world probabilistic models in social sciences are faithful to Bayesian

networks. They also shows that in a strong measure-theoretic sense, almost all Gaussian

distributions for a given network structure are faithful. Meek (1995b) proves that the same claim is

also hold for discrete distributions. This paper, therefore, focuses on learning Bayesian networks

from data sets that are drawn from distributions that have faithful probabilistic models.

The set of conditional independence relations implied in P may not be sufficient to define a single

faithful BN model; for example, every distribution can be represented by the graph A → B can also

be represented by A ← B. The independence relationships, however, are sufficient to define the

essential graph (also called “pattern”, see [Spirtes et al. 1993]) of the underlying BN, where the
essential graph of a BN is a graph that has the same edges of the BN and the same “v-structures”.

(A triple of nodes X, Y, Z forms a v-structure if X → Z ← Y and X is not adjacent to Y.4) Note the

essential graph does specify the direction of the arcs that lead into the collider (here, Z), and also

constrains the directions of the other edges to avoid forcing the non-colliders to appear as colliders.
We will later use this fact to orient edges when node ordering is not given. Moreover,

Theorem 1: Every DAG-faithful distribution has a unique essential graph [Spirtes et al. 1993,
Chickering, 1996].

Our algorithms require the assumptions listed in Table 2 about the input data. In addition, the

SLA-Π and TPDA-Π algorithms assume the appropriate node ordering; and the SLA and TPDA

algorithms require a stronger first assumption – monotone DAG-faithfulness assumption.

4 This is also called an “unshielded collider” [Dash and Druzdzel, 1999].

11

1. The records occur independently given the underlying probabilistic model of the

data (that is, the dataset is “independent and identically distributed”, iid).

2. The cases in the data are drawn iid from a DAG-faithful distribution.

3. The attributes of a table have discrete values and there are no missing values in any

of the records.

4. The quantity of data is large enough for the CI tests used in our algorithms to be

reliable; that is ID(…) ≈ I(…).

Table 2 Assumptions

3 Simple Learning Algorithm (given ordering): SLA-Π

This section presents the simple SLA-Π algorithm, which takes a data set and a (correct) node

ordering as input and constructs a Bayesian network structure as output. (Recall that filling in the

CPtable parameters is trivial.) Section 4 then provides a general algorithm, SLA, that does not

require a node ordering, and Section 5 then presents more efficient versions of these algorithms, that

use the “three phase” idea.

Section 3.1 first provides a formal specification of our task, which requires specifying the node

ordering. It also specifies when this algorithm is guaranteed to perform correctly, and gives its
complexity. (Appendix A.3 proves the associated theorem.) Section 3.2 then presents the actual

SLA-Π algorithm.

3.1 Formal Description

Like many other Bayesian network learning algorithms [Cooper and Herskovits, 1992; Heckerman

et al., 1994], our SLA-Π system takes as input both a table of database entries and a node ordering.

Definition 4: Node ordering: A node ordering is a total ordering of the nodes of the graph

(variables of the domain) – specifying perhaps a causal or temporal ordering. []

12

This information can specify a causal or temporal order of the nodes of the graph (variables of the

domain), in that any node cannot be a cause or happen earlier than the nodes appearing earlier in the

order. If a node ordering is consistent with the underlying model of a data set, we say it is a correct

ordering. For example, in Figure 1, A-B-C-D-E and A-B-D-C-E are two correct orderings.

Of course, we can represent any distribution using a graph that is consistent with any node

ordering. However, only some such graphs will be DAG-faithful. (As an example, consider a

naïve-bayes distribution, with a classification node C pointing to a set of attribute nodes {Ai}. In the

ordering 〈C, A1, A2, …〉, the obvious structure will be the standard naïve-bayes structure, which is a

P-map. However, the ordering 〈A1, A2, …, C〉 will typically produce a much larger structure –

perhaps even one that is completely connected – which is not a P-map. Here, the first ordering

would be considered correct, but the second would not.)

The next section provides an algorithm that can recover the underlying structure, given such a

correct ordering together with a dataset that satisfies the conditions listed in Section 2.2.

3.2 Actual SLA-Π Algorithm

The SLA-Π algorithm, shown in Figure 2, incrementally grows, then shrinks, the graph structure: It

first computes a list of all node-pairs that have sufficient mutual information to be considered, L = {

(X,Y) | I(X,Y) > ε }. As the underlying model is assumed to be DAG-faithful, the resulting graph

should reflect all (and only) these dependencies, by including some (possibly indirect) path

connecting each such X to Y. SLA-Π therefore first determines, for each pair of nodes X,Y, whether

there is already sufficient information flow between X and Y in the current structure. This is done in

Step 2, “Thickening”, which first finds a cut-set C= MinCutSet(A, B; (V,A), Π) separating X from

Y in the graph.5 Note this depends on both the graph structure (V,A) (which changes as new edges

5 Of course, we would like to find as small a cut-set as possible – as that makes the code more efficient, and also

means (given a limited number of training instances) that the results will be more reliable. As finding a minimum cut-

set (a cut-set with minimum number of nodes) is NP-hard [Acid and Campos, 1996a], we use greedy search to find a

small cut-set. The basic idea is to repeatedly add a node to the cut-set that can close the maximum number of paths, until
all paths are closed. See [Cheng et al. 1997a] for details.

13

are added to A), and also on the node ordering Π, as that ordering determines the directions of the

edges, which identifies which nodes in the paths between X and Y are colliders and which are not.

If the current structure is correct – and in particular, if no arc is needed connecting X to Y – this
cut-set C should turn off all of the paths, stopping all information flow between X and Y. This

means the CI test: “Is ID(X,Y | C) greater than ε?” should fail. (We typically use the threshold

ε≈0.01 here.6) Otherwise, the data D suggests that an arc is needed, and so SLA-Π will add this

〈X,Y〉 arc.

6 We regard this as a constant (see Section 5.4.3). Others, including [Fung and Crawford, 1990; Dash and Druzdzel,

1999; Cheng and Greiner, 2000], have used learning techniques to obtain the value of ε that works best for each dataset.

14

subroutine SLA-Π(D: Dataset, Π: node ordering, ε: threshold):

 returns G = (V, A): graph structure

1. Let V := {attributes in D}, A := {}

}),(|),({: ε>= YXIYXL be the list of all pairs of distinct nodes (X,Y)

where X, Y ∈ V and YX p in Π, with at least ε mutual information.

Begin [Thickening]

2. For each 〈X,Y〉 in L:

C := MinCutSet(X, Y; (V,A), Π)

If ID(X,Y | C) > ε

Add (X,Y) to A

Begin [Thinning]

3. For each (X,Y) in A:

If there are other paths, besides this arc, connecting X and Y,

A’ := A - (X, Y) % ie, temporarily remove this edge from A

C := MinCutSet(X, Y; (V,A’), Π)

If ID(X,Y | C) <ε

 % ie, if X can be separated from Y in current “reduced” graph

A := A’ % then remove 〈X,Y〉 from A

4. Return (V,A)

Figure 2 The SLA-Π algorithm

After this sweep (ie, after step 2 in Figure 2), we know that that resulting graph G2 = (V, A2) will

include a (possibly indirect) connection between each pair of nodes that have a non-trivial

dependence. (This is sufficient, thanks to the DAG-faithful assumption.) G2 may, however, also

include other unnecessary arcs – included only because the more appropriate (indirect) connection

was not yet been included within the graph when this X-Y pair was considered. SLA-Π therefore

makes another sweep over the arcs produced, again using a CI test to determine if each arc is

superfluous; if so, SLA-Π removes that arc from the current network. Here, SLA-Π first identifies

each arc connecting a pair of nodes that is also connected by one or more other paths. Since it is

possible that the other arcs already explain the X-Y dependency, SLA-Π temporarily removes this

15

arc, then computes a cut-set C that should separate X from Y in the reduced graph. If there is no

information flow wrt this C – i.e., if ID(X,Y | C) <ε – then the 〈X,Y〉 arc was not needed, and so is

eliminated.

We prove, in Appendix A.3:

Theorem 2: Given the four assumptions listed in Table 2 (i.e., a “sufficiently large” database of
complete instances that are drawn, iid, from a DAG-faithful probability model), together with a

correct node ordering, the SLA-Π algorithm will recover the correct underlying network.

Moreover, this algorithm will require O(N2) CI tests.

4 Simple (order-free) Learning Algorithm: SLA

4.1 Overall SLA Algorithm

The SLA algorithm, shown in Figure 3, has the same structure as the SLA-Π algorithm, as it too

incrementally grows, then shrinks, the graph structure. However, as SLA does not have access to the

node orderings, these growing and shrinking processes are more complex. As with SLA-Π, we want

to first determine whether there is additional information flow connecting X to Y, beyond the flow
implied by the current graph (V,E). Once again, we first seek a cut-set C that should separate X and

Y, then add in the 〈X,Y〉 arc if ID(X,Y | C) > ε. The challenge here is finding an appropriate cut-set:

As SLA-Π knew the node ordering, it could determine the direction of the edges, and so identify

which nodes (in the paths connecting X to Y) are colliders versus non-colliders, and then determine

whether to exclude or include them within the cut-set C. SLA does not have this information. It
therefore uses the EdgeNeeded subroutine, defined in Section 4.2 below, to first find an appropriate

cut-set and then make this determination. (Note SLA uses EdgeNeeded in both places that SLA-Π

had used a single CI test – ie, in both adding new arcs, and also in deleting superfluous ones.7) SLA

7 Step-2 of SLA, like SLA-Π’s Step-2, may produce extra edges as some of the eventual arcs were not included when

〈X,Y〉 was being considered. In addition, SLA may also include extra arcs as it may be unable to find the appropriate

cut-set, as it does not know the directions of the arcs.

16

needs one additional step, beyond the steps used by SLA-Π: it must also find the appropriate

direction for (some of) the edges.

Subroutine SLA(D: Dataset, ε: threshold): returns G = (V, E): graph structure

1. Let V= {attributes in D}, E= {}

}),(|),({ ε>= YXIYXL be the list of all pairs of distinct nodes (X,Y) where X,Y ∈ V and

X≠Y, with at least ε mutual information (Equation 2.1)

Begin [Thickening]

2. For each (X,Y) in L:

If EdgeNeeded((V,E), X, Y; D, ε)

Add 〈X,Y〉 to E

Begin [Thinning]

3. For each 〈X,Y〉 in E:

If there are other paths, besides this arc, connecting X and Y,

E’ = E - 〈X,Y〉 % ie, temporarily remove this edge from E

If ¬EdgeNeeded((V,E’), X, Y; D, ε) then

% ie, if X can be separated from Y in current “reduced” graph

E = E’ % then remove 〈X,Y〉 from E

4. Return[OrientEdges((V,E), D)]

Figure 3 SLA: Simple Bayesian Net Structure Learner w/o Ordering

The next two subsections address the two challenges: (1) deciding whether an edge is required,

given the rest of the current graph; and (2) orienting the edges.

4.2 Determine if an Edge is Needed

In general, EdgeNeeded(G, X,Y, …) tries to determine if there is additional “information flow”
between X and Y, once every known “path” between them has been blocked. Here, it tries to form a

cut-set C that blocks each X-Y path, then returns “Yes (ie, an edge is needed)” if the conditional

mutual information ID(X,Y | C) exceeds a threshold ε for this cut-set. (We continue to use ε≈0.01.)

An appropriate cut-set C should block every known path. If the node ordering is known, we can

determine C immediately (as SLA-Π does), and therefore only one CI test is required to check if two

17

nodes are independent. Unfortunately, as SLA does know this ordering information, it must use a

group of CI tests to find this C.

We show below three procedures for this task: Section 4.2.1 shows the straightforward

exponential procedure EdgeNeeded*, which is correct given the assumptions of Table 2 but not

efficient. Sections 4.2.2 and 4.2.3 use the idea of quantitative measurements to improve the

efficiency, assuming that the data is monotone DAG-Faithful. Section 4.2.2 illustrate the basic ideas

using the heuristic procedure EdgeNeeded_H, which is very efficient but not always correct. We

then use this as a basis for describing EdgeNeeded in Section 4.2.3, which is guaranteed to be

correct given the monotone DAG-Faithful assumption. (While SLA uses only the correct

EdgeNeeded, the actual TDPA algorithm will gain some efficiency by using EdgeNeeded_H in some

situations; see Section 5.) We first need some definitions:

Definition 5: paths, open, Monotone DAG Faithful:

* pathsG(X,Y) is the set of all adjacency paths between X to Y in graph G.

* openG(X,Y|C) is the subset of pathsG(X,Y) that are open by cut-set C.

* A DAG-Faithful model G=〈V,E, Θ〉 is Monotone DAG-faithful iff

 For all nodes A, B ∈ V, if OpenG (X, Y | C ’) ⊆ OpenG (X, Y | C), then I(X,Y|C’) ≤ I(X,Y|C)

 []

Appendix B discusses these notions in more detail.

Using these subroutines, we prove (in Appendix A):

Theorem 3: Given a “sufficiently large” database of complete instances that are drawn, iid, from a

monotone DAG-faithful probability model, the SLA algorithm will recover the correct underlying
essential network. Moreover, this algorithm requires O(N4) conditional independence tests. []

4.2.1 Subroutine EdgeNeeded* (Exponential)

Consider any two nodes X and Y; we assume that Y is not an ancestor of X. From the Markov

condition, we know that we can close all the indirect pipelines between these nodes by setting the
cut-set C to be all the parents of Y, but not any children. Since we do not know which of these Y-

neighbor nodes are parents, one approach is to sequentially consider every subset. That is, let C1

18

through C2^k be the 2k subsets of Y’s k neighbors. As one of these sets – say Ci – must include
exactly the parents of Y, I(X,Y | Ci) will be effectively 0 if X and Y are independent. This basic “try

each subset” algorithm is used by essentially all other dependency-analysis based algorithms,
including the SGS algorithm [Spirtes et al., 1990], the Verma-Pearl algorithm [Verma and Pearl,

1992] and the PC algorithm [Spirtes and Glymour, 1991]. Of course, this can require an
exponential number of CI tests.

subroutine EdgeNeeded* (G: graph, X, Y: node, D: Dataset, ε : threshold): boolean

% Returns true iff the dataset D requires an arc between X and Y,

% in addition to the links currently present in G

% Also sets global CutSet

1. Let SX = Ngbr(X) AdjPath(X,Y) be the neighbors of X that are on an adjacency path

between X and Y; similarly SY = Ngbr(Y) AdjPath(X,Y). CutSet := {}

2. Remove from SX any currently known child-nodes of X; and from SY any child-nodes of
Y.

3. For each condition-set C ∈ {SX, SY} do

For each subset C’⊆ C do

Let s := ID(X, Y|C’). [Equation 2.2]

If s < ε,

 Let CutSet:= CutSet ∪ { 〈{X,Y},C’ 〉 };

 return (‘false’). % ie, data does NOT require an arc between these nodes

 4. Return (‘true’) % ie, there is significant flow from X to Y

Figure 4 EdgeNeeded* subroutine

In Step 3, the procedure tries every subset C’ of C. If one of the C’ can successfully block the

information flow between X and Y, then we consider C’ as a proper cut-set that can separate X and

Y. The procedure then returns ‘false’ since no extra edge is needed between X and Y. The cut-set
information is stored in a global structure CutSet , which is used later in the procedure OrientEdges.

19

By replacing EdgeNeeded with procedure EdgeNeeded* in SLA, we can define an algorithm

SLA*, which is guaranteed to be correct given DAG-Faithfulness assumption. The correctness

proof is omitted since it is very straightforward.

4.2.2 Subroutine EdgeNeeded_H (Heuristic)

As there is no way to avoid an exponential number on CI tests if the result of each trial is only a

binary ‘yes’ or ‘no’ , we therefore developed a novel method that uses quantitative measurements --

measuring the amount of information flow between nodes X and Y, for a given cut-set C. For a

given structure G, and pair of nodes X and Y, EdgeNeeded_H begins with a certain set C that is

guaranteed to be a superset of a proper cut-set. It then tries to identify and remove the inappropriate

nodes from C one at a time, by using a group of mutual information tests. This entire process

requires only O(k2) CI tests (as opposed to the EdgeNeeded*, which must consider testing each of

the 2k subsets of Y’s neighbors). In Appendix A.1, we prove that this quantitative CI test method is
correct whenever the underlying model is monotone DAG-faithful.

 From the above discussion we know that if X and Y are not adjacent, then either the parents of X or
the parents of Y will form a proper cut-set. Therefore, we can try to find a cut-set by identifying the

parents of X from X’s neighborhood (or parents of Y from Y’s neighbors). From the definition of
monotone DAG-faithfulness, we know that if we do not close any path then the information flow

will not decrease. Given the assumption that removing a parent node of X (or Y) from the condition-
set containing all the neighbors of X (or Y) will seldom close any path, we conclude that we will not

make the information flow decrease if we remove a parent node. Therefore, we can find a proper
cut-set by distinguishing the parent nodes versus child nodes in the neighborhood of X (or Y) using

mutual information tests. To illustrate the working mechanism of this separating procedure, we use
the simple Bayesian network whose true structure is shown in Figure 5.

20

X

V2

V1

Y

V3

V4

Figure 5: Bayesian net to illustrate the EdgeNeeded algorithm

Suppose we trying to determine whether there should be a direct edge between X and Y, where

(we assume) we know all of the other relevant edges of the true structure; see Figure 5. If the node

ordering is given, i.e., the directions of the edges are known, we easily see that V1 and V2 are

parents of Y, and that Y is not an ancestor of X. So P={V1,V2} is a proper cut-set that can separate X

and Y. However, as we do not know the directions of edges, we do not know whether a node is a

parent of Y or not. Our EdgeNeeded_H procedure (Figure 6), therefore, first gets SX and SY, which

both happen to be {V1,V2,V3,V4}.8 In step “3 1)”, we use C={V1,V2,V3,V4} as the condition-set

and perform a CI test – determining if ID(X,Y|C) > ε for this C. While this condition-set does close

the paths X-V1-Y and X-V2-Y, it also opens X-V3-Y and X-V4-Y (see the definition of d-separation in

Section 2.2). This means it does not separate X and Y, and so the CI test will fail, meaning the
algorithm will go to step “3 2)”. This step considers each 3-node subsets of {V1,V2,V3,V4} as a

possible condition-set: viz., {V1,V2,V3}, {V1,V2,V4}, {V1,V3,V4} and {V2,V3,V4}. As the data is
monotone DAG-faithful (Definition 5 in Section 2.2), either {V1,V2,V3} or {V1,V2,V4} will give

the smallest value on CI tests. This is because they each leave only one path open (path X-V3-Y or
path X-V4-Y respectively) while each of the other condition-sets leave open three paths. Assuming

{V1,V2,V3} gives the smallest value, we will conclude that V4 is a collider, and so will remove V4
from the condition-set, and will never again consider including this node again (in this X-Y context).

21

In the next iteration, EdgeNeeded_H considers each 2-node subset of {V1,V2,V3} as a possible

condition-sets; viz., {V1,V2}, {V1,V3} and {V2,V3}. After three CI tests, we see that the cut-set

{V1,V2} can separate X and Y , as ID(X,Y | {V1,V2}) ≈ 0. EdgeNeeded_H therefore returns “false”,

which means SLA will not add a new arc here, as is appropriate.

(Given an alternative dataset, drawn from a distribution where there was an additional
dependency between X and Y, this ID(X,Y | {V1,V2}) quantity would remain large, and

EdgeNeeded_H would continue seeking subsets. Eventually it would find that there was significant
flow between X and Y for all of the condition-sets considered, which means EdgeNeeded_H would

return “true”, which would cause SLA to add a direct X-Y link.)

As EdgeNeeded_H will “permanently” exclude a node on each iteration, it will not have to

consider every subset of SY as a condition-set, and thus it avoids the need for an exponential number
of CI tests.

8 In general, these sets will be different; in that case, we will consider each of them, as we know at least a subset of

one of them should work if the two nodes are not connected. This is because at least one of the two nodes must be a

non-ancestor of the other.

22

subroutine EdgeNeeded_H (G: graph, X, Y: node, D: Dataset, ε : threshold): boolean

% Returns true iff the dataset D requires an arc between X and Y,

% in addition to the links currently present in G

% Also sets global CutSet

1 Let SX = Ngbr(X) AdjPath(X,Y) be the neighbors of X that are on an adjacency path

 between X and Y; similarly SY = Ngbr(Y) AdjPath(X,Y).

2 Remove from SX any currently known child-nodes of X; and from SY any child-nodes of Y.

3 For each condition-set C ∈ {SX, SY} do

1) Let s := ID(X, Y|C). [Equation 2.2]

If s < ε, let CutSet:= CutSet ∪ { 〈{X,Y},C’ 〉 }; return (‘false’).
% ie, data does NOT require an arc between these nodes

2) While |C| > 1 do

a. For each i, let C : = C \ {the thi node of C}, si = I(X, Y | iC).

b. Let m = argmini { s1, s2, … }

c. If sm< ε, % sm = min(s1, s2, …)

Then return (‘false’);

Else If sm> s THEN BREAK (get next C, in Step 3)
Else Let s := sm, C:= Cm, CONTINUE (go to Step “3.2)”).

 4. Return (‘true’) % ie, there is significant flow from X to Y

Figure 6 EdgeNeeded_H subroutine

4.2.3 Subroutine EdgeNeeded (Guaranteed)

This EdgeNeeded_H procedure uses the heuristic that removing a parent of X (or Y) from the
condition-set will seldom close any path between X and Y. However, such a closing can happen in

some unusual structures. In particular, it may not be able to separate nodes X and Y when the
structure satisfies both of the following conditions.

(1) There exists at least one path from X to Y through a child of Y and this child-node is a collider on
the path.

23

(2) In such paths, there is one or more colliders besides the child node and all of these colliders are

the ancestors of Y.

 In such structures, EdgeNeeded_H may incorrectly think a parent of Y is a child of Y and so

erroneously remove it from the conditioning. As a result, the procedure will fail to separate two

nodes that can be separated. Figure 7 shows an example of such a structure.

X

B

A Y

C

D

Figure 7: Problematic Case

Here we may try to separate X and Y using a certain subset of the neighbor-set of Y, N2={A,C,D}.

The EdgeNeeded_H procedure will first use {A,C,D} as the condition-set. As this leaves two paths

open, X-A-B-C-Y and X-A-B-D-Y, it will therefore consider the 2-element subsets {A,C}, {A,D} and

{C,D} as possible condition-sets. Each of these condition-sets leaves open one path --- viz., X-A-B-

C-Y, X-A-B-D-Y and X-A-Y respectively. If the mutual information between X and Y is smallest

when X-A-Y is open, the procedure will remove node A from further trials. Clearly, this will lead to

a failure on separating X and Y. In this example, it happens that the neighbor-set of X, C={A}, can

separate X and Y, but there are more complex models that this procedure will fail to find, from either

SX or SY. However, such structures are rare in real world situations and we have found this heuristic

method works very well in most cases.

The procedure, EdgeNeeded, defined in Figure 8, is correct, even for such problematic situations.

We prove (in Appendix A.1) that this algorithm will find the correct structures for all probabilistic

models that are monotone DAG-faithful.

The major difference between EdgeNeeded_H and EdgeNeeded is that, in addition to

including/excluding each neighbor of X – called Sx – EdgeNeeded will also consider
including/excluding each neighbors of those neighbors (called SX’). (Similarly SY and SY’). Notice

24

also that EdgeNeeded only considers one of the sets – either SX∪ SX’ or SY∪ SY’ ; n.b., it does not

have to consider both of these sets.

Since altering the statuses of two consecutive nodes in a path can always close the path (two

consecutive nodes cannot both be colliders in a path), we know there is a subset of SX∪SX’

(respectively, of SY∪ SY’) that can close all the paths that connect X and Y through two or more

nodes. The only open paths are those connecting X and Y through one collider. Under this

circumstance, we can remove all the colliders connecting X and Y without opening any previously

closed paths. Thus, all paths between X and Y in the underlying model can be closed. For the

example shown in Figure 7, this procedure will first use {A,B,C,D} as the condition-set. Clearly, X

and Y can be successfully separated using this cut-set.

As in EdgeNeeded* (Figure 4) and EdgeNeeded_H, the EdgeNeeded procedure also uses the

global structure CutSet to store the cut-sets between pairs of nodes.

25

subroutine EdgeNeeded (G: graph, X, Y: node, D: Dataset, ε : threshold): boolean

% Returns true iff the dataset D requires an edge between X and Y,

% in addition to the links currently present in G

% Also sets global CutSet

1. Let SX = Ngbr(X) AdjPath(X,Y) be the neighbors of X that are on an adjacency path

between X and Y; similarly SY = Ngbr(Y) AdjPath(X,Y).

2. Let))((),(’ X
Sx

GX SxNgbrYXAdjPathS
X

−=
∈
UI be the neighbors of the nodes in SX that are on the

adjacency paths between X and Y, and do not belong to SX; similarly

))((),(’ Y
Sy

GY SyNgbrYXAdjPathS
y

−=
∈
UI

3. Let C be smaller of { SX∪ SX’ , SY∪ SY’ }

(ie, if |SX∪ SX’ | < | SY∪ SY’ | then C= SX∪ SX’ else C= SY∪ SY’ .)

4. Let s = ID(X,Y|C). [Equation 2.2].

5. If s <ε , let CutSet:= CutSet ∪{〈{X,Y},C〉}; return (‘false’) % no edge is needed

6. While |C| > 1 do

(a) For each i, let iC = C \ {the thi node of C}, si = ID(X, Y | iC).

(b) Let m = argmini { s1, s2, … }

(c) If sm<ε , % sm = min(s1, s2, …)

Then let CutSet:= CutSet ∪{〈{X,Y}, Cm〉}; return (‘false’);

Else If sm> s THEN BREAK (go to step “7”)

ELSE let s := sm, mCC =: , CONTINUE (go to step “6”).

7. Return (‘true’) % ∃ significant flow from X to Y

Figure 8 EdgeNeeded subroutine

4.3 Orienting Edges

Among the nodes in Bayesian networks, only colliders can let information flow pass through them
when they are instantiated. The working mechanism for identifying colliders is described as

follows. For any three nodes X, Y and Z of a Bayesian network of the form X-Y-Z (ie, X and Y, and

26

Y and Z, are directly connected; and X and Z are not directly connected), there are only three

possible structures, (1) X → Y → Z, (2) X ← Y → Z and (3) X → Y ← Z. Among them, only the

third type (called a v-structure) can let information pass from X to Z when Y is instantiated. In other

words, only the v-structure makes X and Z dependent conditional on {Y} – ie, only here is I(X,Z|{Y})

> 0.

Using this characteristic of Bayesian networks, we can identify all the v-structures in a network

and orient the edges in such structures using CI tests. Then, we can try to orient as many edges as
possible using these identified colliders.

As noted above, the methods based on identifying colliders will not be able to orient all the edges
in a network. The actual number of arcs that can be oriented is limited by the structure of the

network. (In an extreme case, when the network does not contain any v-structures, these methods
may not be able to orient any edges at all.) However, this method is quite popular among Bayesian

network learning algorithms due to its efficiency and reliability [Spirtes and Glymour, 1991; Verma
and Pearl, 1992]. There are a few algorithms [Lam and Bacchus, 1994; Friedman and Goldszmidt,

1996] that use pure search & scoring methods to search for the correct directions of the edges. But
these methods are generally slower than collider identification based methods since the search space

is much larger when node ordering is not given [Dash and Druzdzel, 1999].

27

Procedure OrientEdges(G=〈V,E〉: graph)

 % Modifies the graph G by adding directions to some of the edges

 % Uses global variable CutSet, defined by EdgeNeeded

1. For any three nodes X, Y and Z that X and Y, and Y and Z, are directly connected; and X and Z

are not directly connected

if 〈{X,Z},C〉 ∈ CutSet and Y∉C, or 〈{X,Z},C〉 ∉ CutSet

 let X be a parent of Y and let Z be a parent of Y.

2. For any three nodes X,Y,Z, in V

if (i) X is a parent of Y, (ii) Y and Z are adjacent,

 (iii) X and Z are not adjacent, and (iv) edge (Y, Z) is not oriented,

 let Y be a parent of Z.

3. For any edge (X,Y) that is not oriented,

If there is a directed path from X to Y, let X be a parent of Y.

Figure 9: OrientEdges subroutine

In step 1, procedure OrientEdges tries to find a pair of nodes that may be the endpoints of a v-

structure. It then tries to check whether Y is a collider by searching the global structure CutSet – if

Y is a collider in the path X-Y-Z, Y should not be in the cut-set that separate X and Z. This process
continues until all triples of nodes have been examined. Step 2 uses the identified colliders to infer

the directions of other edges. The inference procedure applies two rules: (1) If an undirected edge
belongs to a v-structure and the other edge in the structure is pointing to the mid-node, we orient the

undirected edge from the mid-node to the end node. (Otherwise, the mid-node would be a collider
and this should have been identified earlier.) (2) For an undirected edge, if there is a directed path

between the two nodes, we can orient the edge according to the direction of that path. These latter
two rules are the same as those used in all of the other collider-identification based methods

mentioned above.

Appendices A.1 and A.2 prove that this overall SLA procedure is both correct and efficient (in

terms of the number of CI tests).

28

5 The Three-Phase Dependency Analysis Algorithm

While the algorithm sketched above is guaranteed to work correctly, there are several ways to make

it more efficient. We have incorporated two of these ideas into the TPDA algorithm. First, rather

than start from empty graph (with no arcs), TPDA instead uses an efficient technique to produce a

graph that we expect will be close to the correct one. Second, rather than call the full EdgeNeeded

procedure for each check, TPDA instead uses the approximation EdgeNeeded_H is some places, and

only calls the correct EdgeNeeded procedure at the end of the third phase.

After Section 5.1 presents the general TPDA algorithm, Section 5.2 uses an example to illustrate

the ideas, and Section 5.3 then overviews the TPDA-Π algorithm that can use a node ordering.

5.1 TPDA Algorithm for Learning, without Ordering

The three phases of the TPDA algorithm are drafting, thickening and thinning. Unlike the simpler

SLA algorithm (Figure 3), which uses EdgeNeeded to decide whether to add an edge starting from

the empty graph, TPDA begins with a “drafting” phase, which produces an initial set of edges based

on a simpler test – basically just having sufficient pair-wise mutual information; see Figure 10. The
draft is a singly-connected graph (a graph without loops), found using (essentially) the Chow-Liu

[1968] algorithm (see Section 7.1). The other two phases correspond directly to steps in the SLA
algorithm. The second phase, “thickening”, corresponds to SLA’s Step 2: here TPDA adds edges to

the current graph when the pairs of nodes cannot be separated using a set of relevant CI tests. The
graph produced by this phase will contain all the edges of the underlying dependency model when

the underlying model is DAG-faithful. The third “thinning” phase corresponds to Step 3: here each
edge is examined and it will be removed if the two nodes of the edge are found to be conditionally

independent. As before, the result of this phase contains exactly the same edges as those in the
underlying model, given the earlier assumptions. TPDA then runs the OrientEdges procedure to

orient the essential arcs of the learned graph, to produce an essential graph. (Recall that the
direction of some of the arcs is irrelevant, in that a structure is correct under any appropriate

assignment of directions.)

29

subroutine TPDA(D: Dataset, ε: threshold): returns G = (V, E): graph structure

 Begin [Drafting].

1. Let V= {attributes in D}, E= {}

}),(|,{ ε>= YXIYXL be the list of all pairs of distinct nodes 〈X,Y〉where X,Y ∈ V and

X≠Y, with at least ε mutual information.

2. Sort L into decreasing order, wrt (I(X,Y)

3. For each 〈X,Y〉 in L:

If there is no adjacency path between X and Y in current graph (V,E)

add 〈X,Y〉 to E and

remove 〈X,Y〉 from L.

 Begin [Thickening]

4. For each 〈X,Y〉 in L:

 If EdgeNeeded((V,E), X, Y; D, ε) EdgeNeeded_H((V,E), X, Y; D, ε)

Add 〈X,Y〉 to E

 Begin [Thinning].

5. For each 〈X,Y〉 in E:

 If there are other paths, besides this arc, connecting X and Y,

E’ = E - 〈X,Y〉 % ie, temporarily remove this edge from E

If ¬EdgeNeeded_H((V,E’), X, Y; D, ε) % ie, if X can be separated from Y

 % in current “reduced” graph

E = E’ % then remove 〈X,Y〉 from E

6. For each 〈X,Y〉 in E:

 If X has at least three neighbors other than Y, or Y has at least three neighbors other than X,

E’ = E - 〈X,Y〉 % ie, temporarily remove this edge from E

If ¬EdgeNeeded((V,E’), X, Y; D, ε)

% ie, if X can be separated from Y in current “reduced” graph

 E = E’ % then remove 〈X,Y〉 from E

7. Return[OrientEdges((V,E), D)]

Figure 10 TPDA Algorithm

30

5.2 Example

Here we illustrate this algorithm using a multi-connected network, borrowed from Spirtes et al.

(1993). Our data set is drawn from the Bayesian network shown in Figure 11(a). Of course, our

learning algorithm does not know this network, nor even the node ordering. Our task is to recover

the underlying network structure from this data. We first compute the mutual information of all 10

pairs of nodes (Step 2). Suppose the mutual information is ordered I(B,D) ≥ I(C,E) ≥ I(B,E) ≥

I(A,B) ≥ I(B,C) ≥ I(C,D) ≥ I(D,E) ≥ I(A,D) ≥ I(A,E) ≥ I(A,C), and all the mutual information is

greater than ε (i.e., I(A,C)>ε).

In step 3, TPDA iteratively examines a pair of nodes from L, and connects the two nodes by an

edge and removes the node-pair from L if there is no existing adjacency path between them. At the

end of this phase, L = [〈B,C〉, 〈C,D〉, 〈D,E〉, 〈A,D〉, 〈A,E〉, 〈A,C〉] contains the pairs of nodes that are

not directly connected in Phase I but have mutual information greater than ε . The draft is shown in

Figure 11(b). We can see that the draft already resembles the true underlying graph; the only

discrepancies are that the edge 〈B,E〉 is wrongly added and 〈D,E〉 and 〈B,C〉 are missing because of

the existing adjacency paths (D-B-E) and (B-E-C).

(a)

(c) (d)

(b)

A B
C

D

EA B
C

D

E

A B
C

D

E A B
C

D

E

Figure 11: A simple multi-connected network and the results after Phase I, II, III of TPDA.

When creating the draft, we try to minimize the number of missing arcs and the number of

wrongly added arcs compared to the (unknown) real model. Since we use only pair-wise statistics,

reducing one kind of errors will often increase the other. Our stopping condition reflects a trade-off

between the two types of errors − the draft-learning procedure stops when every pair-wise

dependency is expressed by an adjacency path in the draft. As an adjacency path may not be a true

31

open path, some pair-wise dependencies may not be really expressed in the draft --- for example, as

the dependency between B and C appears to be explained by B-E-C we will not add an B-C arc.

Note however that B-E-C is not a true open path.

Sorting the mutual information from large to small in L is a heuristic, justified by the intuition that

a pair with larger mutual information is more likely to represent a direct connection (an edge) than a

pair with smaller mutual information, which may represent an indirect connection. In fact, this

intuition is provably correct when the underlying graph is a singly connected graph (a graph without

loops). In this case, Phase I of this algorithm is essentially the Chow–Liu algorithm, which is
guaranteed to produce a network that is correct (as DAG-Faithful here means the true distribution

will have a tree structure); here the second and the third phases will not change anything.
Therefore, the Chow-Liu algorithm can be viewed as a special case of our algorithm for the

Bayesian networks that have tree structures.

Although the draft can be anything from an empty graph to a complete graph,9 without affecting

the correctness of the final outcome of the algorithm, the closer the draft is to the real underlying
model, the more efficient the algorithm will be

The edge-set E produced by Phase I may omit some of L’s node-pairs only because there were
other adjacency paths between the pairs of nodes. The second phase, “Thickening”, therefore uses

a more elaborate test, EdgeNeeded_H, to determine if we should connect those pairs of nodes.

This phase corresponds exactly to SLA’s Step2, except (1) rather than the entire list L, Thickening

only uses the subset of “correlated” node-pairs that have not already been included in E, and (2) it
uses the heuristic EdgeNeeded_H rather than the guaranteed EdgeNeeded; see Figure 6.

In more detail, here TPDA examines all pairs 〈X,Y〉 of nodes that remain in L --- i.e., the pairs of

nodes that have mutual information greater than ε and are not directly connected. It then adds an

edge between 〈X,Y〉 unless EdgeNeeded_H states that these two nodes are found to be independent

conditional on some relevant cut-set.

9 Note that our draft will always be a tree structure.

32

In our example, Figure 11(c) shows the graph after the Thickening Phase. Arcs 〈B,C〉 and 〈D,E〉

are added because EdgeNeeded_H cannot separate these pairs of nodes using CI tests. Arc 〈A,C〉 is

not added because the CI tests reveal that A and C are independent given cut-set {B}. Edges 〈A,D〉,

〈C,D〉 and 〈A,E〉 are not added for similar reasons.

Appendix A.1 proves that this phase will find all of the edges of the underlying model – ie, no
edge of the underlying model is missing after this phase. The resulting graph may, however,

include some extra edges --- ie, it may fail to separate some pairs of nodes that are actually
conditionally independent. This is because:

1. Some real edges may be missing until the end of this phase, and these missing edges can
prevent EdgeNeeded_H from finding the correct cut-set.

2. As EdgeNeeded_H uses a heuristic method, it may not be able to find the correct cut-set for

some classes of structures; see Section 4.2.3.

Since both of the first two phases (drafting and thickening) can add unnecessary edges, this third

phase, “Thinning”, attempts to identify these wrongly-added edges and remove them. This phase
corresponds to SLA-Step3. While EdgeNeeded_H and EdgeNeeded have the same functionality

and require the same O(N4) CI tests, in practice we have found that EdgeNeeded_H usually uses
fewer CI tests and requires smaller condition-sets. TPDA therefore does a preliminary sweep using

the heuristic EdgeNeeded_H routine, as an initial filter. To ensure that TPDA will always generate a
correct structure, TPDA then double-checks the remaining edges using the slower, but correct

EdgeNeeded; see Figure 8. Note that the second sweep does not examine every edges – it examines
an edge X-Y only if X has at least three other neighbors besides Y or Y has at least three other

neighbors besides X. This is safe because if both X and Y have at most two neighbors,
EdgeNeeded_H will actually try every subset of the neighbors and make the correct decision. So, in

the real-world situations when the underlying models are sparse, the correct procedure EdgeNeeded
is seldom called. This also makes it affordable to define a correct algorithm TPDA* that does not

require the monotone DAG-Faithful assumption, by simply replacing EdgeNeeded with the
exponential EdgeNeeded*. The algorithm should still be efficient in most cases since the expensive

EdgeNeeded* will seldom be called.

33

The ‘thinned’ graph of our example, shown in Figure 11(d), has the same structure as the original

graph. Arc 〈B,E〉 is removed because B and E are independent given {C,D}. Given that the

underlying dependency model has a monotone DAG-faithful probability distribution (and that we
have sufficient quantity of data, etc), the structure generated by this procedure contains exactly the

same edges as those of the underlying model.

Finally, TPDA orients the edges. Here, it can orient only two out of five arcs, viz., 〈C,E〉 and

〈D,E〉. Note these are the only arcs that need to be oriented; any distribution that can be represented

with the other arcs oriented one way, can be represented with those arcs oriented in any other
consistent fashion.10 Hence, this is the best possible – i.e., no other learning method can do better

for this structure. Note the number of “direction”-able arcs depends on the number of edges and
colliders in the true distribution. For instance, 42 out of 46 edges can be oriented in the ALARM

network (see Section 6.1).

5.3 TPDA-Π Algorithm for Learning, given Ordering

Our deployed PowerConstructor system actually used a variant of SLA-Π, called TPDA-Π, to learn

from data together with a node order. As the name suggests, TPDA-Π is quite similar to TPDA, and

in particular, uses the same three phases – viz. drafting, thickening and thinning. In the first phase,

TPDA-Π computes mutual information of each pair of nodes as a measure of closeness, and creates

a draft based on this information. The only way this phase differs from TPDA’s is that, while TPDA

adds an edge if there is no adjacency path between the two nodes, TPDA-Π adds an arc if there is no

open path. The difference means that the stopping condition of TPDA-Π is finer – it stops when

every pair-wise dependency is expressed by an open path in the draft. To illustrate the differences,

we use the same multi-connected network as in Section 5.2. For instance, the B→C arc is added

because we know that the adjacency path B-E-C is not an open path. The result of Phase I is shown

in Figure 12(b). As before, TPDA-Π may miss some edges that do belong in the model.

10 Assuming we avoid any node ordering that introduce inappropriate v-structures.

34

(a)

(c) (d)

(b)

A B
C

D

EA B
C

D

E

A B
C

D

E A B
C

D

E

Figure 12 A simple multi-connected network and the results after Phase I, II, III of TPDA-Π.

Phase II therefore uses a more definitive test to determine if we should connect each such pair: by

first finding a cut set C that should separate A and B (if the current graph is correct), and then

connecting these nodes if there is additional information flow between these nodes, after using C.

As TPDA-Π knows the direction of the edges, it can easily determine a sufficient cut-set. For

example, to separate two nodes X and Y, where X appears earlier in the ordering, we can just set C to

be the parents of Y. This means Phase II of TPDA-Π is much simpler that Phase II of TPDA, as the

latter, not knowing the direction of the edges, has to use a set of CI tests for each such decision.

Since these phases will include an edge between two nodes except when they are independent, the

resulting graph is guaranteed to include all of the correct edges whenever the underlying model is

DAG-faithful; see the proof in Appendix A.3. In our example, the graph after Phase II is shown in

Figure 12(c). We can see that the graph induced after Phase II contains all the real arcs of the

underlying model, that is, it is an I-map of the underlying model. This graph may, however, include

some additional, incorrect edges. (This is because some edges will not be added until the end of this

phase, and these missing edges might have prevented a proper cut-set from being found.) Similar to

our discussion in Section 5.2, if we use SLA-Π instead, the structure after “thickening” may be a

complete graph – where each node is connected to every other node.

Since both Phase I and Phase II can add some incorrect arcs, we use a third phase, “Thinning”, to

identify those wrongly-added arcs and remove them. As in Phase II, we need only one CI test to
make this decision. However, this time we can be sure that the decision is correct, as we know that

the current graph is an I-map of the underlying model. (This was not true until the end of Phase II:
thickening.) Since we can remove all the wrongly-added arcs, the result after Phase III is

35

guaranteed to be a perfect map (see Section 2.2); see proof in Appendix A.3. The ‘thinned’ graph of
our example is shown in Figure 12(d), which has the structure of the original graph. Hence, after

the three phases, the correct Bayesian network is rediscovered. (Recall that TPDA-Π does not need

to orient the edges as it already knows the direction of the arc when connecting two nodes, as that

comes from the node ordering.)

5.4 Discussion

5.4.1 The Three-Phase Mechanism

Virtually all dependency-analysis-based algorithms have to determine whether there should be an

edge or not between every pair of nodes in a network, and O(N2) such decisions will allow us to
determine the correct network structure. However, if we require every such decision to be correct

from the beginning, each single decision can require an exponential number of CI tests. Unlike the
other algorithms, we divide the structure learning process into three phases. In the first and second

phases, we will allow some decisions to be incorrect (although of course we try to minimize such
bad decisions). In the general TPDA version (without ordering), for each pair of nodes, each

decision in Phase I requires one CI test and each decision in Phase II requires O(N2) CI tests, where
N is the number of nodes. Phase III then requires O(N2) CI tests to verify each edge proposed in

these two phases. Hence, we must make O(N2) correct decisions to produce the BN structure, and
each such decision requires O(N2) CI tests. This means TPDA requires at most O(N4) CI tests to

discover the edges.

5.4.2 Quantitative Conditional Independence Tests

Although the three-phase mechanism alone is enough to avoid the exponential number of CI tests in

the special case when the node ordering is given (TPDA-Π), it must work with the quantitative CI

test method to avoid exponential complexity in the general case.

Our algorithms use conditional mutual information tests as quantitative CI tests. However, it is

also possible to use other possible quantitative CI tests, such as the likelihood-ratio chi-squared tests
or the Pearson chi-squared test [Agresti, 1990]. We view Bayesian network learning from an

information-theoretic perspective as we think it provides a natural and convenient to present our
algorithms. Moreover, by using information theoretic measures, we can easily relate our algorithms

36

to entropy scoring and MDL-based algorithms like the BENEDICT Algorithm [Acid and Campos,

1996b] and the Lam-Bacchus Algorithm [Lam and Bacchus, 1994]; see Section 7 below. One of

our further research directions is to combine our approach with the cross entropy or MDL based

scoring approach.

5.4.3 Threshold in Conditional Independence Tests

Like all other conditional independence test based algorithms, our algorithms rely on the

effectiveness of the conditional independence tests to learn the accurate structures. Unfortunately,

these tests are sensitive to the noise when sample sizes are not large enough. The common practice

to overcome this problem is to use some technique to adjust the threshold ε according to the sample

size and the underlying distribution of the data.

Because people may also need to learn Bayesian networks of different complexities, our system

allows users to change the threshold value from the default value. However, we also try to make the

threshold value less sensitive to the sample size. Instead of automatically adjusting the threshold

according to the sample size, we developed an empirical formula to filter out the noise in the mutual

information tests. We consider a high dimensional mutual information test as the sum of many

individual low dimensional mutual information tests. The individual mutual information will only

contribute to the sum if it meets certain criterion, which takes the degrees of freedom of these tests

into consideration. As a result, we found our mutual information tests to be quite reliable even

when the date sets are small. When the data sets are larger, the empirical formula has very little

effect. Therefore, our algorithm can achieve good accuracy using the same threshold when sample

sizes are different. In practice, we find that adjusting threshold in our system according to sample

size is not necessary and the default threshold value is good for most of the real-world data sets,

where the underlying models are sparse. Our experimental results on the three benchmark data sets

presented in Section 6 are all based on the default threshold.

In our work of Bayesian network classifier learning, we also search for the best threshold using a

wrapper approach, but here attempting to maximize the prediction accuracy [Cheng and Greiner,

2001]; see also the results in [Page and Hatzis, 2001].

37

5.4.4 Incorporating Domain Knowledge

A major advantage of Bayesian networks over many other formalisms (such as artificial neural

networks) is that they represent knowledge in a “semantic” way, in that the individual components
(such as specific nodes, or arcs, or even CPtable values) have some meaning in isolation – which

can be understood independent of the “meaning” of Bayesian network as a whole [Greiner et al.,
2001]. This makes the network structure relatively easy to understand and hence to build.

As TPDA is based on dependency analysis, it can be viewed as a constraint based algorithm,

which uses CI test results as constraints. Therefore, domain knowledge can naturally be
incorporated as constraints. For instance, when direct cause and effect relations are available, we

can use them as a basis for generating a draft in Phase I. In Phase II, the learning algorithm will try
to add an arc only if it agrees with the domain knowledge. In Phase III, the algorithm will not try to

remove an arc if that arc is required by domain experts. Partial node ordering, which specify the
ordering of a subset of the node-pairs, can also be used to improve the learner’s efficiency. Each

such pair declares which of the two nodes should appear earlier than the other in a correct ordering.
Obviously, these relations can help us to orient some edges in the first and second phases so that the

edge orientation procedure at the end of the third phase can be finished more quickly. These
relations can also be used in several other parts of the algorithm to improve performance. For

example, in EdgeNeeded_H, we need to find SX and SY, which are the neighbor-sets of X and Y
respectively. Since the procedure tries to separate the two nodes using only the parents of X (Y) in

SX (SY), if we know that some nodes in SX (SY) that are actually the children of X (Y), we can remove
them immediately without using any CI tests. This improves both the efficiency and accuracy of

this procedure.

5.4.5 Improving the Efficiency

We have found that over 95% of the running time of the TPDA algorithms is consumed in database
queries, which are required by the CI tests. Therefore, one obvious way to make the algorithm more

efficient is to reduce the number of database queries. There are two ways to achieve this: by
reducing the number of CI tests and by using one (more complex) database query to provide

information for more than one CI test.

38

As noted above, we designed our algorithms to reduce the number of CI tests needed. However,

there is a trade-off between using one query for more than one CI test and using one query for one

CI test. While this latter method can reduce the total number of database queries, it also increases

the overhead of the query and demands more memory. Our TPDA algorithm uses this method, but

only in its first phase.

6 Empirical Study

This section demonstrates empirically that our TPDA and TPDA-Π algorithms work effectively,

using three benchmark datasets and a group of datasets from randomly generated distributions. It

also demonstrates that the heuristics used (to change from SLA to TPDA) do improve the

performance. These tests were performed using our Bayesian network learning tool,

PowerConstructor, which is described in Appendix C.

The three benchmark Bayesian networks are:

• ALARM: 37 nodes (each with 2-4 values); 46 arcs; 509 total parameters [Beinlich et al., 1989]

• Hailfinder: 56 nodes (each with 2-11 values); 66 arcs; 2656 total parameters

(http://www.sis.pitt.edu/~dsl/hailfinder/hailfinder25.dne)

• Chest-clinic: 8 nodes (each with 2 values); 8 arcs; 36 total parameters

(http://www.norsys.com/netlib/Asia.dnet)

The first two networks are from moderate complex real-world domains and the third one is from a

simple fictitious medical domain. In all cases, we generated synthesized data sets from their

underlying probabilistic models using a Monte Carlo technique, called probabilistic logic sampling

[Henrion, 1988].

Note that our PowerConstructor system has also been successfully applied in many real-world

applications, both by ourselves and by other users who downloaded the system. However, since the

underlying models of these real-world data sets are usually unknown, it is difficult to evaluate and

analyze the learning accuracy. This is why almost all researchers in this area use synthesized data

sets to evaluate their algorithms. We have also applied our system to learn predictive models

(classifiers) from real-world data sets; in those cases we used performance (prediction accuracy) to

39

evaluate our system. The results there were also very encouraging; see [Cheng and Greiner, 1999;

Cheng and Greiner, 2001; Page and Hatzis, 2001].

Here, we evaluate each learned structure in two ways: First, based on the number of missing arcs

and wrongly added arcs, as compared to the true structure. This measure is easy to determine; and

clearly the score (0,0) (read “0 missing arcs and 0 wrongly added arcs”) means the learned structure
is perfect. Of course, some arcs may be difficult, if not impossible, to find – eg, consider an arc

between the binary variables A and B, when P(B=1|A=1) = 0.3 = P(B=1|A=0). Here, this A→B arc

is clearly superfluous. Similarly, it can be extremely difficult to detect an arc if the dependency is

very slight – eg, if P(B=1|A=1) = 0.3001 and P(B=1|A=0)= 0.3000. Notice it will take thousands
of instances to have a chance to see this very slight difference; moreover, a network that does not

include this edge will only be slightly different to one that includes it. We therefore also report the
mutual information associated with each missing link.

We also measure the number and “order” of the CI tests (ie, the cardinality of the conditioning
set) that were performed; note that the number of “p ln p” tests that are performed (2.1; 2.2) will be

exponential in this quantity, as a k-ary CI test will involve O(rk+2) such computations, for r-ary

variables.

 All the experiments in this paper were conducted on a Pentium II 300 MHz PC with 128 MB of

RAM running under Windows NT 4.0. The data sets were stored in an MS-Access© database.

6.1 Experimental Results on the ALARM Network

ALARM, which stands for ’A Logical Alarm Reduction Mechanism’, is a medical diagnostic system

for patient monitoring, which includes nodes for 8 diagnoses, 16 findings and 13 intermediate

variables [Beinlich et al., 1989]. Each variable has two to four possible values. The network

structure is shown in Figure 13.

40

Figure 13 The ALARM network

The ALARM network is the most widely used benchmark in this area; many researchers have

used this network to evaluate their algorithms.11 Sections 6.1.1 and 6.1.2 provide detailed results on

learning the ALARM network from a fixed number of cases (10,000) using TPDA-Π and TPDA,

respectively. Section 6.1.3 gives our results on learning from different sample sizes of the ALARM

network using both algorithms.

6.1.1 Use TPDA-Π to learn the ALARM Network Data

Here, we gave the TPDA-Π algorithm a set of 10,000 cases, drawn independently from the correct

Alarm BN, as well as a correct ordering of the variables (as inferred from the structure). Table 3

summarizes our results, showing how each phase of TPDA-Π performed, in terms of the structure

learned and the number of CI tests used. The CI tests are grouped by the cardinalities of their

condition-sets.

11 There are three different versions of it, which share the same structure but use slightly different CPtables. In this

paper, we will focus on the probabilistic distribution described at the web site of Norsys Software Corporation

http://www.norsys.com. We also tested our algorithms on the version presented in [Heckerman et al., 1994] and the one

in [Cooper and Herskovits, 1992], and obtained similar results; see [Cheng, 1998].

41

Phase Results No. of CI Tests (of each order)

 Arcs M.A. E.A. 0 1 2 3 4+ Total

I 43 5 2 666 0 0 0 0 666

II 49 0 3(2+1) 0 116 54 22 10 202

III 45 1 0 0 12 1 1 3 17

M.A. = number of missing arcs; E.A. = number of extra arcs.

 The CI tests are grouped by the cardinalities of their condition-sets.

Table 3: Results on the ALARM network (TPDA-Π)

Table 3 demonstrates that TPDA-Π can learn a nearly perfect structure (with only one missing

arc) from 10,000 cases. The result after Phase I already resembles the true structure: this draft has

43 arcs, only 2 of which arcs are incorrect. The draft also missed 5 arcs of the true structure.

The result after the second phase (thickening) has 50 arcs, which continues to include all the arcs

of Phase I as well as 4 out of 5 arcs that Phase I did not find. In addition, it also wrongly added

another arc. This is understandable, as it is always possible to add some arcs wrongly before all the

real arcs are discovered. In Phase III, TPDA-Π ‘thinned’ the structure successfully by removing all

three previously wrongly added arcs. However, it also deleted a real arc 22→15 due to the fact that

the connection between 22 and 15 is very weak given node 35 --- ie, I(22, 15| 35) = 0.0045. The
result after the third phase has 45 arcs, all of which belong to the true structure.

From the complexity analysis of Appendix A.4, we know that each of the three phases can require

O(N2) CI tests, in the worst case. However, the number of CI tests used in Phase I is quite different
from that of Phases II and III. This is because the ALARM network is a sparse network and Phases

II and III only require a large number of CI tests when a network is densely connected, whereas
Phase I always requires O(N2) CI tests. All our experiments on real-world data sets show similar

patterns − i.e., most CI tests are used in Phase I. Table 3 also shows that most CI tests have small

condition-sets. Here, the largest condition-set contains only five variables. (Notice no node in the
true structure had more than 4 parents.)

42

Phase I
75%

Phase II
23%

Phase III
2%

Figure 14: The number of CI tests used in each phase.

As we mentioned in Section 5.4.5, most of the running time is consumed in database queries

while collecting information for CI tests. Therefore, we can improve the efficiency of our program

by using high performance database query engines. To prove this, we moved this data set to an

ODBC database server (SQL-server 6.5 running remotely under Windows NT Server 4) and

repeated the experiment. Here we found that the experiment ran 13% faster. Note that our basic

system was still running on the local PC as before.

6.1.2 Use TPDA to learn the ALARM Network Data

Phase Results No. of CI Tests (of each order)

 Edges M.A. E.A. 0 1 2 3 4+ Total

I 36 12 2 666 0 0 0 0 666

II 49 2 2+3 0 127 61 22 7 217

III 44 2 0 0 86 6 8 3 103

M.A. = number of missing arcs; E.A. = number of extra arcs.

 Table 4 Results on the ALARM network (TPDA)

We next consider TPDA, the version that does not have the node ordering. Table 4 shows that

TPDA can get a very good result when using 10,000 cases; here only two missing edges. The result

after Phase I (drafting) has 36 edges, among which 2 edges are wrongly added; the draft also missed

12 edges of the true structure. As TPDA does not know the node ordering, it is easy to understand

43

why TPDA’s draft is significantly worse than TPDA-Π’s (Section 6.1.1), which only missed 5

edges.

The structure after TPDA’s second phase (thickening) has 49 edges, which includes all the arcs of
Phase I and 10 out of 12 of the previously missing arcs. TPDA did not discover the other two edges

(22-15, 33-27) as those two relationships are too weak: I(22,15|35)=0.0045; I(33,27|34,14)=0.0013.
In addition, TPDA also wrongly added 3 edges. In Phase III, TPDA ‘thinned’ the structure

successfully by removing all five wrongly added arcs. TPDA can also orient 40 of the 44 learned
edges correctly. It cannot orient the other 4 edges due to the limitation of collider identification

based method; of course, no other algorithm, given only this information, could do better. By
comparing Table 3 to Table 4, we can see that the results of the three phases of TPDA are not as

good as those of TPDA-Π, and Phase II and Phase III of TPDA require more CI tests than the two

corresponding phases of TPDA-Π. This is not surprising since the TPDA does not have access to

the node ordering, while TPDA-Π does.

From the complexity analysis of Appendix A.2, we know that the first phase requires O(N2) CI

tests and the second and the third phases are of the complexity)(4NO and O(N5) respectively, in

the worst case. However, since most real-world situations have sparse Bayesian networks, the
numbers of CI tests used in the second and the third phases are usually much smaller than the

number of CI tests used in the first phase, which is of complexity)(2NO . As in Section 6.1.1, we

use a pie chart (Figure 15) to show the percentages of the number of CI tests used.

Phase I
65%

Phase II
24%

Phase III
11%

Figure 15 The number of CI tests used at each phase.

44

6.1.3 Experiments on Different Sample Sizes

In this section, we present our experimental results on 1,000, 3,000, 6,000 and 10,000 cases of the

ALARM network data. The results are shown in the following table.

Results Cases Ordering

M.A E.A. M.O. W.O.

Time

(Seconds)

Yes 0 3 N/A N/A 19 1,000

No 3 2 3 2 19

Yes 1 3 N/A N/A 43 3,000

No 1 1 4 0 46

Yes 1 0 N/A N/A 65 6,000

No 2 0 4 0 75

Yes 1 0 N/A N/A 100 10,000

No 2 0 4 0 115

Table 5 Results on 1,000, 3,000, 6,000 and 10,000 cases

(M.O. and W.O. stand for missing orientation and wrongly oriented)

0

20

40

60

80

100

120

140

0 2000 4000 6000 8000 10000 12000
sample size

ru
nn

in
g

tim
e

(s
ec

on
ds

)

Dataset1 w.
ordering

Dataset1 w/o
ordering

Figure 16 The relationship between the sample sizes and the running time

Figure 16 shows that the running time is roughly linear to the number of cases in the data set. This

is what we expected, since most of the running time of the experiments is consumed by database

45

queries; and response time of each database query is roughly linear to the number of records in the

database table. The fact that the run-time increases so slowly suggests that our algorithms will be

able to handle very large data sets. Table 5 also shows the learner typically produces more accurate

networks, given larger data sets. Note the results on 3,000 cases are already quite acceptable; this

suggests that our algorithms can give reliable results even when the data set is not large for its

domain. This is because our algorithms can often avoid many high-order CI tests, which are

unreliable when the data sets are not large enough.

6.1.4 Other Learning Algorithms

Many other learning algorithms have attempted to learn this network from a dataset (and sometimes,

from a node ordering as well). The table below summarizes their performance. (Section 7

summarizes many of these learning systems.)

46

Algorithm Node

ordering

Sample

size

Platform Running

time (Min.)

Results

K2 Yes 10,000 Macintosh II 17 1 M.A. 1 E.A.

Kutato Yes 10,000 Macintosh II 1350 2 M.A. 2E.A.

Chu-Xiang No. (Learn

Markov net)

10,000 AVX-series2 12

processors

6 Unknown

Benedict Yes 3,000 Unknown 10 4 M.A. 5 E.A.

CB No 10,000 Dec Station 5000 7 2 E.A. 2 W.O.

Suzuki Yes 1,000 Sun Sparc-2 306 5 M.A. 1 E.A.

Lam-

Bacchus

No 10,000 Unknown Unknown 3 M.A. 2 W.O.

Friedman-

Goldszmidt

No 250-

32,000

Unknown Unknown Only in term of

scores

PC No 10,000 Dec Station 3100 6 3 M.A. 2 E.A.

HGC Using a prior

net

10,000 PC Unknown 2 E.A. 1 W.O.

Spirtes-

Meek

No 10,000 Sun Sparc 20 150 1 M.A.

TPDA-Π Yes 10,000 PC 2 1 M.A.

TPDA No 10,000 PC 2 2 M.A.

Table 6 Experimental results of various algorithms on ALARM net data

(M.A., E.A. and W.O. stand for missing edges, extra edges and wrongly oriented edges.)

Note that the Chu-Xiang algorithm is used to learn a Markov network (undirected graph) so it

does not need node ordering; and the HGC algorithm uses a prior network as domain knowledge

rather than node ordering. When evaluating the results, Friedman and Goldszmidt use entropy

distance rather than the direct comparison. By comparing the results of this table with our results,

we can see that our results on the ALARM network data are among the best.

47

6.2 The Hailfinder Network

Hailfinder network is another real-world domain Bayesian belief network. It is a normative system

that forecasts severe summer hail in northeastern Colorado. The network structure, shown in Figure

17, contains 56 nodes and 66 arcs. Each node (variable) has from two to eleven possible values. For

detailed information about the Hailfinder project and various related documents, please visit the web

page http://www.sis.pitt.edu/~dsl/hailfinder.

 To evaluate our algorithms, we generated a data set of 20,000 cases from the underlying

probabilistic model of Hailfinder network (version 2.5) using a probabilistic logic sampling method.

Figure 17 The HailFinder network

6.2.1 Experiments on 10,000 cases

In this section, we give the detailed experimental results using the first 10,000 cases of the

Hailfinder data. The results are from two runs of our system, one with node ordering (TPDA-Π),

and the other without node ordering (TPDA). The node ordering we used for Hailfinder network is

the ordering described in the file http://www.sis.pitt.edu/~dsl/hailfinder/hailfinder25.dne.

48

No. of CI tests (of each order) Results Node

ordering
0 1 2 3+ Total M.A. E.A. M.O. W.O.

Time

(seconds)

Yes 1540 163 33 7 1743 3 0 N/A N/A 227

No 1540 290 18 1 1849 4 1 1 5 245

Table 7 Running time and the CI tests used on 10,000 cases of Hailfinder data

0

200

400

600

800

1000

1200

1400

1600

1800

2000

w. ordering w/o ordering

0 1 2 3+

Figure 18 The bar charts of CI tests and running time.

(The number 0, 1, 2, 3+ in the bar chart represent the cardinalities of the condition-sets of CI tests.)

Table 7 shows that the running time is about 4 minutes and that the learned networks are very

close to the underlying BN. Figure 18 shows that most CI tests are of the low orders. Now compare

the number of CI tests used in both TPDA and TPDA-Π to learn the Hailfinder network versus

learning the ALARM network. While in theory TPDA may require O(N5) CI tests, its actual speed

appears similar to that of TPDA-Π, which is)(2NO . This suggests that in real-world situation,

where the underlying networks are sparse, the actual time complexity on CI tests is close to)(2NO

even when node ordering is not given.

6.2.2 Experiments on Different Sample Sizes

In this section, we present our experimental results on 2,500, 5,000, 10,000, 20,000 cases of the

Hailfinder data. The results are shown in the table below.

49

Results Cases Ordering

M.A. E.A. M.O. W.O.

Time

(Seconds)

Yes 2 6 N/A N/A 132 2,500

No 5 4 1 5 133

Yes 3 3 N/A N/A 172 5,000

No 3 2 0 2 174

Yes 3 0 N/A N/A 227 10,000

No 4 1 1 5 245

Yes 3 0 N/A N/A 369 20,000

No 4 1 1 5 403

Table 8 Results on different sample sizes of Hailfinder data

0

50

100

150

200

250

300

350

400

450

0 5000 10000 15000 20000 25000
sample size

ru
nn

in
g

tim
e

(s
ec

on
ds

)

w. ordering

 w/o ordering

Figure 19 The relationship between the sample sizes and the running time

These results on Hailfinder data repeat the trends we found on ALARM data − that is, the growth

of running time is roughly linear to the number of cases in the data set, and in general, the number

of errors decreases as the sample size increases. Table 8 shows that we get the same results using

10,000 cases as we get using 20,000 cases; this suggests that 10,000 cases of Hailfinder data is

already large enough for our algorithms.

50

6.3 The Chest-clinic Network

The Chest-clinic network (also known as the “Asia network”) is a very small Bayesian network for

a fictitious medical domain, relating whether a patient has tuberculosis, lung cancer or bronchitis, to
their X-ray, dyspnea, visit-to-Asia and smoking status. The structure of this network is shown in

Figure 20, which contains 8 arcs connecting 8 nodes, each of which has exactly two possible values.
The underlying probabilistic distribution of this network is described in
http://www.norsys.com/netlib/Asia.dnet. We generated a data set of 1,000 cases using the

probabilistic logic sampling method. We use this simple Bayesian network to show the performance
of our algorithms on small domains.

Figure 20 The Chest-clinic network

Our results are summarized in Table 9 below.

Results Node

Ordering
M.A. E.A. M.O. W.O.

Time

(seconds)

Yes 1 0 N/A N/A 1

No 1 0 2 0 1

Table 9 Results on 1,000 cases of Chest-clinic data

The node ordering we use is [Visit to Asia, Tuberculosis, Smoking, Lung Cancer, Tuberculosis or

Cancer, X-ray results, Bronchitis, Dyspnea]. In both experiments, the system could not find the arc

Tuberculosis

XRay Result

Tuberculosis
or Cancer

Lung Cancer

Dyspnea

Bronchitis

Visit To Asia Smoking

51

from ‘Visit to Asia’ to ‘Tuberculosis’, as that dependency is extremely weak; I(VisitToAsia,

Tuberculosis) = 6.05E-5. There are also two edges (Smoking → Lung Cancer and Smoking →

Bronchitis) that TPDA cannot orient.

6.4 Simulation Tests Using Random DAGs

Our TPDA and TPDA-Π attempt to gain efficiency by minimizing the number of CI tests used.

When the node ordering is given, TPDA-Π also minimizes the complexity of each CI test by using a

small cut-set, so that the CI tests are reliable even when the sample size is small. However, when

node ordering is not given, TPDA may use more complex CI tests. For example, when compared to
the PC algorithm (which also uses dependency analysis to learn Bayesian net structures; [Spirtes

and Glymour, 1991], see Section 7), we found that TPDA typically uses fewer CI tests than PC uses,
but these tests are often more complex.

To investigate the reliability issue of TPDA when the data sets are noisy, we use simulation tests
to compare the TPDA algorithm and the PC algorithm. The overall setting of this experiment is

very similar to the one described in [Spirtes and Meek, 1995]. We randomly generated 10 DAGs
with 10 nodes and 10 arcs, and another 10 DAGs with 10 nodes and 15 arcs. For each of the 20

DAGs, we randomly generated a single parameterization, using the Tetrad system [Scheines et al.,
1994]. From each of these 20 Bayesian networks, we created three data sets, of size 300, 1000 and

3000 respectively. This produced 60 data sets in total. As Spirtes and Meek (1995) did in their
experiment, before measuring the performance, we also used preliminary tests to determine a

reasonable threshold value for these artificial data sets. Here, we found ε≈0.0025 worked best.

The results appear in Table 10. We can see that the error rates here are higher than those in the

experiments on benchmark data sets, shown in previous sessions. This is because there is more
noise in these data sets, which make the learning task more difficult. The performances of the two

algorithms on these data sets are quite similar. TPDA generates structures with more extra edges
than PC especially when the sample size is small, which shows that minimizing the complexity of

CI tests when data sets are small and noisy is a good strategy. It also seems that TPDA performs a
little better than PC on orienting edges. Both algorithms are very efficient – it took less than a

minute to learn all 60 structures from the data sets on our computer.

52

Algorithm

of Edges in

true DAG Size

Missing

Edges %

Extra Edges

%

Missing

Orientation %

Wrong

Orientation %

PC 10 300 39.0 2.0 42.0 7.0

TPDA 10 300 32.0 27.0 33.0 7.0

PC 10 1,000 27.0 1.0 39.0 10.0

TPDA 10 1,000 23.0 9.0 36.0 5.0

PC 10 3,000 18.0 0.0 34.0 9.0

TPDA 10 3,000 23.0 1.0 37.0 8.0

PC 15 300 50.0 6.0 21.33 12.67

TPDA 15 300 38.0 12.67 15.33 16.0

PC 15 1,000 30.67 2.67 26.0 15.33

TPDA 15 1,000 25.33 6.67 10.67 19.33

PC 15 3,000 19.33 4.0 14.67 20.67

TPDA 15 3,000 24.0 4.0 9.33 19.33

Table 10 Simulation test results

6.5 How TPDA’s Heuristics Improve Its Efficiency

As noted above, TPDA differs from SLA by incorporating several heuristics, such as starting with a

quickly-computed draft, and using the faster (but less accurate) EdgeNeeded_H before EdgeNeeded.

While these heuristics are intuitive, they still do not have to work. To find out, we run some tests on

ALARM data and HailFinder data using 10,000 data points, to see how SLA really compares with

TPDA. We found that, in general, TPDA and SLA return the same answers, but SLA is about 2.5

times slower. SLA also requires 65% more CI tests, and many of the CI tests are of high order.

7 Related Work

In recent years, graphical probabilistic models, including Bayesian networks and Markov networks,

have become very popular. Learning such graphical model has become a very active research topic

53

and many algorithms have been developed for it. For survey papers and introductory papers on

probabilistic network learning, please refer to [Buntine, 1996; Chrisman, 1996; Heckerman, 1995;

Krause, 1996].

As noted above, we divide learning a BN into two subtasks: first learn the structure, and then

find the parameters (read “CPtables”) for that structure. We continue to focus on the first subtask.
There are two ways to view a BN, each suggesting a particular approach to the structure learning.
(1) A BN structure encodes the joint distribution of the attributes. This suggests that the best BN is

the one that best fits the data, and leads to the scoring-based learning algorithms, which each seek a
structure that maximizes the Bayesian, MDL or Kullback-Leibler (KL) entropy scoring function

(Heckerman 1995; Cooper and Herskovits 1992). (2) Each arc in a BN structure specifies a
dependency between the two associated nodes. This suggests learning structures that captures these

dependencies; and more importantly, leaving unconnected nodes that are independent of each other.

This leads to the “dependency based” methods – which include the TPDA and TPDA-Π algorithms

presented here.

Heckerman et al. (1997) compare these two general approaches for learning BNs, and show that
the scoring-based methods often have certain advantages over the dependency analysis based

methods.12 Recently, Cowell (2001) proves that for every scoring-based algorithm, there is an
equivalent dependency based algorithm and vice versa. So the major difference between the two

approaches is actually not the different measures used, but whether or not an algorithm utilizes the
d-separation concept to constrain the model space. When the number of variables are large, the

constraint based methods are usually much more efficient. However, when the sample size is small
and the data is noisy, the scoring-based algorithms can often give more accurate results since they

(potentially) search the whole model space to find the optimal model.

This section provides a synopsis of a few relevant BN-learning systems, providing any details

only about the systems that are related to our TPDA system. Sections 7.1 and 7.2 introduce some

12 Here we consider only the task of modeling a distribution. See Friedman et al. (1997), Cheng and Greiner

(1999,2001) and Greiner et al. (1997) for a discussion of learning Bayesian-net based classifiers.

54

representative algorithms of each group, and Section 7.3 briefly introduces other related learning

algorithms.

7.1 Search & scoring Based Methods

Algorithm Resulting
models

Node
ordering
required

Scoring
method

Main features

Chow-Liu [Chow
and Liu, 1968]

Trees (a special
kind of Markov
network)

No Entropy only needs)(2NO pair-wise

dependency calculations

Rebane-Pearl
[Rebane and
Pearl, 1987]

Polytrees (a
special kind of
Bayesian
network)

No Entropy only needs)(2NO pair-wise

dependency calculations; can
orient edges

K2 [Cooper and
Herskovits, 1992]

General Bayesian
nets

Yes Bayesian Efficient, uses heuristic search

HGC [Heckerman
et al., 1994]

General Bayesian
nets

No
(requires
prior net)

Bayesian Uses prior net as domain
knowledge

Kutato [Herskovits
and Cooper,
1991]

General Bayesian
nets

Yes Entropy Uses CI tests to speed up entropy
calculations

Wong-Xiang
[Wong and Xiang,
1994]

General Markov
nets

No Entropy The results are I-maps of the
underlying models

BENEDICT [Acid
and Campos,
1996b]

General Bayesian
nets

Yes Entropy Heuristic search; uses the
concept of d-separation

CB [Singh and
Valtorta, 1995]

General Bayesian
nets

No Bayesian Combines PC (see Section 2.2.2)
and K2; can orient edges

Suzuki [Suzuki,
1996]

General Bayesian
nets

Yes MDL Can learn the optimal structure
but inefficient

Lam-Bacchus
[Lam and
Bacchus, 1994]

General Bayesian
nets

No MDL Can orient edges using a pure
search & scoring method

Friedman-
Goldszmidt
[Friedman and
Goldszmidt, 1996]

General Bayesian
nets

No MDL or
Bayesian

Can orient edges using a pure
search & scoring method

Table 11 Summary of the search-&-scoring algorithms

Table 11 summarizes the representative search-&-scoring algorithms. The algorithm most related to

our TPDA algorithm is presented below.

55

Chow-Liu Tree Construction Algorithm

We say a network is “tree structured” if it is connected and each node has at most one parent. Chow

and Liu (1968) developed an algorithm for learning the optimal tree-structured BN; this system has
had a far-reaching influence throughout the area of graphical model learning. It takes as input a

probability distribution P(x) over N variables (which of course could be an empirical distribution),

and returns as output a tree-structured BN, P*, and does so in only)(2NO time. The authors prove

that the resulting tree-shaped distribution *P is the best tree-structured approximation of P, in that
it has minimum KL-divergence (Kullback and Leibler, 1951), over all possible tree-structured
distributions. This means, in particular, that when the underlying structure of distribution P is

actually a tree, this algorithm is guaranteed to recover the true model.

This algorithm has characteristics of both learning approaches presented earlier: Although the

general idea behind this algorithm is to find a structure with the best score (Kullback-Leibler (1951)
cross-entropy), it does this by analyzing the pair-wise dependencies, which is the method used in the

dependency analysis approach.

This algorithm requires only)(2NO pair-wise dependency calculations and each calculation uses

only second-order statistics. Unfortunately, an equally efficient dependency-analysis algorithm is
not possible for constructing multiply connected graphs, since larger condition-sets are required,

which means higher order statistics must be used.

56

7.2 Dependency analysis Based Methods

Table 12 Summary of the dependency analysis based algorithms

7.3 Other Algorithms

Several researchers use model averaging techniques, which we view as a variant of the search &

scoring based approach. They argue that sometimes the data does not identify the underlying model

of a data set. Therefore, instead of searching for a single best solution, their algorithms [Buntine,

1994; Madigan and Raftery, 1994; Madigan et al., 1994] return several networks and use the

‘average’ of these networks to perform belief propagation.

All of the above algorithms assume that the data sets are causally sufficient − i.e., all the

variables in the underlying models appear in the data sets. Sometimes, the values of some variables
are never in the data sets, we call them hidden variables or latent variables. There has been a lot of

Algorithm Resulting
models

Node
ordering
required?

Number of
CI tests

Main features

Wermuth-Lauritzen
[Wermuth and
Lauritzen, 1983]

General
Bayesian nets

Yes)(2NO Only needs)(2NO CI tests but

highly impracticable

Boundary DAG
[Pearl, 1988]

General
Bayesian nets

Yes Exponential A simple algorithm

SRA [Srinivas et al.,
1990]

General
Bayesian nets

Partial
ordering

Exponential Extension of Boundary DAG;
only needs partial ordering; uses
heuristic search

Constructor [Fung
and Crawford, 1990]

General
Markov nets

No Exponential Uses cross-validation technique
to avoid over-fitting

SGS [Spirtes et al.,
1990]

General
Bayesian nets

No Exponential Can orient edges

Verma-Pearl [Verma
and Pearl, 1992]

General
Bayesian nets

No Exponential A variation of SGS; can orient
edges and detect conflicts in the
edge orientations

PC [Spirtes and
Glymour, 1991]

General
Bayesian nets

No O(Nk+2) K is the maximum degree of any
node in the true structure; Can
orient edges; enhanced from
SGS algorithm; efficient

57

progress in learning Bayesian networks with hidden variables; see [Spirtes et al., 1993; Spirtes et

al., 1997;Verma and Pearl, 1990].

There are also algorithms that can handle data sets with missing values --- that is, some values

of some variables are excluded --- see Bound and Collapse [Ramoni and Sebastiani, 1996; Ramoni

and Sebastiani, 1997], [Friedman, 1998] and [Singh, 1997].

8 Future Work and Conclusion

8.1 Future Work

We plan to work in the following directions.

1. Each of the two general approaches to Bayesian network learning (i.e., based on score-&-search

and on dependency-analysis) has its own advantages. We plan to explore ways to combine the

two approaches, especially for the task of learning models from data with hidden variables.

2. TPDA is correct for monotone DAG-faithful models. We conjecture that the monotone DAG-

faithful assumption is only slightly stronger than DAG-faithfulness, and that most DAG-faithful

models are also monotone DAG-faithful. We plan to explore the properties of monotone DAG-

faithful models and compare them with those of DAG-faithful models.

3. We noted that TDPA spends most of its running time performing CI tests, and that most running

time of these CI tests is in turn consumed by database queries. This suggests that we can

improve the efficiency of our algorithms by improving the efficiency of database queries. One

method is to move the data set to a high performance database server. We believe this will

speed up the Bayesian network learning by a large factor --- perhaps even several hundred

times, depending on the speed of the database server. Another method is to use database

engines that are specially designed for such queries, i.e., capable of quickly counting the

number of records that satisfy certain criteria.

4. We are already beginning to explore the use of these constraint-based techniques in the context

of learning classifiers --- that is, performance systems that assign labels to (unlabeled) instances

[Cheng and Greiner, 1999]. Here the goal is a Bayesian net that produces the correct label as

often as possible; a goal that differs from finding the best “model” of the underlying

58

distribution. We plan to continue seeking ways to modify our basic TPDA algorithm for this

specialized task.

8.2 Conclusion

This paper addresses the task of learning Bayesian networks from data. We develop two related

information theoretic algorithms: TPDA, which learns Bayesian networks when node ordering is not

given, and TPDA-Π, which deals with the special case where the node ordering is given. These two

algorithms have been implemented within a general Bayesian network learning system – BN

PowerConstructor. Using the PowerConstructor system, we have empirically evaluated our

algorithms using two moderately complex real-world examples and a class of simpler synthetic
ones. These results show that our algorithms are accurate and efficient.

Our algorithms improve on the other dependency-analysis based algorithms by using
quantitative information from CI tests to avoid the need to perform an exponential number of such

CI tests; n.b., our algorithms are still guaranteed to recover the correct distribution when the
underlying model of the data set is monotone DAG-faithful (given enough data and other simple

assumptions). When the correct node ordering is available, our TPDA-Π algorithm requires only

standard DAG-faithfulness, and uses only O(N2) CI test to learn an N-node BN, as it needs to

perform only O(1) CI test to decide whether to include each of the O(N2) possible arcs. Moreover,
thanks to its three-phase mechanism, which allows some wrong decisions to be made in first two

phases, this overall algorithm is even more efficient in practice. (By contrast, most other
dependency-analysis based learning algorithms require an exponential number of CI tests for each

decision.)

When node ordering is not given, it is impossible to make each “is an edge needed?”

decision using only one CI test. However, by using quantitative CI tests, which tells us not only
whether a pair of nodes are dependent or not but also how close their relationship is, TPDA need to

use only)(2NO CI tests for each decision. We prove that TPDA is correct when the underlying

model is monotone DAG-faithful.

Experimental results show that our algorithms are capable of handling large real-world data
sets since the running time is linear in the number of records in the data set and polynomial in the

59

number N of attributes in the data set --- empirically O(N2) for sparse networks. The results also

show that our algorithms are quite reliable since the accuracy of the result does not deteriorate very

fast when the sample size decreases.

7 Acknowledgements

We gratefully acknowledge the financial support of NSERC, PIMS, and Siemens Corporate

Research, for helping to sponsor this work. The first author would also like to thank Thomas

Richardson of the University of Washington, for his valuable comments, which helped to improve

the TPDA algorithm; to Clark Glymour, Peter Spirtes and Richard Scheines of Carnegie Mellon

University, for their encouragement and comments.

References

[Acid and Campos, 1996a] Acid, S. and Campos, L.M., An algorithm for finding minimum d-Separating sets

in belief networks, Proceedings of the twelfth Conference of Uncertainty in Artificial Intelligence, 1996.

[Acid and Campos, 1996b] Acid, S. and Campos, L.M., BENEDICT: An algorithm for learning probabilistic

belief networks, Proceedings of the sixth International Conference IPMU’96, 1996.

[Agresti, 1990] Agresti, A., Categorical data Analysis, John Wiley & Sons, 1990.

[Badsberg, 1992] Badsberg, J., Model search in contingency tables in CoCo, Computational Statistics,

Dodge, Y and Wittaker, J. (Ed.), Heidelberg: Physica Verlag, page 251-256, 1992.

[Baker and Boult, 1990] Baker, M. and Boult T.E., Pruning Bayesian networks for efficient computation,

Proceedings of the sixth international conference on uncertainty in artificial intelligence, 1990.

[Becker and Geiger, 1996] Becker, A. and Geiger, D., A sufficiently fast algorithm for finding close to

optimal junction trees, Proceedings of the twelfth international conference on uncertainty in artificial

intelligence, 1996.

[Beinlich et al., 1989] Beinlich, I.A., Suermondt, H.J., Chavez, R.M. and Cooper, G.F., The ALARM

monitoring system: A case study with two probabilistic inference techniques for belief networks.

Proceedings of the Second European Conference on Artificial Intelligence in Medicine (pp.247-256),

London, England, 1989.

60

[Bouckaert, 1994] Bouckaert, R.R., Properties of Bayesian belief network learning algorithms. Mantaras, R.

and Poole, D. (Ed.), Morgan Kaufmann, 1994.

[Buntine, 1994] Buntine, W., Operations for learning with graphical models, Journal of Artificial Intellignece

Research, 2, page 159-225, 1994.

[Buntine, 1996] Buntine, W., A guide to the literature on learning probabilistic networks from data. IEEE

Transactions on Knowledge and Data Engineering, 8(2), 195-210, 1996.

[Cheng et. al., 1997a] Cheng, J., Bell, D.A. and Liu, W., An algorithm for Bayesian belief network

construction from data, Proceedings of AI & STAT’97 (pp.83-90), Ft. Lauderdale, Florida, 1997.

[Cheng et. al., 1997b] Cheng, J., Bell, D.A., and Liu, W., Learning belief networks from data: An

information theory based approach, Proceeding of the sixth ACM International Conference on

Information and Knowledge Management, 1997.

[Cheng, 1998] Cheng, J., Learning Bayesian networks from data: An information theory based approach,

Doctoral Dissertation, Faculty of Informatics, University of Ulster, U.K., 1998.

[Cheng and Greiner, 1999] Cheng, J and Greiner, R., Comparing Bayesian Network Classifiers, Proceedings

of the fifteenth international conference on uncertainty in artificial intelligence, 1999.

[Cheng and Greiner, 2001] Cheng, J. and Greiner, R., Learning Bayesian Belief Network Classifiers:

Algorithms and System. Proceedings of 14th Biennial conference of the Canadian society for

computational studies of intelligence, 2001.

[Chickering et. al., 1994] Chickering, D.M., Geiger, D., and Heckerman, D., Learning Bayesian Networks is

NP-Hard, Technical Report MSR-TR-94-17, Microsoft Research, Microsoft Corporation, 1994.

[Chickering, 1996] Chickering, D. M., Learning equivalence classes of Bayesian network structures.

Proceedings of the twelfth conference on uncertainty in artificial intelligence, 1996.

[Chow and Liu, 1968] Chow, C.K. and Liu, C.N., Approximating discrete probability distributions with

dependence trees. IEEE Transactions on Information Theory, 14, 462-467, 1968.

[Chrisman, 1996] Chrisman, L., A roadmap to Research on Bayesian networks and other decomposable

probabilistic models, technical report, School of Computer Science, CMU, 1996.

[Chu and Xiang, 1997] Chu, T. and Xiang, Y., Exploring parallelism in learning belief networks,

Proceedings of the thirteenth international conference on uncertainty in artificial intelligence, 1997.

61

[Cooper and Herskovits, 1992] Cooper, G.F., Herskovits, E., A Bayesian Method for the induction of

probabilistic networks from data, Machine Learning, 9, 309-347, 1992.

[Cowell, 2001] Cowell, R.G., When learning Bayesian networks from data, using conditional independence

tests is equivalent to a local scoring metric, Proceedings of the seventeenth international conference on

uncertainty in artificial intelligence, 2001.

[Darken, 1999] Darken, C., Personal communication.

[Darroch et al., 1980] Darroch, J.N., Lauritzen, S.L. and Speed, T.P. Markov fields and loglinear interaction

models for contingency tables. Ann. Stat., 8, 522-539, 1980.

[Dash and Druzdzel, 1999] Dash, D. and Druzdzel, M., A hybrid anytime algorithm for the construction of

causal models from sparse data, Proceedings of the fifteenth international conference on uncertainty in

artificial intelligence, 1999.

[Dietterich, 1997] Dietterich, T.G., Machine learning research: four current directions, AI Magazine, 18 (4),

1997.

[Edwards, 1995] Edwards, D., Introduction to Graphical Modelling, Springer-Verlag, New York, 1995.

[Friedman, 1998] Friedman, N. The Bayesian Structural EM Algorithm, Proceedings of the fourteenth

international conference on uncertainty in artificial intelligence, 1998.

[Friedman and Goldszmidt, 1996] Friedman, N. and Goldszmidt, M., Learning Bayesian networks with local

structure, Proceedings of the twelfth international conference on uncertainty in artificial intelligence,

1996.

[Fung and Crawford, 1990] Fung, R.M. and Crawford, S.L., Constructor: a system for the induction of

probabilistic models, Proceedings of the Seventh National Conference on Artificial Intelligence, 1990.

[Geiger and Heckerman, 1990] Geiger, D. and Heckerman, D., Separable and transitive graphoids,

Proceedings of the sixth international conference on uncertainty in artificial intelligence, 1990.

[Geiger and Pearl, 1988] Geiger, D. and Pearl, J., Logical and algorithmic properties of conditional

independence, Technical Report R-97, Cognitive Systems Laboratory, UCLA, 1988.

[Glymour et al., 1997] Glymour, C., Madigan, D., Pregibon, D.and Smyth, P., Statistical themes and lessons

for data mining, Data mining and knowledge discovery,1, 11-28, 1997.

62

[Greiner et al., 1997] Greiner, R., Grove, A., and Schuurmans, D., Learning Bayesian Nets that perform well,

Proceedings of the thirteenth international conference on uncertainty in artificial intelligence, 1996.

198-207.

[Greiner et al., 2001] Greiner, R., Darken, C., and Santoso, N. I., Efficient Reasoning, Computing Surveys,

33:1 (March 2001), p. 1—30.

[Heckerman, 1988] Heckerman, D., An empirical comparison of three inference methods, Uncertainty in

Artificial Intelligence 4, Shachter et al. (Ed.), page 283-302, North-Holland, 1988.

[Heckerman, 1995] Heckerman, D., A tutorial on learning Bayesian networks, Technical Report MSR-TR-95-

06, Microsoft Research, 1995.

[Heckerman et al., 1994] Heckerman, D., Geiger, D. and Chickering, D.M., Learning Bayesian networks: the
combination of knowledge and statistical data, Machine Learning Journal, 20(3), 1997.

[Henrion, 1988] Henrion, M., Propagating uncertainty in Bayesian networks by probabilistic logic sampling,
Uncertainty in Artificial Intelligence 2, page 149-163, North-Holland, 1988.

[Henrion and Cooley, 1987] Henrion, M. and Cooley, D.R., An experimental comparison of knowledge
engineering for expert systems and for decision analysis, Proceedings AAAI-87 Sixth National

Conference on Artificial Intelligence, page 471-476, Morgan Kaufmann, 1987

[Herskovits and Cooper, 1990] Herskovits, E. and Cooper, G., Kutato: An entropy-driven system for
construction of probabilistic expert systems from databases, Proceedings of the sixth international

conference on uncertainty in artificial intelligence, 1990.

[Herskovits, 1991] Herskovits, E., Computer-based probabilistic network construction, Doctoral dissertation,
Medical information sciences, Stanford University, Stanford, CA, 1991.

[Hojsgaard et. al., 1994] Hojsgaard, S., Skjoth, F. and Thiesson, B., User’s guide to BIOFROST, Technical

report, Department of Mathematics and Computer Science, Aalborg, Denmark.

[Jordan et al., 1997] Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. and Saul, L. K., An introduction to
variational methods for graphical models, Learning in graphical models, Jordan, M. I. (Ed.), Kluwer
Academic, 1997.

[Kjarulff, 1994] Kjarulff, U., Reduction of computational complexity in Bayesian networks through removal

of weak dependences, Proceedings of the tenth international conference on uncertainty in artificial

intelligence, 1994.

63

[Krause, 1996] Krause, P., Learning probabilistic networks, Technical Report, Philips research laboratories,

UK, 1996.

[Kullback and Leibler, 1951] Kullback, S. and Leibler, R., On information and sufficiency, Ann. Math. Stat.,

Vol 22 (76—86), 1951.

[Lam and Bacchus, 1994] Lam, W. and Bacchus, F., Learning Bayesian belief networks: An approach based
on the MDL principle, Computational Intelligence, Vol 10:4, 1994.

[Lauritzen and Spiegelhalter, 1988] Lauritzen, S.L. and Spiegelhalter, D.J., Local computations with
probabilities on graphical structures and their application to expert systems, Royal Statistics Society B,
50-2, 157-194, 1988.

[Madigan and Raftery, 1994] Madigan, D. and Raftery, A.E., Model selection and accounting for model
uncertainty in graphical models using Occam’s window, Journal of the American Statistical Association,
89, page 1535-1546, 1994.

[Madigan et al., 1994] Madigan, D., Raftery, A.E., York, J.C., Bradshaw, J.M., and Almond R.G., Strategies
for graphical model selection, Selecting Models from Data: Artificial Intelligence and Statistics IV,
Cheeseman, P. and Oldford, R.W. (Ed.), Springer-Verlag, 1994.

[Meek, 1995a] Meek, C., Causal inference and causal explanation with background knowledge, Proceedings

of the eleventh international conference on uncertainty in artificial intelligence, 1995.

[Meek, 1995b] Meek, C., Strong completeness and faithfulness in Bayesian networks, Proceedings of the

eleventh international conference on uncertainty in artificial intelligence, 1995.

[Morjaia et al., 1993] Morjaia, M.A., Rink, F.J., Smith, W.D., Klempner, J., Burns, C. and Stein, J.,
Commercialization of EPRI's Generator Expert Monitoring System (GEMS), Expert System Application

for the Electric Power Industry, EPRI, 1993.

[Musick, 1988] Musick, C. R., Belief network induction, doctoral dissertation, UC Berkeley, 1988.

[Neapolitan, 1990] Neapolitan, R.E., Probabilistic reasoning in expert systems: theory and algorithms, John
Wiley & Sons, 1990.

[Page and Hatzis, 2001] Page, D. and Hatzis, C., ACM SIGKDD Cup 2001,
http://www.cs.wisc.edu/~dpage/kddcup2001/, 2001.

[Pearl, 1988] Pearl, J., Probabilistic reasoning in intelligent systems: networks of plausible inference,
Morgan Kaufmann, 1988.

64

[Pearl and Wermuth, 1993] Pearl, J. and Wermuth, N., When can association graphs admit a causal

interpretation? Technical report, 1993.

[Ramoni and Sebastiani, 1996] Ramoni, M. and Sebastiani, P., Robust learing with missing data, Technical

report, KMI-TR-28, 1996.

[Ramoni and Sebastiani, 1997] Ramoni, M. and Sebastiani, P., Discovering Bayesian networks in incomplete

databases, Technical report KMI-TR-46, Knowledge Media Institute, The Open University, March 1997.

[Russell and Norvig, 1995] Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach, Prentice

Hall, 1995.

[Sarkar and Murthy, 1996] Sarkar, S. and Murthy, I., Constructing efficient belief network structures with

expert provided information, IEEE Transactions on knowledge and data engineering, 8-1, 1996.

[Sarkar et al., 1996] Sarkar, S., Sriram, R.S., Joykutty, S. and Murhty, I., An information theoretic technique

to design belief network based expert systems, Decision support systems 17, page 13-30, 1996.

[Scheines et al., 1994] Scheines, R., Spirtes, P., Glymour, C., and Meek, C., TETRAD II: Tools for

Discovery. Lawrence Erlbaum Associates, Hillsdale, NJ, 1994.

[Singh, 1997] Singh, M. Learning Bayesian networks from incomplete data, Proceedings of AAAI-97.

[Singh and Valtorta, 1995] Singh, M. and Valtorta, M. Construction of Bayesian network structures from

data: a brief survey and an efficient algorithm, International Journal of Approximate Reasoning, 12,

111-131, 1995.

[Spiegelhalter et al., 1993] Spiegelhalter, D., Dawid, P., Lauritzen, S., and Cowell, R., Bayesian analysis in

expert systems, Statistical Science, 8:219-282, 1993.

[Spirtes et al., 1990] Spirtes, P., Glymour, C. and Scheines, R., causality from probability, Proceedings of

Advanced Computing for the Social Sciences, Williamsburgh, VA.

[Spirtes et al., 1991] Spirtes, P., Glymour, C. and Scheines, R., An algorithm for fast recovery of sparse

causal graphs, Social Science Computer Review, 9, 62-72, 1991.

[Spirtes et al., 1993] Spirtes, P., Glymour, C. and Scheines, R., Causation, Prediction, and Search, Springer

Lecture Notes in Statistics, 1993.

[Sprites and Meek, 1995] Spirtes, P. and Meek, C., Learning Bayesian Networks with Discrete Variables

from data, Proceedings of the first international conference on knowledge discovery and data mining,

1995.

65

[Spirtes et al., 1997] Spirtes, P., Richardson, T., and Meek, C., Heuristic greedy search algorithms for latent

variable models, Proceedings of AI & STAT’97 (pp.481-488), Ft. Lauderdale, Florida, 1997.

[Srinivas et al., 1990] Srinivas, S. Russell, S. and Agogino, A., Automated construction of sparse Bayesian

networks from unstructured probabilistic models and domain information, In Henrion, M., Shachter,

R.D., Kanal, L.N. and Lemmer, J.F. (Eds.), Uncertainty in artificial intelligence 5, Amsterdam: North-

Holland, 1990.

[Suzuki, 1996] Suzuki, J., Learning Bayesian belief networks based on the MDL principle: An efficient

algorithm using the branch and bound technique, Proceedings of the international conference on

machine learning, Bari, Italy, 1996.

[Thomas et al., 1992] Thomas, A., Spiegelhalter, D.J., and Gilks, W.R., BUGS: A program to perform

Bayesian inference using Gibbs sampling, Bayesian Statistics 4, Bernardo, J.M., Berger, J.O., Dawid,

A.P. and Smith A.F. (eds), Oxford University Press, page 837-842, 1992.

[Verma and Pearl, 1990] Verma, T.S. and Pearl, J., Equivalence and synthesis of causal models, Proceedings

of the sixth international conference on uncertainty in artificial intelligence, 1990.

[Verma and Pearl, 1992] Verma, T.S. and Pearl, J., An angorithm for deciding if a set of observed

independencies has a causal explanation, Proceedings of the Eighth international conference on

uncertainty in artificial intelligence, 1992.

[Walsh, 1990] Walsh, A., Statistics for the social sciences, Harper & Row, 1990

[Wermuth and Lauritzen, 1983] Wermuth, N. and Lauritzen, S., Graphical and recursive models for

contingency tables. Biometrika, 72, 537-552, 1983.

[Whittaker, 1989] Whittaker, J., Graphical Models in Applied Multivariate Statistics, John Wiley & Sons,

1989.

[Wong and Xiang, 1994] Wong, S.K.M. and Xiang, Y., Construction of a Markov network from data for

probabilistic inference, Third International Workshop on Rough Sets and Soft Computing, pages 562-

569, San Jose, CA, 1994.

[Xiang and Wong, 1994] Xiang, Y. and Wong, S.K.M., Learning conditional independence relations from a

probabilistic model, Technical report, University of Regina, 1994.

Appendix A: Proofs

66

A.1 Correctness Proof of SLA (and TPDA)

Theorem 3: Given a “sufficiently large” database of complete instances that are drawn, iid, from a

monotone DAG-faithful probability model, the SLA algorithm will recover the correct underlying
essential network. Moreover, this algorithm requires only O(N4) conditional independence tests. []

We use the following propositions to prove that SLA is correct (i.e., the first part of Theorem 3).
Throughout we will assume the assumptions stated in the theorem, and also that M is the true model
of the distribution.

Proposition 3.1 The graph generated after Step2, G2, contains all the edges of M.

Proof: This step considers all the edges between any two nodes that are not independent. An edge
is not added only if the two nodes are separated by a set of other nodes. Hence, any two nodes that

are not directly connected in G2 are conditionally independent in M. []

Lemma 3.1 As EdgeNeeded starts with the initial condition-set SX∪ SX’, it can close all the paths

of the underlying model M between nodes X and Y except the paths connecting X and Y by one
collider.

Proof: By using, say, SX∪ SX’ as the condition-set, we instantiate the nodes in SX (the neighbors of

X on the paths between X and Y) and SX’ (the neighbors of nodes of SX that are on the paths

between X and Y).13 Therefore, we can instantiate at least two consecutive nodes of any path that
has length equal to or larger than three. Because two consecutive nodes of a path cannot both be

colliders in the path, and all the paths of the underlying model M are in the current graph, we can
close all the paths in M between X and Y that have length equal to or larger than three. Hence, the

only paths that could remain open are those connecting X and Y by one collider. []

Lemma 3.2 EdgeNeeded does not open any previously closed X-Y path by removing a node from

condition-set C.

13 The same claim holds for SY∪ SY’ .

67

Proof: Given monotone DAG-faithfulness, EdgeNeeded will not remove a node that only opens

some paths, as such a removal would necessarily increase the mutual information. We therefore

need only prove that removing a node from C cannot simultaneously open some paths and close

others. From Lemma 3.1 we know that initially the only open paths are those connecting X and Y

by one collider. Now consider each node v in C. If v is not a child-node of both X and Y or a

descendent of such a child-node, removing it may open some paths but cannot close the paths

connecting X and Y by a collider. So suppose that v is a child-node of both X and Y or a

descendent of such a child-node. Now if one of v’s descendents is in C, then removing v cannot
close the path connecting X and Y by the child-node. If none of v’s descendents is in C, removing v

may close the path connecting X and Y by the child-node but cannot open a path because the would-
be opened path must go through a collider that is a descendent of v. Since none of v’s descendents

is in C, such a path cannot be opened. []

Lemma 3.3 EdgeNeeded can remove all the descendents of both X and Y from condition-set C.

Proof: Toward a contradiction, suppose S is the subset of set C containing the descendents of both

X and Y that cannot be removed. Then there must be a node v∈S that is not an ancestor of any
other nodes in S. The only reason we would not consider removing v is if removing it increases

mutual information. From the assumption of monotone DAG-faithfulness and Lemma 3.2, we
know that removing v will open at least one path. Therefore, node v is not a collider in such a path

and so this path must go through at least one descendent of v. Because a descendent of v is also a
descendent of both X and Y, there must exist at least one descendent of v which is a collider in such

open path. To make such path open, this collider has to be in S. This contradicts our assumption
that v is not an ancestor of any other nodes in S. []

Proposition 3.2 Given that graph G contains all the edges of a probabilistic model M, if two nodes

X and Y are independent in M, EdgeNeeded can always separate them in G.

Proof: From Lemma 3.1 we know that initially the only open paths are those connecting node X

and Y by one collider. From Lemmas 3.2 and 3.3, we know that the procedure does not open any
path when removing nodes from the condition-set C and that it removes all the descendents of both

68

X and Y that are in C. Therefore, if nodes X and Y are independent in M, EdgeNeeded can separate

them by closing all the open paths. []

Proposition 3.3 The graph generated after step 3, G3, contains the exact same edges as those of M.

Proof: Since G2 contains all the edges of M, and an edge is removed in step 3 only if the pair of

nodes is conditionally independent in M, G3 also contains all the edges of M. From Proposition 2,

we also know that if two nodes are independent in M, our algorithm can always separate them in

G3. Hence, G3 contains exactly the same edges as those of M. []

Proposition 3.4 Given that graph G contains the exact same edges as those of the underlying model

M, all the colliders that can be identified by OrientEdges(G) are the real colliders of M.

Proof: For any structure X-Y-Z where X and Z are not directly connected, OrientEdges(G) uses

step 1 to check if Y is a collider on the path X-Y-Z. From Lemma 3.3 we know that the final cut-set

between X and Z will never include Y if Y is a collider. So step 1 can identify a collider correctly.

Since there are no extra-edges in G, step 2 of this procedure can never orient an edge wrongly. It is

also easy to see that the inference of step 3 of the procedure is correct. []

A.2 Complexity Analysis for SLA (and for TPDA)

This appendix provides the worst-case time complexity of TPDA in terms of the number of CI

tests. Please note that each CI test can require a large number of basic calculations – in fact, a

number exponential in the size of the condition-set. However, the number of basic calculations is
not a good index for comparing different algorithms because all algorithms are exponential in this

sense. In practice, most of the running time of our algorithms is consumed in data queries from
databases, which we have found often takes more than 95% of running time (see Section 6).

Because the number of CI tests is directly related to the number of database queries, it is a relatively
good criterion for judging an algorithm’s performance. In fact, the number of CI tests is a widely

used index for comparing different algorithms that are based on dependency analysis (Spirtes et al.
1993; Pearl 1988).

69

To prove that TPDA-Π requires O(N4) CI tests: Observe first that EdgeNeeded requires O(N2) CI

tests, as it must, in the worst case, successively consider the one conditioning set of size N-2, then

the N-2 possible subsets of this set of size N-3, then the N-3 size-N-4 subsets, and so forth, until

considering 2 sets of size 1. This would require)(2

2..2
NOi

Ni
=∑ −=

 CI tests. Next note that Step 1

can call EdgeNeeded on at most every pair of nodes, as can Step 2; hence these steps require O(N2
*

N2) CI tests. Hence the final step requires O(N2× N2) = O(N4) CI tests, which is high-water

complexity of this algorithm.

A.3 Correctness Proofs of SLA-Π (and TPDA-Π)

Theorem 2: Given a “sufficiently large” database of complete instances that are drawn, iid, from a

DAG-faithful probability model, together with a correct node ordering, then the SLA-Π algorithm

will recover the correct underlying network. Moreover, this algorithm will require only O(N2) CI
tests. []

We use the following claims:

Proposition 2.1: The graph generated after Step2, G2, is an I-map of M.

Proof: As the first part of SLA-Π considers every pair of nodes that are not pair-wise independent,

the only way that an arc can be excluded from the graph is if the two nodes of the arc are

independent conditional on some appropriate condition-set. Hence, any two disconnected nodes in
G2 are conditionally independent in M. []

Proposition 2.2: The graph generated after Step 3, G3, is a perfect map of M.

Proof: Because G2 is an I-map of M, and an arc is removed in Step 3 only if the pair of nodes is

conditionally independent, it is easy to see that G3 and all the intermediate graphs of Step3 are I-
maps of M. Now, we will prove that G3 is also a D-map of M. Suppose G3 is not a D-map, then

there must exist an arc 〈a, b〉 which is in G3 and for which the two nodes a and b are actually

independent in the underlying model M. Therefore, a and b can be d-separated by blocking all the

real open paths Pr in M. In SLA-Π, the nodes a and b are connected in G3 only if a and b are still

dependent after blocking all the open paths P in G3. Since all the intermediate graphs of Step3 are
I-maps of M, P includes Pr and possibly some pseudo-paths. So blocking all the open paths in P

70

will block all the real open paths in Pr. Because information cannot pass along the pseudo-paths,

the only reason for a and b to be dependent in G3 is that information can go through the paths in Pr.

This contradicts our assumption that a and b are d-separated by blocking all the open paths of Pr in

M. Thus, G3 is both a D-map and I-map and hence is a perfect map of M. []

The above propositions ensure that our algorithm can construct the perfect map of the underlying

dependency model, i.e., the induced Bayesian networks are exactly the same as the real underlying

probabilistic models of the data sets.

A.4 Complexity Analysis for SLA-Π

Since Step1 computes mutual information between any two nodes, it needs)(2NO mutual

information computations. In Step2, the algorithm checks if it should add arcs to the graph. Each

such decision requires one CI test. Therefore, Phase II needs at most)(2NO CI tests. In Step3, the

algorithm sees if it can remove the arcs from the graph. Again, each such decision requires one CI

test and so at most)(2NO CI tests are needed. Hence, the overall algorithm requires)(2NO CI

tests in the worst case.

Appendix B : Monotone DAG-Faithfulness

In real world situations most DAG-faithful models are also monotone DAG-faithful. We conjecture

that the violations of monotone DAG-faithfulness only happen when the probability distributions

are ‘near’ the violations of DAG-faithfulness. In such situations, other algorithms also have
difficulties in generating the true underlying model.

While TPDA-Π and other dependency analysis based algorithms require the assumption of DAG-

faithfulness for its correctness proof, TPDA is only guaranteed to work correctly if the underlying
probabilistic model of a data set is monotone DAG-faithful – which means it requires a stronger

assumption.

From the definition of monotone DAG-faithful models we know that these models form a subset

of DAG-faithful models. We have found that some models are DAG-faithful but not monotone
DAG-faithful. To illustrate this, consider the probabilistic model shown in Figure B.1:

71

A

B

C

D

P(a0)=0.5
P(a1)=0.5

P(b0|a0)=0.7
P(b0|a1)=0.3
P(b1|a0)=0.3
P(b1|a1)=0.7

P(c0|a0)=0.8
P(c0|a1)=0.2
P(c1|a0)=0.2
P(c1|a1)=0.8

P(d0|b0,c0)=0.9
P(d0|b0,c1)=0.1
P(d0|b1,c0)=0.5
P(d0|b1,c1)=0.5
P(d1|b0,c0)=0.5
P(d1|b0,c1)=0.5
P(d1|b1,c0)=0.1
P(d1|b1,c1)=0.9

Figure B.1: Simple Bayesian Network

If the model was monotone-DAG-faithful, we expect)|,(DCBI to be greater than),|,(DACBI .

However, we find 018.0),|,(=DACBI and 0)|,(=DCBI : when using {A,D} as the condition-

set, there is one open path B-D-C and when using {D} as the condition-set, there are two open

paths, B-D-C and B-A-C. Note that this model is not even DAG-faithful since the independence

between B and C given {D} cannot be expressed by the DAG structure. However, if we change the

parameters of the network a little, for instance, changing the CPtable of node C to the same as that

of node B, we can make)|,(DCBI greater than 0 but still smaller than),|,(DACBI . Now, we

get a model that is DAG-faithful since B and C are not independent given {D}, but not monotone

DAG-faithful.

From the above example, we can draw two conclusions. First, there are some models that are

DAG-faithful but not monotone DAG-faithful. Secondly, the distinction between DAG-faithful

models and non-DAG-faithful models is not black and white. In the above example, if the small

value I(B,C|D) happens to be larger than the threshold used to separate ‘dependent’ and
‘independent’, then the model is DAG-faithful; otherwise, it is not DAG-faithful. This shows that

there is a ‘gray’ area of the area of DAG-faithful models, in which the models are ‘close’ to being
non-DAG-faithful. Although we do not have a formal proof, we conjecture that the non-monotone

DAG-faithful models are all in the ‘gray’ area. In other words, if a model violates the monotone
DAG-faithfulness assumption, we conjecture that it is also close to the violation of DAG-

faithfulness. If so, then any such model may also be problematic for other learning algorithms.

72

Given the fact that qualitative CI test based learning methods, like TPDA-Π, require the

qualitative DAG-faithfulness assumption for their correctness proof, it is reasonable to think that our

quantitative CI test based method requires a quantitative assumption. We view the monotone DAG-

faithfulness assumption used in TPDA as the quantitative counterpart of the DAG-faithfulness

assumption. We believe that most real-world probabilistic models are actually monotone DAG-

faithful.

Even when the underlying probability distribution is DAG-faithful but not monotone DAG-

faithful, our algorithm may still be able to learn the correct graph. In fact, this algorithm may not be

able to separate two d-separated nodes only when there is at least one path that connects the two

nodes by a single collider and removing a node in the condition-set causes the violation of the

monotone DAG-faithful assumption. However, since this will only cause one edge to be wrongly

added to the current graph, the correctness of other edges in the graph will not be affected and the

resulting graph can still be very close to the real model.

Appendix C: Introduction to BN PowerSoft Package

There are several commercial systems and research prototypes for learning Bayesian networks from

data, including TETRAD II [Scheines et al., 1994], Bayesian Knowledge Discoverer [Ramoni and

Sebastiani, 1997], CoCo [Badsberg, 1992], BUGS [Thomas et. al., 1992], BIFROST [Hojsgaard et

al., 1994] and MIM [Edwards, 1995]. (See also

http://http.cs.berkeley.edu/~murphyk/Bayes/bnsoft.html .) However, as far as we know, only

TETRAD II can handle a data set at the size of the ALARM network data we used, which contains

37 variables and 10,000 records. Considering that real-world data sets often contain hundreds of

variables and millions of records, the size of the ALARM network data is actually quite moderate.

The lack of practicable, easy-to-use learning systems that scale well hinders the real use of Bayesian

networks in industry. As a result, most industry users are unaware of the current progress in this

area. This is, at least partially, the reason that the Bayesian network method is not as popular as

other methods, like neural networks and decision trees, in current data mining systems in industry.

To promote the real use of Bayesian networks and facilitate researchers in related fields, we

implemented our algorithms into a Bayesian network learning system, named “Bayesian network

73

PowerConstructor”. This system implements two learners (corresponding to TPDA and TPDA-Π).

Since October 1997, over 4000 people have visited our web sites and over 2000 people have

downloaded our system. We are also very glad to know that some users have used it successfully
on real-world problems. In May 2000, we also extended the PowerConstructor system to a full-

fledged data mining system – BN PowerPredictor, which has most of the features of
PowerConstructor and additional features for data mining applications. In addition, our software

package also includes a data pre-processing tool for data importing and data discretization. Both
systems run under 32-bit windows systems (i.e., Windows 95, Windows 98, Windows NT and

Windows 2000) on PCs. They are available for download from our web site
(http://www.cs.ualberta.ca/~jcheng/bnsoft.htm).

Using this package, we obtained very encouraging results on a set of standard classification
problems [Cheng and Greiner, 1999; Cheng and Greiner 2001]. We also won the ACM KDD Cup

2001 data mining competition “Task 1: prediction of molecular bioactivity for drug design”, by
learning, from training data, the classifier (here a Bayesian network) with the best prediction

accuracy. There were 114 groups who participated in this task, using various data mining techniques
[Page and Hatzis, 2001].

Summary of BN PowerSoft Package

This software package includes BN PowerConstructor, BN PowerPredictor and a data pre-

processor. Besides its efficiency and scalability, our systems have the following features.

• User-friendly interface with online help.

• Accessibility. The system supports most of the popular desktop database and spreadsheet
formats, including Ms-Access, dBase, Foxpro, Paradox, Excel and text file formats. It also

supports remote database servers like Oracle, SQL-server through ODBC.

• Reusability. The engine is an ActiveX DLL, so it can be easily integrated into other

Bayesian network, data mining or knowledge base systems for Windows 95/98/NT/2000.

• Supporting domain knowledge. Complete ordering, partial ordering and causes and effects
can be used to constrain the search space and therefore speed up the construction process.

• Automatic feature subset selection and model selection in PowerPredictor by using a

wrapper approach.

74

• Supporting misclassification cost function definition in PowerPredictor.

