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Abstract 

This paper provides algorithms that use an information-theoretic analysis to learn Bayesian 

network structures from data.  Based on our three-phase learning framework, we develop efficient 

algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of 

conditional independence (CI) tests in typical cases. We provide precise conditions that specify 

when these algorithms are guaranteed to be correct as well as empirical evidence (from real world 

applications and simulation tests) that demonstrates that these systems work efficiently and 

reliably in practice. 
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1 Introduction 

Bayesian networks (BNs; defined below) are a powerful formalism for representing and reasoning 

under conditions of uncertainty.  Their success has led to a recent furry of algorithms for learning 

Bayesian networks from data.  Although many of these learners produce good results on some 

benchmark data sets, there are still several problems: 

• Node ordering requirement.  Many BN-learning algorithms require additional information – 
notably an ordering of the nodes to reduce the search space (see [Cooper and Herskovits, 

1992; Heckerman et al., 1994]).  Unfortunately, this information is not always available.  
We therefore want a learner that can exploit such prior information if it is available, but 

which can still learn effectively if it is not. 

• Computational Complexity. Practically all BN learners are slow, both in theory [Chickering 

et al., 1994] and in practice – e.g., most dependency-analysis based algorithms (defined 

below) require an exponential numbers of “conditional independence” tests. 

• Lack of publicly available learning tools. Although there are many algorithms for this 

learning task, very few systems for learning Bayesian networks systems are publicly 
available.  Even fewer can be applied to real-world data-mining applications where the data 

sets often have hundreds of variables and millions of records. 

This motivates us to develop more effective algorithms for learning Bayesian networks from 

training data.  Using ideas from information theory, we developed a three-phase dependency 
analysis algorithm, TPDA.2  This TPDA algorithm is correct (i.e., will produce the perfect model of 

the distribution) given a sufficient quantity of training data whenever the underlying model is 
monotone DAG faithful (see below).  Moreover, it requires at most O(N4) CI tests to learn an N-

variable BN.  In the special case where a correct node ordering is given, we developed a related 

algorithm, TPDA-Π, that requires O(N2) CI tests and is correct whenever the underlying model is 

DAG-faithful.  These algorithms employ various other heuristics that enable it to work well in 
practice, including the use of the Chow-Liu algorithm to produce an initial structure; see Section 

                                                 

2 “TPDA” stands for Three-Phase Dependency Analysis and the suffix “-Π”indicates that this algorithm expects an 

ordering of the nodes.  We will later use “SLA” for Simple Learning Algorithm.   
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7.1. A more general TPDA* algorithm, which is correct under DAG-faithfulness assumption, is also 

briefly introduced. We show that the efficiency of TPDA* is actually very similar to TPDA in most 

real world applications. 

Both TPDA and TPDA-Π algorithms have been incorporated into the Bayesian Network 

PowerConstructor system, which has been freely available on the Internet since October 1997 and 

has already been downloaded over 2000 times, with very positive feedback from the user 

community.  To make these algorithms more useful to practitioners, both algorithms can exploit 

other types of prior knowledge that human experts may supply – such as the claim that there must 

(or must not) be an arc between two nodes [Darken, 1999].  The user can also specify various 
special cases for the structures – e.g., that it must be a tree-augmented Naïve Bayesian net (TAN) 

structure, or a Bayesian network augmented Naïve Bayesian net (BAN) structure [Friedman et al., 
1997; Cheng and Greiner, 1999].  We have also used this system to win the KDD Cup 2001 

datamining competition (task one) – the Bayesian network model we learned gives the best 
prediction accuracy among 114 submissions on a very challenging biological data set [Page and 

Hatzis, 2001].  

The remainder of the paper is organized as follows.  Section 2 introduces Bayesian network 

learning from an information theoretic perspective.  Its Table 1 provides a succinct summary of the 
terms that will be used.  The subsequent two sections present simplified versions of the algorithms, 

to help illustrate the basic ideas.  Section 3 presents the simple SLA-Π learning algorithm, which 

applies when a correct node ordering is available.  That section also describes when SLA-Π is 

provably correct and analyses its complexity.  Section 4 presents a more general algorithm, SLA, to 

handle the situation when the user does not provide a node ordering.  It also proves the correctness 
of this algorithm, and analyses its complexity.  Section 5 presents our actual algorithms – called 

TPDA for the general case, and TPDA-Π for the algorithm that takes a node ordering as input – 

which incorporate several heuristics to be more efficient.  Section 6 presents and analyses the 

experimental results of both algorithms on real-world data sets.  In addition to showing that our 
algorithms work effectively, we also show that the heuristics incorporated within TPDA make the 

system more efficient.  Section 7 relates our learning algorithms to other Bayesian network learning 
algorithms, and Section 8 lists our contributions and proposes some future research directions.  The 
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appendices provide proofs of the theorems, discuss our “monotone DAG-faithful” assumption, and 
quickly introduce our general Bayesian network learning system, called the BN PowerConstructor. 

As a final comment, please note that our complexity results (eg, O(N2) or O(N4) ) refer to the 
number of CI tests required.  These results say nothing about the order of each such test, and so do 

not necessarily bound the computational complexity of the algorithm.  In practice, however, these 
quantities are very informative, as they indicate the number of times the algorithm must sweep 
through the dataset, and we have found that such sweeps are in fact the major cost of these 

algorithms; see Section 6. 

2 Learning Bayesian Networks Using Information Theory 

A Bayesian network is represented by BN = 〈N, A, 〉, where 〈N, A〉 is a directed acyclic graph 

(DAG) – each node n∈N represents a domain variable (corresponding perhaps to a database 

attribute), and each arc a∈A between nodes represents a probabilistic dependency between the 

associated nodes.  Associated with each node ni∈N is a conditional probability distribution 

(CPtable��� FROOHFWLYHO\� UHSUHVHQWHG�E\�  ^θi}, which quantifies how much a node depends on its 

parents (see [Pearl, 1988]). 

Learning a Bayesian network from data involves two subtasks: Learning the structure of the 
network (i.e., determining what depends on what) and learning the parameters (i.e., the strength of 

these dependencies, as encoded by the entries in the CPtables).  As it is trivial to learn the 
parameters for a given structure from a complete data set (the observed frequencies are optimal with 

respect to the maximum likelihood estimation [Cooper and Herskovits, 1992]), this paper therefore 
focuses on the task of learning the structure. 

We view the BN structure as encoding a group of conditional independence relationships among 
the nodes, according to the concept of d-separation (defined below).  This suggests learning the BN 

structure by identifying the conditional independence relationships among the nodes.  Using some 
statistical tests (such as chi-squared or mutual information), we can find the conditional 

independence relationships among the nodes and use these relationships as constraints to construct a 
BN.  These algorithms are referred as dependency analysis based algorithms or constraint-based 
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algorithms [Spirtes et al. 1993; Cheng et al. 1997a]. Section 7 compares this approach with the 

other standard approach, based on maximizing some score.  

2.1 Overview of the Learning Algorithms (SLA, TPDA) 

Our goal is to find “what is connected to what” – that is, which nodes should be joined by arcs.  As 

explained below, our algorithms each work incrementally: at each point, it has a current set of arcs, 
and is considering adding some new arc, or perhaps deleting an existing one.  Such decisions are 
based on “information flow” between a pair of nodes, relative to the rest of the current network.  To 

elaborate this “flow” metaphor:  

We can view a Bayesian network as a network of information channels or pipelines, where each 

node is a valve that is either active or inactive and the valves are connected by noisy information 

channels (arcs).  Information can flow through an active valve but not an inactive one.  Now 

suppose two nodes – say X and Y – are not directly connected within the current network structure.  

If this structure is correct, then there should be no information flow between these nodes after 

closing all of the existing indirect connections between X and Y.  Our learning algorithms will 

therefore try to close off all of these connections, then ask if the dataset exhibits additional 

information flow between these nodes.  If so, the learner will realize the current structure is not 

correct, and so will add a new arc (think “pipeline”) between X and Y. 

To be more precise, a path between nodes X and Y is closed, given some evidence C, if X and Y 

are conditionally independent given C.  Graphically, this is defined by the concept called direction 

dependent separation or d-separation [Pearl, 1988].  Based on this concept, all the valid 

conditional independence relations in a DAG-Faithful distribution can also be directly derived from 

the topology of the corresponding Bayesian network.   

That is,  

Definition 1: Adjacency path, d-separation, collider, cut-set, d-connected:  For any two nodes X,Y 

∈ V, an “adjacency path” kaaaP ,...,, 21=  between a1=X and ak=Y is a sequence of arcs that, if 

viewed as undirected edges, would connect X and Y.   
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For a DAG G = (N,A), for any nodes X,Y ∈ N where YX ≠ , and “evidence” C ⊆ N\{X,Y}, we say 

that “X and Y are d-separated given C in G” if and only if there exists no open adjacency path 

between X and Y, where any such adjacency path P is considered open iff  

(i) every collider on P is in C or has a descendent in C and  

(ii) no other nodes on path P is in C.  

where a node v is a  collider of the path 〈a1 , … ai-1=(X, v), ai=(Y,v), …, ak 〉 if the two directed arcs 

associated with that node, here ai-1=(X, v) and  ai=(Y,v),  ‘collide’ at v.3 

Here we call this set C a cut-set.  If X and Y are not d-separated given C we say that X and Y are d-

connected given C.                                                                                                                          [] 

In Figure 1, C-E-D is an adjacency path connecting C and D, even though the arcs are in different 

directions; we also say that E is a collider in the path C-E-D.  Given empty evidence (ie, the empty 
cut-set {}), C and D are d-separated. 

A B
C

D

E

 
Figure 1 A simple multi-connected  

In our analog, putting a node into the cut-set is equivalent to altering the status of the 
corresponding valves – hence, putting the collider E into the cut-set will open the path between C 

and D; while putting the non-collider B into the cut-set will close both the A-B-C-E and the A-B-D-E 
paths, thereby d-separating A and E.  

Hence, to decide whether to add a new arc between nodes A and E, with respect to this graph, our 
learning algorithms (eg, TPDA) will try to block the information flow from every other indirect set 

of pipelines, by making inactive at least one valve in each path.  Here, this can be accomplished by 

                                                 
3 The other nodes are called non-colliders of the path.  Note that the concept of collider is always related to a 

particular path, as a node can be a collider in one path and a non-collider in another path. 
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adding B to the cut-set.  As noted above, if there is residual information flow between these nodes 

given this cut-set, TPDA will then add an arc directly connecting A-E.   

In general, we measure the volume of information flow between two variables (read “nodes”) A 

and B using mutual information 

 ∑=
ba bPaP

baP
baPBAI

, )()(

),(
log),(),( ,                          (2.1) 

and the conditional mutual information, with respect to the set of “evidence” variables (condition-

set) C,  

 )|()|(
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log),,()|,(

,, cbPcaP
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cba
∑= .                        (2.2) 

The mutual information between variables A and B measures the expected information gained 

about B, after observing the value of the variable A.  In Bayesian networks, if two nodes are 
dependent, knowing the value of one node will give us some information about the value of the 

other node.  Hence, the mutual information between two nodes can tell us if the two nodes are 
dependent and if so, how close their relationship is.  

Given the actual probability distribution P(x), we would claim that A and B are independent iff  
I(A,B)=0.  Unfortunately, our learning algorithms do not have access to the true distribution P(x), 

but instead use empirical estimates )(ˆ xPD , based on the dataset D.  We therefore use ID(A,B), which 

approximates I(A,B) but uses )(ˆ xPD  rather than P(x).  Our algorithms will therefore claim that A is 

independent of B whenever ID(A,B)< ε, for some suitably small threshold ε>0.  We will similarly 

define ID(A,B|C), and declare conditional independence whenever ID(A,B|C)< ε. 

Note the computational cost of computing ID(A,B|C) is exponential in the size of C – ie, requires 
time proportional to the product of the sizes of the domains of A, B, and of all of the nodes of C.  It 

is also linear in the size of the dataset D, as our learner will sweep through the entire dataset to 

gather the relevant statistics (to determine, in parallel, all necessary )(ˆ xPD  values). 

Finally, we will later use the following two definitions:  

Definition 2: Ngbr, AdjPath:  For any graph G = (V,A), let 
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NgbrG(a) = Ngbr(a) = { v ∈ V | (v,a) ∈ A or (a,v) ∈ A } 

be the set of nodes connecting node a ∈ V by an edge.  Also, for any pair of nodes A,B ∈ V, let  

AdjPath(A,B) = AdjPathG(A,B) 

 be the set of nodes in the adjacency paths connecting A to B within G. 

AdjPathG(A,B)  Nodes appears on adjacency path connecting nodes A to B within graph G, See  
Definition 2. 

Adjacency path An open path, ignoring the directions of the edges.  See Definition 2 

Arc Directed edge (within a graph) 

Bayesian network A kind of graphical model of a joint distribution. See Section 2. 

CI test Conditional independence test --- Equations 2.1 and 2.2. 

Collider A node on a path where two arcs “collide”. The node “C” in A→C←B. See Section 2 

Condition-set The “C” in “P(A|C)”.  See Equation 2.2 

Cut-set  In graph G, if a set of nodes S can d-separate X and Y, we say that S is a cut-set 
between X and Y in G. 

DAG-faithful A dataset is DAG-faithful if its underlying probabilistic model is DAG structured. See 
Section 2.2 

DAG-Isomorph A distribution that can be represented by a DAG.  See Section 2.2. 

Dependency-map (D-
map)  

A graph that can express all the dependencies of the underlying model. See 
Definition 3 (Section 2.2). 

Drafting A phase in our Bayesian network learning algorithm TPDA (and TPDA-Π) where a 
draft graph is generated by using pair-wise statistics. See Section 5. 

d-separation Directed separation of two nodes in a graph according to a set of rules. See Definition 
1 (Section 2). 

Edge Connection between a pair of nodes (not necessarily directed). 

EdgeNeeded* An (potentially exponential-time) routine that determines if a direct edge between 
two nodes is needed.  This routine is guaranteed correct given DAG-faithful 
assumption.  See Section 4.2.1. 

EdgeNeeded_H A routine that determines if a direct edge between two nodes is needed. This routine 
uses a heuristic. See Section 4.2.2. 

EdgeNeeded A routine that determines if a direct edge between two nodes is needed. This routine 
is guaranteed correct given monotone DAG-faithful assumption.  See Section 4.2.3. 

Independency map (I-
map) 

A graph that can express all the independencies of the underlying model. Definition 3 
(Section 2.2) 

Monotone DAG-faithful The underlying model satisfies a stronger assumption than DAG-faithful. See 
Definition 5 (Section 4.1) 

Node ordering The temporal or causal ordering of the nodes.  See Definition 4 (Section 3.1) 

OrientEdges A routine is used in TPDA to orient edges.  See Section 4.3. 
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PathG(X,Y) The set of adjacency paths between X and Y in G. See Definition 5 (Section 4.1). 

Perfect map (P-map) A graph that is both a D-map and an I-map. See Definition 3 (Section 2.2). 

SLA A simple learning algorithm for learning Bayesian networks when the node ordering 
is not given.  See Section 4. 

SLA-Π A simple learning algorithm for learning Bayesian networks when node ordering is 
given.  See Section 3. 

Thickening A phase in our Bayesian network learning TPDA (and TPDA-Π) that tries to add 
more edges as a result of CI tests. See Section 5. 

Thinning  A phase in our Bayesian network learning TPDA (and TPDA-Π) that tries to remove 
edges from the current graph as a result of CI tests. See Section 5. 

TPDA A three phase learning algorithm for learning Bayesian networks when node ordering 
is not given. See Section 5.1. 

TPDA-Π A three phase learning algorithm for learning Bayesian networks when node ordering 
is given. See Section 5.3. 

v-structure A structure where two nodes are both connected to a third node and the two nodes are 
not directly connected.  See Section 2.1 (aka “unshielded collider”). 

Table 1: Terms used 

2.2 Input, Output and Assumptions  

Our goal is to use the training data to learn an accurate model of the underlying distribution; here, 

this reduces to identifying exactly which arcs to include.  We can state this more precisely using the 

following ideas: 

Definition 3: Dependency map, independency map and perfect map: A graph G is a dependency 

map (D-map) of a probabilistic distribution P if every dependence relationship derived from G is 

true in P; G is an independency map (I-map) of P if every independence relationship derived from 

G is true in P.  If G is both a D-map and an I-map of P, we call it a perfect map (P-map) of P, and 

call P a DAG-Isomorph of G  [Pearl, 1988].   Here we say that P and G are faithful to each other 

[Spirtes, et al., 1993].                                                            [] 

While our goal, in general, is a graph that is a P-map of the true distribution, this is not always 

possible; there are some distributions whose independence relations cannot all be represented.  For 

instance, let Z stand for the sound of a bell that rings whenever the outcomes of two fair coins, X 

and Y, are the same [Pearl, 1988].  Clearly the only BN structures that can represent this domain 

must contain X → Z ← Y.  Notice these networks, however, are not perfect, as they do not represent 

the facts that X and Z (resp., Y and Z) are marginally independent.   
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While we can create distributions that have no P-maps (such as this X → Z ← Y ), Spirtes et al. 

(1993) argue that most real-world probabilistic models in social sciences are faithful to Bayesian 

networks. They also shows that in a strong measure-theoretic sense, almost all Gaussian 

distributions for a given network structure are faithful.  Meek (1995b) proves that the same claim is 

also hold for discrete distributions.  This paper, therefore, focuses on learning Bayesian networks 

from data sets that are drawn from distributions that have faithful probabilistic models.  

The set of conditional independence relations implied in P may not be sufficient to define a single 

faithful BN model; for example, every distribution can be represented by the graph A → B can also 

be represented by A ← B.  The independence relationships, however, are sufficient to define the 

essential graph (also called “pattern”, see [Spirtes et al. 1993]) of the underlying BN, where the 
essential graph of a BN is a graph that has the same edges of the BN and the same “v-structures”.  

(A triple of nodes X, Y, Z forms a v-structure if X → Z ← Y and X is not adjacent to Y.4)  Note the 

essential graph does specify the direction of the arcs that lead into the collider (here, Z), and also 

constrains the directions of the other edges to avoid forcing the non-colliders to appear as colliders. 
We will later use this fact to orient edges when node ordering is not given.  Moreover, 

Theorem 1: Every DAG-faithful distribution has a unique essential graph [Spirtes et al. 1993, 
Chickering, 1996]. 

Our algorithms require the assumptions listed in Table 2 about the input data. In addition, the 

SLA-Π and TPDA-Π algorithms assume the appropriate node ordering; and the SLA and TPDA 

algorithms require a stronger first assumption – monotone DAG-faithfulness assumption. 

                                                 
4 This is also called an “unshielded collider” [Dash and Druzdzel, 1999]. 
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1. The records occur independently given the underlying probabilistic model of the 

data (that is, the dataset is “independent and identically distributed”, iid). 

2. The cases in the data are drawn iid from a DAG-faithful distribution. 

3. The attributes of a table have discrete values and there are no missing values in any 

of the records. 

4. The quantity of data is large enough for the CI tests used in our algorithms to be 

reliable; that is  ID(… ) ≈ I(… ). 

Table 2 Assumptions 

3 Simple Learning Algorithm (given ordering): SLA-Π   

This section presents the simple SLA-Π algorithm, which takes a data set and a (correct) node 

ordering as input and constructs a Bayesian network structure as output.  (Recall that filling in the 

CPtable parameters is trivial.)  Section 4 then provides a general algorithm, SLA, that does not 

require a node ordering, and Section 5 then presents more efficient versions of these algorithms, that 

use the “three phase” idea.  

Section 3.1 first provides a formal specification of our task, which requires specifying the node 

ordering.  It also specifies when this algorithm is guaranteed to perform correctly, and gives its 
complexity.  (Appendix A.3 proves the associated theorem.)  Section 3.2 then presents the actual 

SLA-Π algorithm.  

3.1 Formal Description 

Like many other Bayesian network learning algorithms [Cooper and Herskovits, 1992; Heckerman 

et al., 1994], our SLA-Π system takes as input both a table of database entries and a node ordering. 

Definition 4: Node ordering: A node ordering is a total ordering of the nodes of the graph 

(variables of the domain) – specifying perhaps a causal or temporal ordering.                      []   
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This information can specify a causal or temporal order of the nodes of the graph (variables of the 

domain), in that any node cannot be a cause or happen earlier than the nodes appearing earlier in the 

order.  If a node ordering is consistent with the underlying model of a data set, we say it is a correct 

ordering.  For example, in Figure 1, A-B-C-D-E and A-B-D-C-E are two correct orderings. 

Of course, we can represent any distribution using a graph that is consistent with any node 

ordering.  However, only some such graphs will be DAG-faithful.  (As an example, consider a 

naïve-bayes distribution, with a classification node C pointing to a set of attribute nodes {Ai}.  In the 

ordering  〈C, A1,  A2, …〉, the obvious structure will be the standard naïve-bayes structure, which is a 

P-map.  However, the ordering 〈A1,  A2, …, C〉 will typically produce a much larger structure – 

perhaps even one that is completely connected – which is not a P-map.  Here, the first ordering 

would be considered correct, but the second would not.) 

The next section provides an algorithm that can recover the underlying structure, given such a 

correct ordering together with a dataset that satisfies the conditions listed in Section 2.2. 

3.2 Actual SLA-Π Algorithm 

The SLA-Π algorithm, shown in Figure 2, incrementally grows, then shrinks, the graph structure: It 

first computes a list of all node-pairs that have sufficient mutual information to be considered,  L = { 

(X,Y) | I(X,Y) > ε }.  As the underlying model is assumed to be DAG-faithful, the resulting graph 

should reflect all (and only) these dependencies, by including some (possibly indirect) path 

connecting each such X to Y.  SLA-Π  therefore first determines, for each pair of nodes X,Y, whether 

there is already sufficient information flow between X and Y in the current structure.  This is done in 

Step 2, “Thickening”, which first finds a cut-set  C= MinCutSet( A, B;  (V,A), Π)  separating X from 

Y in the graph.5  Note this depends on both the graph structure (V,A) (which changes as new edges 

                                                 

5 Of course, we would like to find as small a cut-set as possible – as that makes the code more efficient, and also 

means (given a limited number of training instances) that the results will be more reliable.  As finding a minimum cut-

set (a cut-set with minimum number of nodes) is NP-hard [Acid and Campos, 1996a], we use greedy search to find a 

small cut-set. The basic idea is to repeatedly add a node to the cut-set that can close the maximum number of paths, until 
all paths are closed.  See [Cheng et al. 1997a] for details.  
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are added to A), and also on the node ordering Π, as that ordering determines the directions of the 

edges, which identifies which nodes in the paths between X and Y are colliders and which are not. 

If the current structure is correct – and in particular, if no arc is needed connecting X to Y – this 
cut-set C should turn off all of the paths, stopping all information flow between X and Y.  This 

means the CI test: “Is ID(X,Y | C) greater than ε?” should fail. (We typically use the threshold 

ε≈0.01 here.6)  Otherwise, the data D suggests that an arc is needed, and so SLA-Π  will add this 

〈X,Y〉 arc.  

                                                 

6 We regard this as a constant (see Section 5.4.3).  Others, including [Fung and Crawford, 1990; Dash and Druzdzel, 

1999; Cheng and Greiner, 2000], have used learning techniques to obtain the value of ε  that works best for each dataset.  
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subroutine SLA-Π(   D: Dataset,  Π: node ordering,  ε: threshold ):   

              returns G = (V, A):  graph structure      

1. Let   V := {attributes in D},    A := {} 

}),(|),({: ε>= YXIYXL    be the list of all pairs of distinct nodes (X,Y)  

where X, Y ∈ V  and  YX p  in Π,  with at least ε mutual information. 

Begin [Thickening]          

2. For each   〈X,Y〉   in   L: 

C := MinCutSet( X, Y;  (V,A), Π)  

If  ID(X,Y | C) > ε  

Add    (X,Y)     to   A 

Begin [Thinning]   

3. For each   (X,Y)   in   A: 

If there are other paths, besides this arc, connecting X and Y,  

A’ :=  A -  (X, Y)      % ie, temporarily remove this edge from A  

C := MinCutSet( X, Y;  (V,A’), Π)  

If  ID(X,Y | C) <ε  

                % ie, if X  can be separated from Y in current “reduced” graph 

A := A’     % then remove 〈X,Y〉  from A 

4. Return  (V,A) 

Figure 2  The SLA-Π  algorithm 

After this sweep (ie, after step 2 in Figure 2), we know that that resulting graph G2 = (V, A2) will 

include a (possibly indirect) connection between each pair of nodes that have a non-trivial 

dependence.  (This is sufficient, thanks to the DAG-faithful assumption.)  G2 may, however, also 

include other unnecessary arcs – included only because the more appropriate (indirect) connection 

was not yet been included within the graph when this X-Y pair was considered.  SLA-Π  therefore 

makes another sweep over the arcs produced, again using a CI test to determine if each arc is 

superfluous; if so, SLA-Π removes that arc from the current network.  Here, SLA-Π first identifies 

each arc connecting a pair of nodes that is also connected by one or more other paths.  Since it is 

possible that the other arcs already explain the X-Y dependency, SLA-Π temporarily removes this 



15 

arc, then computes a cut-set C that should separate X from Y in the reduced graph.  If there is no 

information flow wrt this C – i.e., if ID(X,Y | C) <ε  – then the 〈X,Y〉 arc was not needed, and so is 

eliminated. 

We prove, in Appendix A.3: 

Theorem 2: Given the four assumptions listed in Table 2 (i.e., a “sufficiently large” database of 
complete instances that are drawn, iid, from a DAG-faithful probability model), together with a 

correct node ordering, the SLA-Π algorithm will recover the correct underlying network.   

Moreover, this algorithm will require O(N2) CI tests. 

4 Simple (order-free) Learning Algorithm:  SLA 

4.1 Overall SLA Algorithm 

The SLA algorithm, shown in Figure 3, has the same structure as the SLA-Π algorithm, as it too 

incrementally grows, then shrinks, the graph structure.  However, as SLA does not have access to the 

node orderings, these growing and shrinking processes are more complex.  As with SLA-Π, we want 

to first determine whether there is additional information flow connecting X to Y, beyond the flow 
implied by the current graph (V,E).  Once again, we first seek a cut-set C that should separate X and 

Y, then add in the 〈X,Y〉 arc if ID(X,Y | C) > ε.  The challenge here is finding an appropriate cut-set:  

As SLA-Π knew the node ordering, it could determine the direction of the edges, and so identify 

which nodes (in the paths connecting X to Y) are colliders versus non-colliders, and then determine 

whether to exclude or include them within the cut-set C.   SLA does not have this information.  It 
therefore uses the EdgeNeeded subroutine, defined in Section 4.2 below, to first find an appropriate 

cut-set and then make this determination.  (Note SLA uses EdgeNeeded in both places that SLA-Π 

had used a single CI test – ie, in both adding new arcs, and also in deleting superfluous ones.7)  SLA 

                                                 

7 Step-2 of SLA, like SLA-Π’s Step-2, may produce extra edges as some of the eventual arcs were not included when 

〈X,Y〉  was being considered.  In addition, SLA may also include extra arcs as it may be unable to find the appropriate 

cut-set, as it does not know the directions of the arcs. 
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needs one additional step, beyond the steps used by SLA-Π: it must also find the appropriate 

direction for (some of) the edges. 

Subroutine SLA(  D: Dataset,   ε: threshold ):  returns  G = (V, E):  graph structure 

1. Let   V= {attributes in D},  E= {} 

}),(|),({ ε>= YXIYXL  be the list of all pairs of distinct nodes (X,Y) where X,Y ∈ V and 

X≠Y, with at least ε mutual information (Equation 2.1) 

Begin [Thickening]   

2. For each   (X,Y)   in   L: 

If   EdgeNeeded( (V,E), X, Y; D, ε )  

Add    〈X,Y〉     to   E 

Begin [Thinning] 

3. For each   〈X,Y〉  in   E: 

If there are other paths, besides this arc, connecting X and Y,  

E’  = E  -  〈X,Y〉        %   ie, temporarily remove this edge from E  

If   ¬EdgeNeeded( (V,E’ ), X, Y; D, ε  ) then 

% ie, if X  can be separated from Y in current “reduced” graph 

E = E’     % then remove 〈X,Y〉  from E 

4.    Return[   OrientEdges( (V,E), D )  ] 

Figure 3  SLA: Simple Bayesian Net Structure Learner w/o Ordering 

The next two subsections address the two challenges: (1) deciding whether an edge is required, 

given the rest of the current graph; and (2) orienting the edges.   

4.2 Determine if an Edge is Needed 

In general, EdgeNeeded(G, X,Y, … ) tries to determine if there is additional “information flow” 
between X and Y, once every known “path” between them has been blocked.  Here, it tries to form a 

cut-set C that blocks each X-Y path, then returns “Yes (ie, an edge is needed)” if the conditional 

mutual information  ID(X,Y | C) exceeds a threshold ε for this cut-set.  (We continue to use ε≈0.01.) 

An appropriate cut-set C should block every known path.  If the node ordering is known, we can 

determine C immediately (as SLA-Π does), and therefore only one CI test is required to check if two 
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nodes are independent.  Unfortunately, as SLA does know this ordering information, it must use a 

group of CI tests to find this C.    

We show below three procedures for this task: Section 4.2.1 shows the straightforward 

exponential procedure EdgeNeeded*, which is correct given the assumptions of Table 2 but not 

efficient. Sections 4.2.2 and 4.2.3 use the idea of quantitative measurements to improve the 

efficiency, assuming that the data is monotone DAG-Faithful. Section 4.2.2 illustrate the basic ideas 

using the heuristic procedure EdgeNeeded_H, which is very efficient but not always correct.  We 

then use this as a basis for describing EdgeNeeded in Section 4.2.3, which is guaranteed to be 

correct given the monotone DAG-Faithful assumption.  (While SLA uses only the correct 

EdgeNeeded, the actual TDPA algorithm will gain some efficiency by using EdgeNeeded_H in some 

situations; see Section 5.)  We first need some definitions: 

Definition 5: paths, open, Monotone DAG Faithful:  

*  pathsG(X,Y)   is the set of all adjacency paths between X to Y in graph G. 

* openG(X,Y|C) is the subset of pathsG(X,Y) that are open by cut-set C. 

* A DAG-Faithful model G=〈V,E, Θ〉 is Monotone DAG-faithful  iff 

   For all nodes A, B ∈ V, if OpenG (X, Y | C ’)   ⊆  OpenG (X, Y | C ), then   I(X,Y|C’)  ≤  I(X,Y|C) 

 [] 

Appendix B discusses these notions in more detail. 

Using these subroutines, we prove (in Appendix A): 

Theorem 3: Given a “sufficiently large” database of complete instances that are drawn, iid, from a 

monotone DAG-faithful probability model, the SLA algorithm will recover the correct underlying 
essential network.  Moreover, this algorithm requires O(N4) conditional independence tests.     [] 

4.2.1 Subroutine EdgeNeeded* (Exponential) 

Consider any two nodes X and Y; we assume that Y is not an ancestor of X.  From the Markov 

condition, we know that we can close all the indirect pipelines between these nodes by setting the 
cut-set C to be all the parents of Y, but not any children.  Since we do not know which of these Y-

neighbor nodes are parents, one approach is to sequentially consider every subset.  That is, let C1 
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through C2^k  be the 2k subsets of Y’s k neighbors.  As one of these sets – say Ci – must include 
exactly the parents of Y,  I(X,Y | Ci) will be effectively 0 if X and Y are independent.  This basic “try 

each subset” algorithm is used by essentially all other dependency-analysis based algorithms, 
including the SGS algorithm [Spirtes et al., 1990], the Verma-Pearl algorithm [Verma and Pearl, 

1992] and the PC algorithm [Spirtes and Glymour, 1991].  Of course, this can require an 
exponential number of CI tests.  

subroutine EdgeNeeded* (G: graph, X, Y: node, D: Dataset,  ε : threshold): boolean 

% Returns true iff the dataset D requires an arc between X and Y,  

% in addition to the links currently present in G 

%  Also sets global CutSet  

1.  Let SX = Ngbr(X)  AdjPath(X,Y) be the neighbors of X that are on an adjacency path 

between X and Y; similarly SY = Ngbr(Y)  AdjPath(X,Y).  CutSet := {} 

2. Remove from SX any currently known child-nodes of X; and from SY any child-nodes of 
Y. 

3. For each condition-set  C ∈ {SX, SY}  do 

For each subset  C’⊆ C  do 

Let s := ID(X, Y|C’ ).     [Equation 2.2] 

If s < ε,  

     Let CutSet:= CutSet  ∪ { 〈{X,Y},C’ 〉 };  

    return (‘false’).      % ie, data does NOT require an arc between these nodes 

   4.  Return (‘true’)    % ie, there is significant flow from X to Y 

Figure 4 EdgeNeeded* subroutine 

In Step 3, the procedure tries every subset C’  of C.  If one of the C’  can successfully block the 

information flow between X and Y, then we consider C’ as a proper cut-set that can separate X and 

Y.  The procedure then returns ‘false’ since no extra edge is needed between X and Y.  The cut-set 
information is stored in a global structure CutSet , which is used later in the procedure OrientEdges. 
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By replacing EdgeNeeded with procedure EdgeNeeded* in SLA, we can define an algorithm 

SLA*, which is guaranteed to be correct given DAG-Faithfulness assumption.  The correctness 

proof is omitted since it is very straightforward. 

4.2.2 Subroutine EdgeNeeded_H (Heuristic) 

As there is no way to avoid an exponential number on CI tests if the result of each trial is only a 

binary ‘yes’  or ‘no’ , we therefore developed a novel method that uses quantitative measurements -- 

measuring the amount of information flow between nodes X and Y, for a given cut-set C.  For a 

given structure G, and pair of nodes X and Y, EdgeNeeded_H begins with a certain set C that is 

guaranteed to be a superset of a proper cut-set.  It then tries to identify and remove the inappropriate 

nodes from C one at a time, by using a group of mutual information tests. This entire process 

requires only O(k2) CI tests (as opposed to the EdgeNeeded*, which must consider testing each of 

the 2k subsets of Y’s neighbors).  In Appendix A.1, we prove that this quantitative CI test method is 
correct whenever the underlying model is monotone DAG-faithful. 

   From the above discussion we know that if X and Y are not adjacent, then either the parents of X or 
the parents of Y will form a proper cut-set.  Therefore, we can try to find a cut-set by identifying the 

parents of X from X’s neighborhood (or parents of Y from Y’s neighbors).  From the definition of 
monotone DAG-faithfulness, we know that if we do not close any path then the information flow 

will not decrease.  Given the assumption that removing a parent node of X (or Y) from the condition-
set containing all the neighbors of X (or Y) will seldom close any path, we conclude that we will not 

make the information flow decrease if we remove a parent node.  Therefore, we can find a proper 
cut-set by distinguishing the parent nodes versus child nodes in the neighborhood of X (or Y) using 

mutual information tests.  To illustrate the working mechanism of this separating procedure, we use 
the simple Bayesian network whose true structure is shown in Figure 5. 
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Figure 5: Bayesian net to illustrate the EdgeNeeded algorithm 

Suppose we trying to determine whether there should be a direct edge between X and Y, where 

(we assume) we know all of the other relevant edges of the true structure; see Figure 5.  If the node 

ordering is given, i.e., the directions of the edges are known, we easily see that V1 and V2 are 

parents of Y, and that Y is not an ancestor of X.  So P={V1,V2} is a proper cut-set that can separate X 

and Y.  However, as we do not know the directions of edges, we do not know whether a node is a 

parent of Y or not.  Our EdgeNeeded_H procedure (Figure 6), therefore, first gets SX  and SY, which 

both happen to be {V1,V2,V3,V4}.8  In step “3 1)”, we use C={V1,V2,V3,V4} as the condition-set 

and perform a CI test – determining if ID(X,Y|C) > ε for this C.  While this condition-set does close 

the paths X-V1-Y and X-V2-Y, it also opens X-V3-Y and X-V4-Y (see the definition of d-separation in 

Section 2.2).  This means it does not separate X and Y, and so the CI test will fail, meaning the 
algorithm will go to step “3 2)”.  This step considers each 3-node subsets of {V1,V2,V3,V4} as a 

possible condition-set: viz., {V1,V2,V3},  {V1,V2,V4},  {V1,V3,V4} and  {V2,V3,V4}.  As the data is 
monotone DAG-faithful (Definition 5 in Section 2.2), either {V1,V2,V3} or {V1,V2,V4} will give 

the smallest value on CI tests.  This is because they each leave only one path open (path X-V3-Y or 
path X-V4-Y respectively) while each of the other condition-sets leave open three paths.  Assuming 

{V1,V2,V3} gives the smallest value, we will conclude that V4 is a collider, and so will remove V4 
from the condition-set, and will never again consider including this node again (in this X-Y context).  
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In the next iteration, EdgeNeeded_H considers each 2-node subset of {V1,V2,V3} as a possible 

condition-sets; viz., {V1,V2}, {V1,V3} and {V2,V3}.  After three CI tests, we see that the cut-set 

{V1,V2} can separate X and Y , as ID(X,Y | {V1,V2} ) ≈ 0.  EdgeNeeded_H therefore returns “false”, 

which means SLA will not add a new arc here, as is appropriate.  

(Given an alternative dataset, drawn from a distribution where there was an additional 
dependency between X and Y, this ID(X,Y | {V1,V2} ) quantity would remain large, and 

EdgeNeeded_H  would continue seeking subsets.  Eventually it would find that there was significant 
flow between X and Y for all of the condition-sets considered, which means EdgeNeeded_H would 

return “true”, which would cause SLA to add a direct X-Y link.)  

As EdgeNeeded_H will “permanently” exclude a node on each iteration, it will not have to 

consider every subset of SY as a condition-set, and thus it avoids the need for an exponential number 
of CI tests. 

                                                                                                                                                                   
8 In general, these sets will be different; in that case, we will consider each of them, as we know at least a subset of 

one of them should work if the two nodes are not connected.  This is because at least one of the two nodes must be a 

non-ancestor of the other. 
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subroutine EdgeNeeded_H (G: graph, X, Y: node, D: Dataset,  ε : threshold): boolean 

% Returns true iff the dataset D requires an arc between X and Y,  

% in addition to the links currently present in G 

%  Also sets global CutSet  

1  Let  SX = Ngbr(X)  AdjPath(X,Y) be the neighbors of X that are on an adjacency path  

             between X and Y; similarly   SY = Ngbr(Y)  AdjPath(X,Y). 

2   Remove from SX any currently known child-nodes of X; and from SY any child-nodes of Y. 

3   For each condition-set  C ∈ {SX, SY}  do 

1) Let s := ID(X, Y|C).     [Equation 2.2] 

If s < ε, let CutSet:= CutSet  ∪ { 〈{X,Y},C’ 〉 }; return (‘false’).  
% ie, data does NOT require an arc between these nodes 

2) While  |C| > 1  do 

a. For each i, let   C  : =  C \ {the thi node of C},   si = I(X, Y | iC ).  

b. Let  m = argmini { s1, s2, …  } 

c. If sm< ε,     % sm = min(s1, s2, …) 

Then return (‘false’);  

Else If   sm> s  THEN BREAK  (get next C, in Step 3) 
Else Let s := sm, C:= Cm, CONTINUE (go to Step “3.2)” ). 

  4.  Return (‘true’)    % ie, there is significant flow from X to Y 

Figure 6 EdgeNeeded_H subroutine 

4.2.3 Subroutine EdgeNeeded (Guaranteed) 

This EdgeNeeded_H procedure uses the heuristic that removing a parent of X (or Y) from the 
condition-set will seldom close any path between X and Y.  However, such a closing can happen in 

some unusual structures.  In particular, it may not be able to separate nodes X and Y when the 
structure satisfies both of the following conditions.  

(1) There exists at least one path from X to Y through a child of Y and this child-node is a collider on 
the path.  
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(2) In such paths, there is one or more colliders besides the child node and all of these colliders are 

the ancestors of Y.  

 In such structures, EdgeNeeded_H may incorrectly think a parent of Y is a child of Y and so 

erroneously remove it from the conditioning.  As a result, the procedure will fail to separate two 

nodes that can be separated.  Figure 7 shows an example of such a structure. 

X

B

A Y

C

D
 

Figure 7: Problematic Case 

Here we may try to separate X and Y using a certain subset of the neighbor-set of Y, N2={A,C,D}.  

The EdgeNeeded_H procedure will first use {A,C,D} as the condition-set.  As this leaves two paths 

open, X-A-B-C-Y and X-A-B-D-Y, it will therefore consider the 2-element subsets {A,C}, {A,D} and 

{C,D} as possible condition-sets.  Each of these condition-sets leaves open one path --- viz., X-A-B-

C-Y, X-A-B-D-Y and X-A-Y respectively.  If the mutual information between X and Y is smallest 

when X-A-Y is open, the procedure will remove node A from further trials.  Clearly, this will lead to 

a failure on separating X and Y.  In this example, it happens that the neighbor-set of X,  C={A}, can 

separate X and Y, but there are more complex models that this procedure will fail to find, from either 

SX or SY. However, such structures are rare in real world situations and we have found this heuristic 

method works very well in most cases. 

The procedure, EdgeNeeded, defined in Figure 8, is correct, even for such problematic situations.  

We prove (in Appendix A.1) that this algorithm will find the correct structures for all probabilistic 

models that are monotone DAG-faithful. 

The major difference between EdgeNeeded_H and EdgeNeeded is that, in addition to 

including/excluding each neighbor of X – called  Sx – EdgeNeeded will also consider 
including/excluding each neighbors of those neighbors (called  SX’ ). (Similarly SY and SY’ ).  Notice 
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also that EdgeNeeded only considers one of the sets – either SX∪ SX’  or  SY∪ SY’ ; n.b., it does not 

have to consider both of these sets. 

Since altering the statuses of two consecutive nodes in a path can always close the path (two 

consecutive nodes cannot both be colliders in a path), we know there is a subset of  SX∪SX’  

(respectively, of SY∪ SY’  ) that can close all the paths that connect X and Y through two or more 

nodes.  The only open paths are those connecting X and Y through one collider.  Under this 

circumstance, we can remove all the colliders connecting X and Y without opening any previously 

closed paths. Thus, all paths between X and Y in the underlying model can be closed.  For the 

example shown in Figure 7, this procedure will first use {A,B,C,D} as the condition-set.  Clearly, X 

and Y can be successfully separated using this cut-set.   

As in EdgeNeeded* (Figure 4) and EdgeNeeded_H, the EdgeNeeded procedure also uses the 

global structure CutSet to store the cut-sets between pairs of nodes.  
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subroutine EdgeNeeded (G: graph, X, Y: node, D: Dataset,  ε : threshold): boolean 

% Returns true iff the dataset D requires an edge between X and Y,  

% in addition to the links currently present in G 

%  Also sets global CutSet  

1. Let SX = Ngbr(X)  AdjPath(X,Y) be the neighbors of X that are on an adjacency path 

between X and Y; similarly SY = Ngbr(Y)  AdjPath(X,Y). 

2. Let ))((),(’ X
Sx

GX SxNgbrYXAdjPathS
X

−=
∈
UI  be the neighbors of the nodes in SX that are on the 

adjacency paths between X and Y, and do not belong to SX; similarly 

))((),(’ Y
Sy

GY SyNgbrYXAdjPathS
y

−=
∈
UI  

3. Let C be smaller of { SX∪ SX’  , SY∪ SY’  } 

(ie,  if |SX∪ SX’ | < | SY∪ SY’ |  then C= SX∪ SX’  else C= SY∪ SY’ .) 

4. Let s = ID(X,Y|C).       [Equation 2.2]. 

5. If s <ε , let CutSet:= CutSet ∪{〈{X,Y},C〉}; return (‘false’)     % no edge is needed 

6. While  |C| > 1  do 

(a) For each i, let iC  = C \ {the thi node of C},   si = ID(X, Y | iC ).  

(b) Let  m = argmini { s1, s2, …  } 

(c) If sm<ε ,     % sm = min(s1, s2, …) 

Then let CutSet:= CutSet ∪{〈{X,Y}, Cm〉}; return (‘false’);  

Else If   sm> s  THEN BREAK  (go to step “7”)  

ELSE let s := sm, mCC =: , CONTINUE (go to step “6” ). 

7.  Return (‘true’)    % ∃ significant flow from X to Y 

Figure 8 EdgeNeeded subroutine 

4.3 Orienting Edges 

Among the nodes in Bayesian networks, only colliders can let information flow pass through them 
when they are instantiated.  The working mechanism for identifying colliders is described as 

follows.  For any three nodes X, Y and Z of a Bayesian network of the form X-Y-Z (ie, X and Y, and 
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Y and Z, are directly connected; and X and Z are not directly connected), there are only three 

possible structures, (1) X → Y → Z, (2) X ← Y → Z and (3) X → Y ← Z. Among them, only the 

third type (called a v-structure) can let information pass from X to Z when Y is instantiated.  In other 

words, only the v-structure makes X and Z dependent conditional on {Y} – ie, only here is I(X,Z|{Y}) 

> 0. 

Using this characteristic of Bayesian networks, we can identify all the v-structures in a network 

and orient the edges in such structures using CI tests.  Then, we can try to orient as many edges as 
possible using these identified colliders.   

As noted above, the methods based on identifying colliders will not be able to orient all the edges 
in a network.  The actual number of arcs that can be oriented is limited by the structure of the 

network.  (In an extreme case, when the network does not contain any v-structures, these methods 
may not be able to orient any edges at all.)  However, this method is quite popular among Bayesian 

network learning algorithms due to its efficiency and reliability [Spirtes and Glymour, 1991; Verma 
and Pearl, 1992].  There are a few algorithms [Lam and Bacchus, 1994; Friedman and Goldszmidt, 

1996] that use pure search & scoring methods to search for the correct directions of the edges.  But 
these methods are generally slower than collider identification based methods since the search space 

is much larger when node ordering is not given [Dash and Druzdzel, 1999]. 
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Procedure OrientEdges( G=〈V,E〉: graph ) 

          % Modifies the graph G by adding directions to some of the edges 

          % Uses global variable CutSet, defined by EdgeNeeded 

1. For any three nodes X, Y and Z that X and Y, and Y and Z, are directly connected; and X and Z 

are not directly connected 

if   〈{X,Z},C〉 ∈ CutSet   and   Y∉C,  or   〈{X,Z},C〉 ∉ CutSet 

  let X be a parent of Y and let Z be a parent of Y. 

2. For any three nodes X,Y,Z, in V 

if    (i)  X is a parent of Y, (ii) Y and Z are adjacent,  

            (iii) X and Z are not adjacent, and (iv) edge (Y, Z) is not oriented,  

  let Y be a parent of Z. 

3. For any edge (X,Y) that is not oriented,  

If there is a directed path from X to Y, let X be a parent of Y. 

Figure 9: OrientEdges subroutine  

In step 1, procedure OrientEdges tries to find a pair of nodes that may be the endpoints of a v-

structure.  It then tries to check whether Y is a collider by searching the global structure CutSet – if 

Y is a collider in the path X-Y-Z, Y should not be in the cut-set that separate X and Z.  This process 
continues until all triples of nodes have been examined.  Step 2 uses the identified colliders to infer 

the directions of other edges.  The inference procedure applies two rules: (1) If an undirected edge 
belongs to a v-structure and the other edge in the structure is pointing to the mid-node, we orient the 

undirected edge from the mid-node to the end node.  (Otherwise, the mid-node would be a collider 
and this should have been identified earlier.)  (2) For an undirected edge, if there is a directed path 

between the two nodes, we can orient the edge according to the direction of that path.  These latter 
two rules are the same as those used in all of the other collider-identification based methods 

mentioned above. 

Appendices A.1 and A.2 prove that this overall SLA procedure is both correct and efficient (in 

terms of the number of CI tests). 
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5 The Three-Phase Dependency Analysis Algorithm  

While the algorithm sketched above is guaranteed to work correctly, there are several ways to make 

it more efficient.  We have incorporated two of these ideas into the TPDA algorithm.  First, rather 

than start from empty graph (with no arcs), TPDA instead uses an efficient technique to produce a 

graph that we expect will be close to the correct one.  Second, rather than call the full EdgeNeeded 

procedure for each check, TPDA instead uses the approximation EdgeNeeded_H is some places, and 

only calls the correct EdgeNeeded procedure at the end of the third phase. 

After Section 5.1 presents the general TPDA algorithm, Section 5.2 uses an example to illustrate 

the ideas, and Section 5.3 then overviews the TPDA-Π algorithm that can use a node ordering. 

5.1 TPDA  Algorithm for Learning, without Ordering 

The three phases of the TPDA algorithm are drafting, thickening and thinning.  Unlike the simpler 

SLA algorithm (Figure 3), which uses EdgeNeeded to decide whether to add an edge starting from 

the empty graph, TPDA begins with a “drafting” phase, which produces an initial set of edges based 

on a simpler test – basically just having sufficient pair-wise mutual information; see Figure 10.  The 
draft is a singly-connected graph (a graph without loops), found using (essentially) the Chow-Liu 

[1968] algorithm (see Section 7.1).  The other two phases correspond directly to steps in the SLA 
algorithm.  The second phase, “thickening”, corresponds to SLA’s Step 2: here TPDA adds edges to 

the current graph when the pairs of nodes cannot be separated using a set of relevant CI tests.  The 
graph produced by this phase will contain all the edges of the underlying dependency model when 

the underlying model is DAG-faithful.  The third “thinning” phase corresponds to Step 3: here each 
edge is examined and it will be removed if the two nodes of the edge are found to be conditionally 

independent. As before, the result of this phase contains exactly the same edges as those in the 
underlying model, given the earlier assumptions.  TPDA then runs the OrientEdges procedure to 

orient the essential arcs of the learned graph, to produce an essential graph.  (Recall that the 
direction of some of the arcs is irrelevant, in that a structure is correct under any appropriate 

assignment of directions.) 
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subroutine TPDA(   D: Dataset,   ε: threshold ):   returns  G = (V, E):  graph structure 

                  Begin [Drafting]. 

1. Let   V= {attributes in D},  E= {}                 

}),(|,{ ε>= YXIYXL    be the list of all pairs of distinct nodes 〈X,Y〉where X,Y ∈ V and 

X≠Y, with at least ε mutual information. 

2. Sort L into decreasing order, wrt (I(X,Y) 

3. For each  〈X,Y〉   in L: 

If there is no adjacency path between X and Y in current graph  (V,E) 

add 〈X,Y〉    to E   and  

remove 〈X,Y〉   from L.  

                    Begin [Thickening]          

4. For each   〈X,Y〉  in   L: 

      If   EdgeNeeded( (V,E), X, Y; D, ε )     EdgeNeeded_H( (V,E), X, Y; D, ε )   

Add    〈X,Y〉  to   E 

                   Begin [Thinning]. 

5. For each   〈X,Y〉  in   E: 

      If there are other paths, besides this arc, connecting X and Y,  

E’  = E -  〈X,Y〉        % ie, temporarily remove this edge from E  

If   ¬EdgeNeeded_H( (V,E’ ), X, Y; D, ε  )  %   ie, if X  can be separated from Y 

                                                                                 %   in current “reduced” graph 

E = E’     % then remove 〈X,Y〉   from E 

6. For each   〈X,Y〉  in   E: 

      If X has at least three neighbors other than Y, or Y has at least three neighbors other than X, 

E’  = E -  〈X,Y〉      % ie, temporarily remove this edge from E  

If   ¬EdgeNeeded( (V,E’ ), X, Y; D, ε  )  

% ie, if X  can be separated from Y in current “reduced” graph 

                      E = E’     % then remove 〈X,Y〉  from E 

7. Return[   OrientEdges( (V,E), D ) ] 

Figure 10  TPDA Algorithm 
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5.2 Example 

Here we illustrate this algorithm using a multi-connected network, borrowed from Spirtes et al. 

(1993).  Our data set is drawn from the Bayesian network shown in Figure 11(a).  Of course, our 

learning algorithm does not know this network, nor even the node ordering.  Our task is to recover 

the underlying network structure from this data.  We first compute the mutual information of all 10 

pairs of nodes (Step 2).  Suppose the mutual information is ordered I(B,D) ≥ I(C,E) ≥ I(B,E) ≥ 

I(A,B) ≥ I(B,C) ≥ I(C,D) ≥ I(D,E) ≥ I(A,D) ≥ I(A,E) ≥ I(A,C), and all the mutual information is 

greater than ε  (i.e., I(A,C)>ε ).   

In step 3, TPDA iteratively examines a pair of nodes from L, and connects the two nodes by an 

edge and removes the node-pair from L if there is no existing adjacency path between them.  At the 

end of this phase, L = [〈B,C〉, 〈C,D〉, 〈D,E〉, 〈A,D〉, 〈A,E〉, 〈A,C〉] contains the pairs of nodes that are 

not directly connected in Phase I but have mutual information greater than ε .  The draft is shown in 

Figure 11(b).  We can see that the draft already resembles the true underlying graph; the only 

discrepancies are that the edge 〈B,E〉 is wrongly added and 〈D,E〉 and 〈B,C〉 are missing because of 

the existing adjacency paths (D-B-E) and (B-E-C).  
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Figure 11: A simple multi-connected network and the results after Phase I, II, III of TPDA. 

When creating the draft, we try to minimize the number of missing arcs and the number of 

wrongly added arcs compared to the (unknown) real model.  Since we use only pair-wise statistics, 

reducing one kind of errors will often increase the other.  Our stopping condition reflects a trade-off 

between the two types of errors − the draft-learning procedure stops when every pair-wise 

dependency is expressed by an adjacency path in the draft.  As an adjacency path may not be a true 
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open path, some pair-wise dependencies may not be really expressed in the draft --- for example, as 

the dependency between B and C appears to be explained by B-E-C we will not add an B-C arc.  

Note however that B-E-C is not a true open path. 

Sorting the mutual information from large to small in L is a heuristic, justified by the intuition that 

a pair with larger mutual information is more likely to represent a direct connection (an edge) than a 

pair with smaller mutual information, which may represent an indirect connection.  In fact, this 

intuition is provably correct when the underlying graph is a singly connected graph (a graph without 

loops).  In this case, Phase I of this algorithm is essentially the Chow–Liu algorithm, which is 
guaranteed to produce a network that is correct (as DAG-Faithful here means the true distribution 

will have a tree structure); here the second and the third phases will not change anything.  
Therefore, the Chow-Liu algorithm can be viewed as a special case of our algorithm for the 

Bayesian networks that have tree structures.  

Although the draft can be anything from an empty graph to a complete graph,9 without affecting 

the correctness of the final outcome of the algorithm, the closer the draft is to the real underlying 
model, the more efficient the algorithm will be 

The edge-set E produced by Phase I may omit some of L’s node-pairs only because there were 
other adjacency paths between the pairs of nodes.  The second phase,  “Thickening”, therefore uses 

a more elaborate test, EdgeNeeded_H, to determine if we should connect those pairs of nodes.   

This phase corresponds exactly to SLA’s Step2, except (1) rather than the entire list L, Thickening 

only uses the subset of “correlated” node-pairs that have not already been included in E, and (2) it 
uses the heuristic EdgeNeeded_H rather than the guaranteed EdgeNeeded; see Figure 6. 

In more detail, here TPDA examines all pairs 〈X,Y〉 of nodes that remain in L  --- i.e., the pairs of 

nodes that have mutual information greater than ε and are not directly connected.  It then adds an 

edge between 〈X,Y〉 unless EdgeNeeded_H states that these two nodes are found to be independent 

conditional on some relevant cut-set.  

                                                 
9 Note that our draft will always be a tree structure. 
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In our example, Figure 11(c) shows the graph after the Thickening Phase.  Arcs 〈B,C〉 and 〈D,E〉 

are added because EdgeNeeded_H cannot separate these pairs of nodes using CI tests.  Arc 〈A,C〉 is 

not added because the CI tests reveal that A and C are independent given cut-set {B}.  Edges 〈A,D〉, 

〈C,D〉 and 〈A,E〉 are not added for similar reasons.   

Appendix A.1 proves that this phase will find all of the edges of the underlying model – ie, no 
edge of the underlying model is missing after this phase.  The resulting graph may, however, 

include some extra edges --- ie, it may fail to separate some pairs of nodes that are actually 
conditionally independent.  This is because: 

1. Some real edges may be missing until the end of this phase, and these missing edges can 
prevent EdgeNeeded_H from finding the correct cut-set.  

2. As EdgeNeeded_H uses a heuristic method, it may not be able to find the correct cut-set for 

some classes of structures; see Section 4.2.3. 

Since both of the first two phases (drafting and thickening) can add unnecessary edges, this third 

phase, “Thinning”, attempts to identify these wrongly-added edges and remove them.  This phase 
corresponds to SLA-Step3.  While EdgeNeeded_H and EdgeNeeded have the same functionality 

and require the same O(N4) CI tests, in practice we have found that EdgeNeeded_H usually uses 
fewer CI tests and requires smaller condition-sets.  TPDA therefore does a preliminary sweep using 

the heuristic EdgeNeeded_H routine, as an initial filter.  To ensure that TPDA will always generate a 
correct structure, TPDA then double-checks the remaining edges using the slower, but correct 

EdgeNeeded; see Figure 8. Note that the second sweep does not examine every edges – it examines 
an edge X-Y only if X has at least three other neighbors besides Y or Y has at least three other 

neighbors besides X. This is safe because if both X and Y have at most two neighbors, 
EdgeNeeded_H will actually try every subset of the neighbors and make the correct decision. So, in 

the real-world situations when the underlying models are sparse, the correct procedure EdgeNeeded 
is seldom called. This also makes it affordable to define a correct algorithm TPDA* that does not 

require the monotone DAG-Faithful assumption, by simply replacing EdgeNeeded with the 
exponential EdgeNeeded*. The algorithm should still be efficient in most cases since the expensive 

EdgeNeeded* will seldom be called. 
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The ‘thinned’ graph of our example, shown in Figure 11(d), has the same structure as the original 

graph.  Arc 〈B,E〉 is removed because B and E are independent given {C,D}.  Given that the 

underlying dependency model has a monotone DAG-faithful probability distribution (and that we 
have sufficient quantity of data, etc), the structure generated by this procedure contains exactly the 

same edges as those of the underlying model. 

Finally, TPDA orients the edges.  Here, it can orient only two out of five arcs, viz., 〈C,E〉 and 

〈D,E〉.  Note these are the only arcs that need to be oriented; any distribution that can be represented 

with the other arcs oriented one way, can be represented with those arcs oriented in any other 
consistent fashion.10  Hence, this is the best possible – i.e., no other learning method can do better 

for this structure.  Note the number of “direction”-able arcs depends on the number of edges and 
colliders in the true distribution.  For instance, 42 out of 46 edges can be oriented in the ALARM 

network (see Section 6.1). 

5.3 TPDA-Π  Algorithm for Learning, given Ordering 

Our deployed PowerConstructor system actually used a variant of SLA-Π, called TPDA-Π, to learn 

from data together with a node order.  As the name suggests, TPDA-Π is quite similar to TPDA, and 

in particular, uses the same three phases – viz. drafting, thickening and thinning.  In the first phase, 

TPDA-Π computes mutual information of each pair of nodes as a measure of closeness, and creates 

a draft based on this information.  The only way this phase differs from TPDA’s is that, while TPDA 

adds an edge if there is no adjacency path between the two nodes, TPDA-Π adds an arc if there is no 

open path.  The difference means that the stopping condition of TPDA-Π is finer – it stops when 

every pair-wise dependency is expressed by an open path in the draft.  To illustrate the differences, 

we use the same multi-connected network as in Section 5.2. For instance, the B→C arc is added 

because we know that the adjacency path B-E-C is not an open path.  The result of Phase I is shown 

in Figure 12(b).  As before, TPDA-Π may miss some edges that do belong in the model. 

                                                 
10 Assuming we avoid any node ordering that introduce inappropriate v-structures. 



34 

(a)

(c) (d)

(b)

A B
C

D

EA B
C

D

E

A B
C

D

E A B
C

D

E

 

Figure 12 A simple multi-connected network and the results after Phase I, II, III of TPDA-Π. 

Phase II therefore uses a more definitive test to determine if we should connect each such pair: by 

first finding a cut set C that should separate A and B (if the current graph is correct), and then 

connecting these nodes if there is additional information flow between these nodes, after using C.  

As TPDA-Π knows the direction of the edges, it can easily determine a sufficient cut-set.  For 

example, to separate two nodes X and Y, where X appears earlier in the ordering, we can just set C to 

be the parents of Y.  This means Phase II of TPDA-Π is much simpler that Phase II of TPDA, as the 

latter, not knowing the direction of the edges, has to use a set of CI tests for each such decision. 

Since these phases will include an edge between two nodes except when they are independent, the 

resulting graph is guaranteed to include all of the correct edges whenever the underlying model is 

DAG-faithful; see the proof in Appendix A.3. In our example, the graph after Phase II is shown in 

Figure 12(c).  We can see that the graph induced after Phase II contains all the real arcs of the 

underlying model, that is, it is an I-map of the underlying model.  This graph may, however, include 

some additional, incorrect edges.  (This is because some edges will not be added until the end of this 

phase, and these missing edges might have prevented a proper cut-set from being found.)  Similar to 

our discussion in Section 5.2, if we use SLA-Π instead, the structure after “thickening” may be a 

complete graph – where each node is connected to every other node. 

Since both Phase I and Phase II can add some incorrect arcs, we use a third phase, “Thinning”, to 

identify those wrongly-added arcs and remove them.  As in Phase II, we need only one CI test to 
make this decision.  However, this time we can be sure that the decision is correct, as we know that 

the current graph is an I-map of the underlying model.  (This was not true until the end of Phase II: 
thickening.)  Since we can remove all the wrongly-added arcs, the result after Phase III is 
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guaranteed to be a perfect map (see Section 2.2); see proof in Appendix A.3.  The ‘thinned’ graph of 
our example is shown in Figure 12(d), which has the structure of the original graph.  Hence, after 

the three phases, the correct Bayesian network is rediscovered.  (Recall that TPDA-Π does not need 

to orient the edges as it already knows the direction of the arc when connecting two nodes, as that 

comes from the node ordering.) 

5.4 Discussion 

5.4.1 The Three-Phase Mechanism 

Virtually all dependency-analysis-based algorithms have to determine whether there should be an 

edge or not between every pair of nodes in a network, and O(N2) such decisions will allow us to 
determine the correct network structure.  However, if we require every such decision to be correct 

from the beginning, each single decision can require an exponential number of CI tests.  Unlike the 
other algorithms, we divide the structure learning process into three phases.  In the first and second 

phases, we will allow some decisions to be incorrect (although of course we try to minimize such 
bad decisions). In the general TPDA version (without ordering), for each pair of nodes, each 

decision in Phase I requires one CI test and each decision in Phase II requires O(N2) CI tests, where 
N is the number of nodes.  Phase III then requires O(N2) CI tests to verify each edge proposed in 

these two phases.  Hence, we must make O(N2) correct decisions to produce the BN structure, and 
each such decision requires O(N2) CI tests.  This means TPDA requires at most O(N4) CI tests to 

discover the edges. 

5.4.2 Quantitative Conditional Independence Tests 

Although the three-phase mechanism alone is enough to avoid the exponential number of CI tests in 

the special case when the node ordering is given (TPDA-Π), it must work with the quantitative CI 

test method to avoid exponential complexity in the general case.   

Our algorithms use conditional mutual information tests as quantitative CI tests.  However, it is 

also possible to use other possible quantitative CI tests, such as the likelihood-ratio chi-squared tests 
or the Pearson chi-squared test [Agresti, 1990].  We view Bayesian network learning from an 

information-theoretic perspective as we think it provides a natural and convenient to present our 
algorithms.  Moreover, by using information theoretic measures, we can easily relate our algorithms 
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to entropy scoring and MDL-based algorithms like the BENEDICT Algorithm [Acid and Campos, 

1996b] and the Lam-Bacchus Algorithm [Lam and Bacchus, 1994]; see Section 7 below.  One of 

our further research directions is to combine our approach with the cross entropy or MDL based 

scoring approach. 

 

5.4.3  Threshold in Conditional Independence Tests  

Like all other conditional independence test based algorithms, our algorithms rely on the 

effectiveness of the conditional independence tests to learn the accurate structures. Unfortunately, 

these tests are sensitive to the noise when sample sizes are not large enough.  The common practice 

to overcome this problem is to use some technique to adjust the threshold ε according to the sample 

size and the underlying distribution of the data. 

Because people may also need to learn Bayesian networks of different complexities, our system 

allows users to change the threshold value from the default value.  However, we also try to make the 

threshold value less sensitive to the sample size.  Instead of automatically adjusting the threshold 

according to the sample size, we developed an empirical formula to filter out the noise in the mutual 

information tests.  We consider a high dimensional mutual information test as the sum of many 

individual low dimensional mutual information tests.  The individual mutual information will only 

contribute to the sum if it meets certain criterion, which takes the degrees of freedom of these tests 

into consideration.  As a result, we found our mutual information tests to be quite reliable even 

when the date sets are small.  When the data sets are larger, the empirical formula has very little 

effect.  Therefore, our algorithm can achieve good accuracy using the same threshold when sample 

sizes are different.  In practice, we find that adjusting threshold in our system according to sample 

size is not necessary and the default threshold value is good for most of the real-world data sets, 

where the underlying models are sparse. Our experimental results on the three benchmark data sets 

presented in Section 6 are all based on the default threshold. 

In our work of Bayesian network classifier learning, we also search for the best threshold using a 

wrapper approach, but here attempting to maximize the prediction accuracy [Cheng and Greiner, 

2001]; see also the results in [Page and Hatzis, 2001]. 
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5.4.4 Incorporating Domain Knowledge 

A major advantage of Bayesian networks over many other formalisms (such as artificial neural 

networks) is that they represent knowledge in a “semantic” way, in that the individual components 
(such as specific nodes, or arcs, or even CPtable values) have some meaning in isolation – which 

can be understood independent of the “meaning” of Bayesian network as a whole [Greiner et al., 
2001].  This makes the network structure relatively easy to understand and hence to build. 

As TPDA is based on dependency analysis, it can be viewed as a constraint based algorithm, 

which uses CI test results as constraints. Therefore, domain knowledge can naturally be 
incorporated as constraints.  For instance, when direct cause and effect relations are available, we 

can use them as a basis for generating a draft in Phase I.  In Phase II, the learning algorithm will try 
to add an arc only if it agrees with the domain knowledge.  In Phase III, the algorithm will not try to 

remove an arc if that arc is required by domain experts.  Partial node ordering, which specify the 
ordering of a subset of the node-pairs, can also be used to improve the learner’s efficiency.  Each 

such pair declares which of the two nodes should appear earlier than the other in a correct ordering.  
Obviously, these relations can help us to orient some edges in the first and second phases so that the 

edge orientation procedure at the end of the third phase can be finished more quickly.  These 
relations can also be used in several other parts of the algorithm to improve performance. For 

example, in EdgeNeeded_H, we need to find SX and SY, which are the neighbor-sets of X and Y 
respectively.  Since the procedure tries to separate the two nodes using only the parents of X (Y) in 

SX (SY), if we know that some nodes in SX (SY) that are actually the children of X (Y), we can remove 
them immediately without using any CI tests.  This improves both the efficiency and accuracy of 

this procedure. 

5.4.5 Improving the Efficiency 

We have found that over 95% of the running time of the TPDA algorithms is consumed in database 
queries, which are required by the CI tests.  Therefore, one obvious way to make the algorithm more 

efficient is to reduce the number of database queries.  There are two ways to achieve this: by 
reducing the number of CI tests and by using one (more complex) database query to provide 

information for more than one CI test.  
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As noted above, we designed our algorithms to reduce the number of CI tests needed.  However, 

there is a trade-off between using one query for more than one CI test and using one query for one 

CI test.  While this latter method can reduce the total number of database queries, it also increases 

the overhead of the query and demands more memory.  Our TPDA algorithm uses this method, but 

only in its first phase.   

6 Empirical Study 

This section demonstrates empirically that our TPDA and TPDA-Π algorithms work effectively, 

using three benchmark datasets and a group of datasets from randomly generated distributions.  It 

also demonstrates that the heuristics used (to change from SLA to TPDA) do improve the 

performance.  These tests were performed using our Bayesian network learning tool, 

PowerConstructor, which is described in Appendix C.   

The three benchmark Bayesian networks are: 

• ALARM: 37 nodes (each with 2-4 values); 46 arcs; 509 total parameters [Beinlich et al., 1989] 

• Hailfinder: 56 nodes (each with 2-11 values); 66 arcs; 2656 total parameters 

(http://www.sis.pitt.edu/~dsl/hailfinder/hailfinder25.dne) 

• Chest-clinic: 8 nodes (each with 2 values); 8 arcs; 36 total parameters 

(http://www.norsys.com/netlib/Asia.dnet)  

The first two networks are from moderate complex real-world domains and the third one is from a 

simple fictitious medical domain.  In all cases, we generated synthesized data sets from their 

underlying probabilistic models using a Monte Carlo technique, called probabilistic logic sampling 

[Henrion, 1988].   

Note that our PowerConstructor system has also been successfully applied in many real-world 

applications, both by ourselves and by other users who downloaded the system.  However, since the 

underlying models of these real-world data sets are usually unknown, it is difficult to evaluate and 

analyze the learning accuracy.  This is why almost all researchers in this area use synthesized data 

sets to evaluate their algorithms.  We have also applied our system to learn predictive models 

(classifiers) from real-world data sets; in those cases we used performance (prediction accuracy) to 
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evaluate our system.  The results there were also very encouraging; see [Cheng and Greiner, 1999; 

Cheng and Greiner, 2001; Page and Hatzis, 2001].  

Here, we evaluate each learned structure in two ways: First, based on the number of missing arcs 

and wrongly added arcs, as compared to the true structure.  This measure is easy to determine; and 

clearly the score (0,0)  (read “0 missing arcs and 0 wrongly added arcs”) means the learned structure 
is perfect.  Of course, some arcs may be difficult, if not impossible, to find – eg, consider an arc 

between the binary variables A and B, when P(B=1|A=1) = 0.3 = P(B=1|A=0).  Here, this A→B arc 

is clearly superfluous. Similarly, it can be extremely difficult to detect an arc if the dependency is 

very slight – eg, if P(B=1|A=1) = 0.3001 and P(B=1|A=0)= 0.3000.  Notice it will take thousands 
of instances to have a chance to see this very slight difference; moreover, a network that does not 

include this edge will only be slightly different to one that includes it.  We therefore also report the 
mutual information associated with each missing link.  

We also measure the number and “order” of the CI tests (ie, the cardinality of the conditioning 
set) that were performed; note that the number of “p ln p” tests that are performed (2.1; 2.2) will be 

exponential in this quantity, as a k-ary CI test will involve O(rk+2)  such computations, for r-ary 

variables. 

    All the experiments in this paper were conducted on a Pentium II 300 MHz PC with 128 MB of 

RAM running under Windows NT 4.0.  The data sets were stored in an MS-Access© database. 

6.1 Experimental Results on the ALARM Network 

ALARM, which stands for ’A Logical Alarm Reduction Mechanism’, is a medical diagnostic system 

for patient monitoring, which includes nodes for 8 diagnoses, 16 findings and 13 intermediate 

variables [Beinlich et al., 1989].  Each variable has two to four possible values.  The network 

structure is shown in Figure 13. 
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Figure 13 The ALARM network 

The ALARM network is the most widely used benchmark in this area; many researchers have 

used this network to evaluate their algorithms.11  Sections 6.1.1 and 6.1.2 provide detailed results on 

learning the ALARM network from a fixed number of cases (10,000) using TPDA-Π and TPDA, 

respectively.  Section 6.1.3 gives our results on learning from different sample sizes of the ALARM 

network using both algorithms.   

6.1.1 Use TPDA-Π to learn the ALARM Network Data 

Here, we gave the TPDA-Π algorithm a set of 10,000 cases, drawn independently from the correct 

Alarm BN, as well as a correct ordering of the variables (as inferred from the structure).  Table 3 

summarizes our results, showing how each phase of TPDA-Π performed, in terms of the structure 

learned and the number of CI tests used.  The CI tests are grouped by the cardinalities of their 

condition-sets. 

 

                                                 

11 There are three different versions of it, which share the same structure but use slightly different CPtables.  In this 

paper, we will focus on the probabilistic distribution described at the web site of Norsys Software Corporation 

http://www.norsys.com.  We also tested our algorithms on the version presented in [Heckerman et al., 1994] and the one 

in [Cooper and Herskovits, 1992], and obtained similar results; see [Cheng, 1998]. 
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Phase Results No. of CI Tests (of each order) 

 Arcs M.A. E.A. 0 1 2 3 4+ Total 

I 43 5 2 666 0 0 0 0 666 

II 49 0 3(2+1) 0 116 54 22 10 202 

III 45 1 0 0 12 1 1 3 17 

M.A. = number of missing arcs; E.A. = number of extra arcs. 

 The CI tests are grouped by the cardinalities of their condition-sets. 

Table 3:  Results on the ALARM network (TPDA-Π) 

Table 3 demonstrates that TPDA-Π can learn a nearly perfect structure (with only one missing 

arc) from 10,000 cases.  The result after Phase I already resembles the true structure: this draft has 

43 arcs, only 2 of which arcs are incorrect.  The draft also missed 5 arcs of the true structure.  

The result after the second phase (thickening) has 50 arcs, which continues to include all the arcs 

of Phase I as well as 4 out of 5 arcs that Phase I did not find.  In addition, it also wrongly added 

another arc.  This is understandable, as it is always possible to add some arcs wrongly before all the 

real arcs are discovered.  In Phase III, TPDA-Π ‘thinned’ the structure successfully by removing all 

three previously wrongly added arcs. However, it also deleted a real arc 22→15 due to the fact that 

the connection between 22 and 15 is very weak given node 35 --- ie, I( 22, 15| 35) = 0.0045.  The 
result after the third phase has 45 arcs, all of which belong to the true structure. 

From the complexity analysis of Appendix A.4, we know that each of the three phases can require 

O(N2) CI tests, in the worst case.  However, the number of CI tests used in Phase I is quite different 
from that of Phases II and III.  This is because the ALARM network is a sparse network and Phases 

II and III only require a large number of CI tests when a network is densely connected, whereas 
Phase I always requires O(N2) CI tests. All our experiments on real-world data sets show similar 

patterns − i.e., most CI tests are used in Phase I.  Table 3 also shows that most CI tests have small 

condition-sets.  Here, the largest condition-set contains only five variables.  (Notice no node in the 
true structure had more than 4 parents.) 
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Figure 14:  The number of CI tests used in each phase. 

As we mentioned in Section 5.4.5, most of the running time is consumed in database queries 

while collecting information for CI tests. Therefore, we can improve the efficiency of our program 

by using high performance database query engines.  To prove this, we moved this data set to an 

ODBC database server (SQL-server 6.5 running remotely under Windows NT Server 4) and 

repeated the experiment.  Here we found that the experiment ran 13% faster.  Note that our basic 

system was still running on the local PC as before. 

6.1.2 Use TPDA to learn the ALARM Network Data 

Phase Results No. of CI Tests (of each order) 

 Edges M.A. E.A. 0 1 2 3 4+ Total 

I 36 12 2 666 0 0 0 0 666 

II 49 2 2+3 0 127 61 22 7 217 

III 44 2 0 0 86 6 8 3 103 

M.A. = number of missing arcs; E.A. = number of extra arcs. 

 Table 4 Results on the ALARM network (TPDA) 

 

We next consider TPDA, the version that does not have the node ordering. Table 4 shows that 

TPDA can get a very good result when using 10,000 cases; here only two missing edges.  The result 

after Phase I (drafting) has 36 edges, among which 2 edges are wrongly added; the draft also missed 

12 edges of the true structure.  As TPDA does not know the node ordering, it is easy to understand 
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why TPDA’s draft is significantly worse than TPDA-Π’s (Section 6.1.1), which only missed 5 

edges.  

The structure after TPDA’s second phase (thickening) has 49 edges, which includes all the arcs of 
Phase I and 10 out of 12 of the previously missing arcs.  TPDA did not discover the other two edges 

(22-15, 33-27) as those two relationships are too weak: I(22,15|35)=0.0045; I(33,27|34,14)=0.0013. 
In addition, TPDA also wrongly added 3 edges.  In Phase III, TPDA ‘thinned’ the structure 

successfully by removing all five wrongly added arcs.  TPDA can also orient 40 of the 44 learned 
edges correctly.  It cannot orient the other 4 edges due to the limitation of collider identification 

based method; of course, no other algorithm, given only this information, could do better.  By 
comparing Table 3 to Table 4, we can see that the results of the three phases of TPDA are not as 

good as those of TPDA-Π, and Phase II and Phase III of TPDA require more CI tests than the two 

corresponding phases of TPDA-Π.  This is not surprising since the TPDA does not have access to 

the node ordering, while TPDA-Π does. 

From the complexity analysis of Appendix A.2, we know that the first phase requires O(N2) CI 

tests and the second and the third phases are of the complexity )( 4NO  and O(N5) respectively, in 

the worst case.  However, since most real-world situations have sparse Bayesian networks, the 
numbers of CI tests used in the second and the third phases are usually much smaller than the 

number of CI tests used in the first phase, which is of complexity )( 2NO . As in Section 6.1.1, we 

use a pie chart (Figure 15) to show the percentages of the number of CI tests used. 

Phase I
65%

Phase II
24%

Phase III
11%

 
Figure 15 The number of CI tests used at each phase. 
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6.1.3 Experiments on Different Sample Sizes 

In this section, we present our experimental results on 1,000, 3,000, 6,000 and 10,000 cases of the 

ALARM network data. The results are shown in the following table. 

Results Cases Ordering 

M.A E.A. M.O. W.O. 

Time 

(Seconds) 

Yes 0 3 N/A N/A 19 1,000 

No 3 2 3 2 19 

Yes 1 3 N/A N/A 43 3,000 

No 1 1 4 0 46 

Yes 1 0 N/A N/A 65 6,000 

No 2 0 4 0 75 

Yes 1 0 N/A N/A 100 10,000 

No 2 0 4 0 115 

Table 5 Results on 1,000, 3,000, 6,000 and 10,000 cases 

(M.O. and W.O. stand for missing orientation and wrongly oriented) 
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Figure 16 The relationship between the sample sizes and the running time 

Figure 16 shows that the running time is roughly linear to the number of cases in the data set.  This 

is what we expected, since most of the running time of the experiments is consumed by database 
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queries; and response time of each database query is roughly linear to the number of records in the 

database table.  The fact that the run-time increases so slowly suggests that our algorithms will be 

able to handle very large data sets.  Table 5 also shows the learner typically produces more accurate 

networks, given larger data sets.  Note the results on 3,000 cases are already quite acceptable; this 

suggests that our algorithms can give reliable results even when the data set is not large for its 

domain.  This is because our algorithms can often avoid many high-order CI tests, which are 

unreliable when the data sets are not large enough. 

6.1.4 Other Learning Algorithms 

Many other learning algorithms have attempted to learn this network from a dataset (and sometimes, 

from a node ordering as well).  The table below summarizes their performance.  (Section 7 

summarizes many of these learning systems.)  
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Algorithm Node 

ordering 

Sample 

size 

Platform Running 

time (Min.) 

Results 

K2 Yes 10,000 Macintosh II 17 1 M.A. 1 E.A. 

Kutato Yes 10,000 Macintosh II 1350 2 M.A. 2E.A. 

Chu-Xiang No. (Learn 

Markov net) 

10,000 AVX-series2 12 

processors 

6 Unknown 

Benedict Yes 3,000 Unknown 10 4 M.A. 5 E.A. 

CB No 10,000 Dec Station 5000 7 2 E.A. 2 W.O. 

Suzuki  Yes 1,000 Sun Sparc-2 306 5 M.A. 1 E.A. 

Lam-

Bacchus  

No 10,000 Unknown Unknown 3 M.A. 2 W.O. 

Friedman-

Goldszmidt  

No 250-

32,000 

Unknown Unknown Only in term of 

scores 

PC No 10,000 Dec Station 3100 6 3 M.A. 2 E.A. 

HGC Using a prior 

net 

10,000 PC Unknown 2 E.A. 1 W.O. 

Spirtes-

Meek 

No 10,000 Sun Sparc 20 150 1 M.A. 

TPDA-Π Yes 10,000 PC 2 1 M.A. 

TPDA No 10,000 PC 2 2 M.A.  

Table 6 Experimental results of various algorithms on ALARM net data 

(M.A., E.A. and W.O. stand for missing edges, extra edges and wrongly oriented edges.) 

Note that the Chu-Xiang algorithm is used to learn a Markov network (undirected graph) so it 

does not need node ordering; and the HGC algorithm uses a prior network as domain knowledge 

rather than node ordering.  When evaluating the results, Friedman and Goldszmidt use entropy 

distance rather than the direct comparison.  By comparing the results of this table with our results, 

we can see that our results on the ALARM network data are among the best. 
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6.2 The Hailfinder Network 

Hailfinder network is another real-world domain Bayesian belief network. It is a normative system 

that forecasts severe summer hail in northeastern Colorado.  The network structure, shown in Figure 

17, contains 56 nodes and 66 arcs. Each node (variable) has from two to eleven possible values.  For 

detailed information about the Hailfinder project and various related documents, please visit the web 

page http://www.sis.pitt.edu/~dsl/hailfinder. 

  To evaluate our algorithms, we generated a data set of 20,000 cases from the underlying 

probabilistic model of Hailfinder network (version 2.5) using a probabilistic logic sampling method. 

 

Figure 17 The HailFinder network 

6.2.1 Experiments on 10,000 cases 

In this section, we give the detailed experimental results using the first 10,000 cases of the 

Hailfinder data.  The results are from two runs of our system, one with node ordering (TPDA-Π), 

and the other without node ordering (TPDA).  The node ordering we used for Hailfinder network is 

the ordering described in the file http://www.sis.pitt.edu/~dsl/hailfinder/hailfinder25.dne. 
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No. of CI tests (of each order) Results Node 

ordering 
0 1 2 3+ Total M.A. E.A. M.O. W.O. 

Time 

(seconds) 

Yes 1540 163 33 7 1743 3 0 N/A N/A 227 

No 1540 290 18 1 1849 4 1 1 5 245 

Table 7 Running time and the CI tests used on 10,000 cases of Hailfinder data 
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Figure 18 The bar charts of CI tests and running time.  

(The number 0, 1, 2, 3+ in the bar chart represent the cardinalities of the condition-sets of CI tests.) 

Table 7 shows that the running time is about 4 minutes and that the learned networks are very 

close to the underlying BN.  Figure 18 shows that most CI tests are of the low orders.  Now compare 

the number of CI tests used in both TPDA and TPDA-Π to learn the Hailfinder network versus 

learning the ALARM network.  While in theory TPDA may require O(N5) CI tests, its actual speed 

appears similar to that of TPDA-Π, which is )( 2NO .  This suggests that in real-world situation, 

where the underlying networks are sparse, the actual time complexity on CI tests is close to )( 2NO  

even when node ordering is not given.  

6.2.2 Experiments on Different Sample Sizes 

In this section, we present our experimental results on 2,500, 5,000, 10,000, 20,000 cases of the 

Hailfinder data.  The results are shown in the table below. 
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Results Cases Ordering 

M.A. E.A. M.O. W.O. 

Time 

(Seconds) 

Yes 2 6 N/A N/A 132 2,500 

No 5 4 1 5 133 

Yes 3 3 N/A N/A 172 5,000 

No 3 2 0 2 174 

Yes 3 0 N/A N/A 227 10,000 

No 4 1 1 5 245 

Yes 3 0 N/A N/A 369 20,000 

No 4 1 1 5 403 

Table 8 Results on different sample sizes of Hailfinder data 
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Figure 19 The relationship between the sample sizes and the running time 

These results on Hailfinder data repeat the trends we found on ALARM data − that is, the growth 

of running time is roughly linear to the number of cases in the data set, and in general, the number 

of errors decreases as the sample size increases.  Table 8 shows that we get the same results using 

10,000 cases as we get using 20,000 cases; this suggests that 10,000 cases of Hailfinder data is 

already large enough for our algorithms. 
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6.3 The Chest-clinic Network 

The Chest-clinic network (also known as the “Asia network”) is a very small Bayesian network for 

a fictitious medical domain, relating whether a patient has tuberculosis, lung cancer or bronchitis, to 
their X-ray, dyspnea, visit-to-Asia and smoking status.  The structure of this network is shown in 

Figure 20, which contains 8 arcs connecting 8 nodes, each of which has exactly two possible values.  
The underlying probabilistic distribution of this network is described in 
http://www.norsys.com/netlib/Asia.dnet. We generated a data set of 1,000 cases using the 

probabilistic logic sampling method. We use this simple Bayesian network to show the performance 
of our algorithms on small domains. 

Figure 20 The Chest-clinic network 

Our results are summarized in Table 9 below. 

Results Node 

Ordering 
M.A. E.A. M.O. W.O. 

Time 

(seconds) 

Yes 1 0 N/A N/A 1 

No 1 0 2 0 1 

Table 9 Results on 1,000 cases of Chest-clinic data 

The node ordering we use is [Visit to Asia, Tuberculosis, Smoking, Lung Cancer, Tuberculosis or 

Cancer, X-ray results, Bronchitis, Dyspnea].  In both experiments, the system could not find the arc 

Tuberculosis

XRay Result

Tuberculosis
or Cancer

Lung Cancer

Dyspnea

Bronchitis

Visit To Asia Smoking
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from ‘Visit to Asia’ to ‘Tuberculosis’, as that dependency is extremely weak; I(VisitToAsia, 

Tuberculosis) = 6.05E-5.  There are also two edges (Smoking → Lung Cancer and Smoking → 

Bronchitis) that TPDA cannot orient. 

6.4 Simulation Tests Using Random DAGs 

Our TPDA and TPDA-Π attempt to gain efficiency by minimizing the number of CI tests used. 

When the node ordering is given, TPDA-Π also minimizes the complexity of each CI test by using a 

small cut-set, so that the CI tests are reliable even when the sample size is small.  However, when 

node ordering is not given, TPDA may use more complex CI tests.  For example, when compared to 
the PC algorithm (which also uses dependency analysis to learn Bayesian net structures; [Spirtes 

and Glymour, 1991], see Section 7), we found that TPDA typically uses fewer CI tests than PC uses, 
but these tests are often more complex. 

To investigate the reliability issue of TPDA when the data sets are noisy, we use simulation tests 
to compare the TPDA algorithm and the PC algorithm.  The overall setting of this experiment is 

very similar to the one described in [Spirtes and Meek, 1995].  We randomly generated 10 DAGs 
with 10 nodes and 10 arcs, and another 10 DAGs with 10 nodes and 15 arcs. For each of the 20 

DAGs, we randomly generated a single parameterization, using the Tetrad system [Scheines et al., 
1994].  From each of these 20 Bayesian networks, we created three data sets, of size 300, 1000 and 

3000 respectively.  This produced 60 data sets in total. As Spirtes and Meek (1995) did in their 
experiment, before measuring the performance, we also used preliminary tests to determine a 

reasonable threshold value for these artificial data sets.  Here, we found ε≈0.0025 worked best. 

The results appear in Table 10.  We can see that the error rates here are higher than those in the 

experiments on benchmark data sets, shown in previous sessions.  This is because there is more 
noise in these data sets, which make the learning task more difficult.  The performances of the two 

algorithms on these data sets are quite similar.  TPDA generates structures with more extra edges 
than PC especially when the sample size is small, which shows that minimizing the complexity of 

CI tests when data sets are small and noisy is a good strategy. It also seems that TPDA performs a 
little better than PC on orienting edges.  Both algorithms are very efficient – it took less than a 

minute to learn all 60 structures from the data sets on our computer. 
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Algorithm 

# of Edges in 

true DAG Size 

Missing 

Edges % 

Extra Edges 

% 

Missing 

Orientation % 

Wrong 

Orientation % 

PC 10 300 39.0 2.0 42.0 7.0 

TPDA 10 300 32.0 27.0 33.0 7.0 

PC 10 1,000 27.0 1.0 39.0 10.0 

TPDA 10 1,000 23.0 9.0 36.0 5.0 

PC 10 3,000 18.0 0.0 34.0 9.0 

TPDA 10 3,000 23.0 1.0 37.0 8.0 

PC 15 300 50.0 6.0 21.33 12.67 

TPDA 15 300 38.0 12.67 15.33 16.0 

PC 15 1,000 30.67 2.67 26.0 15.33 

TPDA 15 1,000 25.33 6.67 10.67 19.33 

PC 15 3,000 19.33 4.0 14.67 20.67 

TPDA 15 3,000 24.0 4.0 9.33 19.33 

Table 10 Simulation test results 

6.5 How TPDA’s Heuristics Improve Its Efficiency 

As noted above, TPDA differs from SLA by incorporating several heuristics, such as starting with a 

quickly-computed draft, and using the faster (but less accurate) EdgeNeeded_H before EdgeNeeded.  

While these heuristics are intuitive, they still do not have to work.  To find out, we run some tests on 

ALARM data and HailFinder data using 10,000 data points, to see how SLA really compares with 

TPDA. We found that, in general, TPDA and SLA return the same answers, but SLA is about 2.5 

times slower.  SLA also requires 65% more CI tests, and many of the CI tests are of high order. 

7 Related Work 

In recent years, graphical probabilistic models, including Bayesian networks and Markov networks, 

have become very popular.  Learning such graphical model has become a very active research topic 
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and many algorithms have been developed for it.  For survey papers and introductory papers on 

probabilistic network learning, please refer to [Buntine, 1996; Chrisman, 1996; Heckerman, 1995; 

Krause, 1996]. 

As noted above, we divide learning a BN into two subtasks: first learn the structure, and then 

find the parameters (read “CPtables”) for that structure.  We continue to focus on the first subtask.  
There are two ways to view a BN, each suggesting a particular approach to the structure learning.  
(1) A BN structure encodes the joint distribution of the attributes.  This suggests that the best BN is 

the one that best fits the data, and leads to the scoring-based learning algorithms, which each seek a 
structure that maximizes the Bayesian, MDL or Kullback-Leibler (KL) entropy scoring function 

(Heckerman 1995; Cooper and Herskovits 1992).  (2) Each arc in a BN structure specifies a 
dependency between the two associated nodes.  This suggests learning structures that captures these 

dependencies; and more importantly, leaving unconnected nodes that are independent of each other.  

This leads to the “dependency based” methods – which include the TPDA and TPDA-Π  algorithms 

presented here. 

Heckerman et al. (1997) compare these two general approaches for learning BNs, and show that 
the scoring-based methods often have certain advantages over the dependency analysis based 

methods.12 Recently, Cowell (2001) proves that for every scoring-based algorithm, there is an 
equivalent dependency based algorithm and vice versa. So the major difference between the two 

approaches is actually not the different measures used, but whether or not an algorithm utilizes the 
d-separation concept to constrain the model space.  When the number of variables are large, the 

constraint based methods are usually much more efficient.  However, when the sample size is small 
and the data is noisy, the scoring-based algorithms can often give more accurate results since they 

(potentially) search the whole model space to find the optimal model. 

 

This section provides a synopsis of a few relevant BN-learning systems, providing any details 

only about the systems that are related to our TPDA system.  Sections 7.1 and 7.2 introduce some 

                                                 
12 Here we consider only the task of modeling a distribution.  See Friedman et al. (1997), Cheng and Greiner 

(1999,2001) and Greiner et al. (1997) for a discussion of learning Bayesian-net based classifiers. 



54 

representative algorithms of each group, and Section 7.3 briefly introduces other related learning 

algorithms.  

7.1 Search & scoring Based Methods 

Algorithm Resulting 
models 

Node 
ordering 
required 

Scoring 
method 

Main features 

Chow-Liu [Chow 
and Liu, 1968] 

Trees (a special 
kind of Markov 
network) 

No Entropy only needs )( 2NO  pair-wise 

dependency calculations 

Rebane-Pearl 
[Rebane and 
Pearl, 1987] 

Polytrees (a 
special kind of 
Bayesian 
network) 

No Entropy only needs )( 2NO  pair-wise 

dependency calculations; can 
orient edges 

K2 [Cooper and 
Herskovits, 1992] 

General Bayesian 
nets 

Yes Bayesian Efficient, uses heuristic search 

HGC [Heckerman 
et al., 1994] 

General Bayesian 
nets 

No 
(requires 
prior net) 

Bayesian Uses prior net as domain 
knowledge 

Kutato [Herskovits 
and Cooper, 
1991] 

General Bayesian 
nets 

Yes Entropy Uses CI tests to speed up entropy 
calculations 

Wong-Xiang 
[Wong and Xiang, 
1994] 

General Markov 
nets 

No Entropy The results are I-maps of the 
underlying models 

BENEDICT [Acid 
and Campos, 
1996b] 

General Bayesian 
nets 

Yes Entropy Heuristic search; uses the 
concept of d-separation 

CB [Singh and 
Valtorta, 1995] 

General Bayesian 
nets 

No Bayesian Combines PC (see Section 2.2.2) 
and K2; can orient edges 

Suzuki [Suzuki, 
1996] 

General Bayesian 
nets 

Yes MDL Can learn the optimal structure 
but inefficient 

Lam-Bacchus 
[Lam and 
Bacchus, 1994] 

General Bayesian 
nets 

No MDL Can orient edges using a pure 
search & scoring method 

Friedman-
Goldszmidt 
[Friedman and 
Goldszmidt, 1996] 

General Bayesian 
nets 

No MDL or 
Bayesian 

Can orient edges using a pure 
search & scoring method 

Table 11 Summary of the search-&-scoring algorithms 

Table 11 summarizes the representative search-&-scoring algorithms.  The algorithm most related to 

our TPDA algorithm is presented below. 
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Chow-Liu Tree Construction Algorithm  

We say a network is “tree structured” if it is connected and each node has at most one parent.  Chow 

and Liu (1968) developed an algorithm for learning the optimal tree-structured BN; this system has 
had a far-reaching influence throughout the area of graphical model learning.  It takes as input a 

probability distribution P(x) over N variables (which of course could be an empirical distribution), 

and returns as output a tree-structured BN, P*, and does so in only )( 2NO  time.  The authors prove 

that the resulting tree-shaped distribution *P  is the best tree-structured approximation of P, in that 
it has minimum KL-divergence (Kullback and Leibler, 1951), over all possible tree-structured 
distributions.  This means, in particular, that when the underlying structure of distribution P is 

actually a tree, this algorithm is guaranteed to recover the true model.  

This algorithm has characteristics of both learning approaches presented earlier: Although the 

general idea behind this algorithm is to find a structure with the best score (Kullback-Leibler (1951) 
cross-entropy), it does this by analyzing the pair-wise dependencies, which is the method used in the 

dependency analysis approach.  

This algorithm requires only )( 2NO  pair-wise dependency calculations and each calculation uses 

only second-order statistics.  Unfortunately, an equally efficient dependency-analysis algorithm is 
not possible for constructing multiply connected graphs, since larger condition-sets are required, 

which means higher order statistics must be used.  
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7.2  Dependency analysis Based Methods 

Table 12 Summary of the dependency analysis based algorithms 

 

7.3 Other Algorithms 

Several researchers use model averaging techniques, which we view as a variant of the search & 

scoring based approach.  They argue that sometimes the data does not identify the underlying model 

of a data set.  Therefore, instead of searching for a single best solution, their algorithms [Buntine, 

1994; Madigan and Raftery, 1994; Madigan et al., 1994] return several networks and use the 

‘average’ of these networks to perform belief propagation.  

All of the above algorithms assume that the data sets are causally sufficient − i.e., all the 

variables in the underlying models appear in the data sets.  Sometimes, the values of some variables 
are never in the data sets, we call them hidden variables or latent variables.  There has been a lot of 

Algorithm Resulting 
models 

Node 
ordering 
required? 

Number of 
CI tests 

Main features 

Wermuth-Lauritzen 
[Wermuth and 
Lauritzen, 1983] 

General 
Bayesian nets 

Yes )( 2NO  Only needs )( 2NO  CI tests but 

highly impracticable 

Boundary DAG 
[Pearl, 1988] 

General 
Bayesian nets 

Yes Exponential A simple algorithm 

SRA [Srinivas et al., 
1990] 

General 
Bayesian nets 

Partial 
ordering 

Exponential Extension of Boundary DAG; 
only needs partial ordering; uses 
heuristic search 

Constructor [Fung 
and Crawford, 1990] 

General 
Markov nets 

No Exponential Uses cross-validation technique 
to avoid over-fitting 

SGS [Spirtes et al., 
1990] 

General 
Bayesian nets 

No Exponential Can orient edges 

Verma-Pearl [Verma 
and Pearl, 1992] 

General 
Bayesian nets 

No Exponential A variation of SGS; can orient 
edges and detect conflicts in the 
edge orientations 

PC [Spirtes and 
Glymour, 1991] 

General 
Bayesian nets 

No O(Nk+2) K is the maximum degree of any 
node in the true structure; Can 
orient edges; enhanced from 
SGS algorithm; efficient 
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progress in learning Bayesian networks with hidden variables; see [Spirtes et al., 1993; Spirtes et 

al., 1997;Verma and Pearl, 1990].  

There are also algorithms that can handle data sets with missing values --- that is, some values 

of some variables are excluded --- see Bound and Collapse [Ramoni and Sebastiani, 1996; Ramoni 

and Sebastiani, 1997], [Friedman, 1998] and [Singh, 1997]. 

8 Future Work and Conclusion  

8.1 Future Work 

We plan to work in the following directions. 

1. Each of the two general approaches to Bayesian network learning (i.e., based on score-&-search 

and on dependency-analysis) has its own advantages.  We plan to explore ways to combine the 

two approaches, especially for the task of learning models from data with hidden variables. 

2. TPDA is correct for monotone DAG-faithful models.  We conjecture that the monotone DAG-

faithful assumption is only slightly stronger than DAG-faithfulness, and that most DAG-faithful 

models are also monotone DAG-faithful.  We plan to explore the properties of monotone DAG-

faithful models and compare them with those of DAG-faithful models. 

3. We noted that TDPA spends most of its running time performing CI tests, and that most running 

time of these CI tests is in turn consumed by database queries.  This suggests that we can 

improve the efficiency of our algorithms by improving the efficiency of database queries.  One 

method is to move the data set to a high performance database server.  We believe this will 

speed up the Bayesian network learning by a large factor --- perhaps even several hundred 

times, depending on the speed of the database server.  Another method is to use database 

engines that are specially designed for such queries, i.e., capable of quickly counting the 

number of records that satisfy certain criteria.  

4. We are already beginning to explore the use of these constraint-based techniques in the context 

of learning classifiers --- that is, performance systems that assign labels to (unlabeled) instances 

[Cheng and Greiner, 1999].  Here the goal is a Bayesian net that produces the correct label as 

often as possible; a goal that differs from finding the best “model” of the underlying 
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distribution.  We plan to continue seeking ways to modify our basic TPDA algorithm for this 

specialized task. 

8.2 Conclusion 

This paper addresses the task of learning Bayesian networks from data.  We develop two related 

information theoretic algorithms: TPDA, which learns Bayesian networks when node ordering is not 

given, and TPDA-Π, which deals with the special case where the node ordering is given.  These two 

algorithms have been implemented within a general Bayesian network learning system – BN 

PowerConstructor.  Using the PowerConstructor system, we have empirically evaluated our 

algorithms using two moderately complex real-world examples and a class of simpler synthetic 
ones.  These results show that our algorithms are accurate and efficient. 

Our algorithms improve on the other dependency-analysis based algorithms by using 
quantitative information from CI tests to avoid the need to perform an exponential number of such 

CI tests; n.b., our algorithms are still guaranteed to recover the correct distribution when the 
underlying model of the data set is monotone DAG-faithful (given enough data and other simple 

assumptions).  When the correct node ordering is available, our TPDA-Π algorithm requires only 

standard DAG-faithfulness, and uses only O(N2) CI test to learn an N-node BN, as it needs to 

perform only O(1) CI test to decide whether to include each of the O(N2) possible arcs.  Moreover, 
thanks to its three-phase mechanism, which allows some wrong decisions to be made in first two 

phases, this overall algorithm is even more efficient in practice.  (By contrast, most other 
dependency-analysis based learning algorithms require an exponential number of CI tests for each 

decision.)  

When node ordering is not given, it is impossible to make each “is an edge needed?” 

decision using only one CI test.  However, by using quantitative CI tests, which tells us not only 
whether a pair of nodes are dependent or not but also how close their relationship is, TPDA need to 

use only )( 2NO  CI tests for each decision.  We prove that TPDA is correct when the underlying 

model is monotone DAG-faithful.  

Experimental results show that our algorithms are capable of handling large real-world data 
sets since the running time is linear in the number of records in the data set and polynomial in the 
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number N of attributes in the data set --- empirically O(N2) for sparse networks.  The results also 

show that our algorithms are quite reliable since the accuracy of the result does not deteriorate very 

fast when the sample size decreases. 
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A.1 Correctness Proof of SLA (and TPDA) 

Theorem 3: Given a “sufficiently large” database of complete instances that are drawn, iid, from a 

monotone DAG-faithful probability model, the SLA algorithm will recover the correct underlying 
essential network.  Moreover, this algorithm requires only O(N4) conditional independence tests.   [] 

We use the following propositions to prove that SLA is correct (i.e., the first part of Theorem 3).  
Throughout we will assume the assumptions stated in the theorem, and also that M is the true model 
of the distribution. 

 

Proposition 3.1 The graph generated after Step2, G2, contains all the edges of M. 

Proof: This step considers all the edges between any two nodes that are not independent.  An edge 
is not added only if the two nodes are separated by a set of other nodes.  Hence, any two nodes that 

are not directly connected in G2 are conditionally independent in M. [] 

 

Lemma 3.1 As EdgeNeeded starts with the initial condition-set  SX∪ SX’, it can close all the paths 

of the underlying model M between nodes X and Y except the paths connecting X and Y by one 
collider. 

Proof: By using, say, SX∪ SX’ as the condition-set, we instantiate the nodes in SX (the neighbors of 

X on the paths between X and Y) and SX’ (the neighbors of nodes of SX that are on the paths 

between X and Y).13 Therefore, we can instantiate at least two consecutive nodes of any path that 
has length equal to or larger than three.  Because two consecutive nodes of a path cannot both be 

colliders in the path, and all the paths of the underlying model M are in the current graph, we can 
close all the paths in M between X and Y that have length equal to or larger than three.  Hence, the 

only paths that could remain open are those connecting X and Y by one collider.        [] 

Lemma 3.2 EdgeNeeded does not open any previously closed X-Y path by removing a node from 

condition-set C.   

                                                 

13 The same claim holds for SY∪ SY’ . 
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Proof: Given monotone DAG-faithfulness, EdgeNeeded will not remove a node that only opens 

some paths, as such a removal would necessarily increase the mutual information.  We therefore 

need only prove that removing a node from C cannot simultaneously open some paths and close 

others.  From Lemma 3.1 we know that initially the only open paths are those connecting X and Y 

by one collider.  Now consider each node v in C.   If v is not a child-node of both X and Y or a 

descendent of such a child-node, removing it may open some paths but cannot close the paths 

connecting X and Y by a collider.  So suppose that v is a child-node of both X and Y or a 

descendent of such a child-node.  Now if one of v’s descendents is in C, then removing v cannot 
close the path connecting X and Y by the child-node.  If none of v’s descendents is in C, removing v 

may close the path connecting X and Y by the child-node but cannot open a path because the would-
be opened path must go through a collider that is a descendent of v.  Since none of v’s descendents 

is in C, such a path cannot be opened.       [] 

 

Lemma 3.3 EdgeNeeded can remove all the descendents of both X and Y from condition-set C. 

Proof: Toward a contradiction, suppose S is the subset of set C containing the descendents of both 

X and Y that cannot be removed.  Then there must be a node v∈S that is not an ancestor of any 
other nodes in S.  The only reason we would not consider removing v is if removing it increases 

mutual information.  From the assumption of monotone DAG-faithfulness and Lemma 3.2, we 
know that removing v will open at least one path.  Therefore, node v is not a collider in such a path 

and so this path must go through at least one descendent of v.  Because a descendent of v is also a 
descendent of both X and Y, there must exist at least one descendent of v which is a collider in such 

open path.  To make such path open, this collider has to be in S.  This contradicts our assumption 
that v is not an ancestor of any other nodes in S.                                                                [] 

 

Proposition 3.2 Given that graph G contains all the edges of a probabilistic model M, if two nodes 

X and Y are independent in M, EdgeNeeded can always separate them in G.  

Proof: From Lemma 3.1 we know that initially the only open paths are those connecting node X 

and Y by one collider.  From Lemmas 3.2 and 3.3, we know that the procedure does not open any 
path when removing nodes from the condition-set C and that it removes all the descendents of both 
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X and Y that are in C.  Therefore, if nodes X and Y are independent in M, EdgeNeeded can separate 

them by closing all the open paths.                            [] 

 

Proposition 3.3 The graph generated after step 3, G3, contains the exact same edges as those of M. 

Proof: Since G2 contains all the edges of M, and an edge is removed in step 3 only if the pair of 

nodes is conditionally independent in M, G3 also contains all the edges of M.  From Proposition 2, 

we also know that if two nodes are independent in M, our algorithm can always separate them in 

G3.  Hence, G3 contains exactly the same edges as those of M.                           [] 

 

Proposition 3.4 Given that graph G contains the exact same edges as those of the underlying model 

M, all the colliders that can be identified by OrientEdges(G) are the real colliders of M. 

Proof: For any structure X-Y-Z where X and Z are not directly connected, OrientEdges(G) uses 

step 1 to check if Y is a collider on the path X-Y-Z.  From Lemma 3.3 we know that the final cut-set 

between X and Z will never include Y if Y is a collider.  So step 1 can identify a collider correctly.  

Since there are no extra-edges in G, step 2 of this procedure can never orient an edge wrongly.  It is 

also easy to see that the inference of step 3 of the procedure is correct.                    [] 

A.2 Complexity Analysis for SLA (and for TPDA) 

This appendix provides the worst-case time complexity of TPDA in terms of the number of CI 

tests.  Please note that each CI test can require a large number of basic calculations – in fact, a 

number exponential in the size of the condition-set.  However, the number of basic calculations is 
not a good index for comparing different algorithms because all algorithms are exponential in this 

sense.  In practice, most of the running time of our algorithms is consumed in data queries from 
databases, which we have found often takes more than 95% of running time (see Section 6). 

Because the number of CI tests is directly related to the number of database queries, it is a relatively 
good criterion for judging an algorithm’s performance.  In fact, the number of CI tests is a widely 

used index for comparing different algorithms that are based on dependency analysis (Spirtes et al. 
1993; Pearl 1988). 
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To prove that TPDA-Π requires O(N4) CI tests:  Observe first that EdgeNeeded requires O(N2) CI 

tests, as it must, in the worst case, successively consider the one conditioning set of size N-2, then 

the N-2 possible subsets of this set of size N-3, then the N-3 size-N-4 subsets, and so forth, until 

considering 2 sets of size 1.  This would require )( 2

2..2
NOi

Ni
=∑ −=

 CI tests.  Next note that Step 1 

can call EdgeNeeded on at most every pair of nodes, as can Step 2; hence these steps require O(N2
* 

N2) CI tests.  Hence the final step requires O(N2× N2) = O(N4) CI tests, which is high-water 

complexity of this algorithm. 

A.3 Correctness Proofs of SLA-Π (and TPDA-Π ) 

Theorem 2: Given a “sufficiently large” database of complete instances that are drawn, iid, from a 

DAG-faithful probability model, together with a correct node ordering, then the SLA-Π algorithm 

will recover the correct underlying network.   Moreover, this algorithm will require only O(N2) CI 
tests.                                                                                                                         [] 

We use the following claims: 

Proposition 2.1: The graph generated after Step2, G2, is an I-map of M. 

Proof: As the first part of SLA-Π considers every pair of nodes that are not pair-wise independent, 

the only way that an arc can be excluded from the graph is if the two nodes of the arc are 

independent conditional on some appropriate condition-set.  Hence, any two disconnected nodes in 
G2 are conditionally independent in M.                                                        [] 

Proposition 2.2: The graph generated after Step 3, G3, is a perfect map of M. 

Proof: Because G2 is an I-map of M, and an arc is removed in Step 3 only if the pair of nodes is 

conditionally independent, it is easy to see that G3 and all the intermediate graphs of Step3 are I-
maps of M.  Now, we will prove that G3 is also a D-map of M.  Suppose G3 is not a D-map, then 

there must exist an arc 〈a, b〉 which is in G3 and for which the two nodes a and b are actually 

independent in the underlying model M.  Therefore, a and b can be d-separated by blocking all the 

real open paths Pr in M.  In SLA-Π, the nodes a and b are connected in G3 only if a and b are still 

dependent after blocking all the open paths P in G3.  Since all the intermediate graphs of Step3 are 
I-maps of M, P includes Pr and possibly some pseudo-paths.  So blocking all the open paths in P 
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will block all the real open paths in Pr.  Because information cannot pass along the pseudo-paths, 

the only reason for a and b to be dependent in G3 is that information can go through the paths in Pr.  

This contradicts our assumption that a and b are d-separated by blocking all the open paths of Pr in 

M.  Thus, G3 is both a D-map and I-map and hence is a perfect map of M.      [] 

The above propositions ensure that our algorithm can construct the perfect map of the underlying 

dependency model, i.e., the induced Bayesian networks are exactly the same as the real underlying 

probabilistic models of the data sets. 

A.4 Complexity Analysis for SLA-Π 

Since Step1 computes mutual information between any two nodes, it needs )( 2NO  mutual 

information computations. In Step2, the algorithm checks if it should add arcs to the graph.  Each 

such decision requires one CI test.  Therefore, Phase II needs at most )( 2NO  CI tests. In Step3, the 

algorithm sees if it can remove the arcs from the graph.  Again, each such decision requires one CI 

test and so at most )( 2NO  CI tests are needed.  Hence, the overall algorithm requires )( 2NO  CI 

tests in the worst case. 

Appendix B : Monotone DAG-Faithfulness 

In real world situations most DAG-faithful models are also monotone DAG-faithful. We conjecture 

that the violations of monotone DAG-faithfulness only happen when the probability distributions 

are ‘near’ the violations of DAG-faithfulness. In such situations, other algorithms also have 
difficulties in generating the true underlying model. 

While TPDA-Π and other dependency analysis based algorithms require the assumption of DAG-

faithfulness for its correctness proof, TPDA is only guaranteed to work correctly if the underlying 
probabilistic model of a data set is monotone DAG-faithful – which means it requires a stronger 

assumption. 

From the definition of monotone DAG-faithful models we know that these models form a subset 

of DAG-faithful models. We have found that some models are DAG-faithful but not monotone 
DAG-faithful. To illustrate this, consider the probabilistic model shown in Figure B.1:  
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A

B

C

D

P(a0)=0.5
P(a1)=0.5

P(b0|a0)=0.7
P(b0|a1)=0.3
P(b1|a0)=0.3
P(b1|a1)=0.7

P(c0|a0)=0.8
P(c0|a1)=0.2
P(c1|a0)=0.2
P(c1|a1)=0.8

P(d0|b0,c0)=0.9
P(d0|b0,c1)=0.1
P(d0|b1,c0)=0.5
P(d0|b1,c1)=0.5
P(d1|b0,c0)=0.5
P(d1|b0,c1)=0.5
P(d1|b1,c0)=0.1
P(d1|b1,c1)=0.9

 

Figure B.1: Simple Bayesian Network 

If the model was monotone-DAG-faithful, we expect )|,( DCBI  to be greater than ),|,( DACBI .  

However, we find 018.0),|,( =DACBI  and 0)|,( =DCBI : when using {A,D} as the condition-

set, there is one open path B-D-C and when using {D} as the condition-set, there are two open 

paths, B-D-C and B-A-C.  Note that this model is not even DAG-faithful since the independence 

between B and C given {D} cannot be expressed by the DAG structure.  However, if we change the 

parameters of the network a little, for instance, changing the CPtable of node C to the same as that 

of node B, we can make )|,( DCBI  greater than 0 but still smaller than ),|,( DACBI .  Now, we 

get a model that is DAG-faithful since B and C are not independent given {D}, but not monotone 

DAG-faithful. 

From the above example, we can draw two conclusions. First, there are some models that are 

DAG-faithful but not monotone DAG-faithful.  Secondly, the distinction between DAG-faithful 

models and non-DAG-faithful models is not black and white.  In the above example, if the small 

value I(B,C|D) happens to be larger than the threshold used to separate ‘dependent’ and 
‘independent’, then the model is DAG-faithful; otherwise, it is not DAG-faithful.  This shows that 

there is a ‘gray’ area of the area of DAG-faithful models, in which the models are ‘close’ to being 
non-DAG-faithful.  Although we do not have a formal proof, we conjecture that the non-monotone 

DAG-faithful models are all in the ‘gray’ area.  In other words, if a model violates the monotone 
DAG-faithfulness assumption, we conjecture that it is also close to the violation of DAG-

faithfulness.  If so, then any such model may also be problematic for other learning algorithms. 
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Given the fact that qualitative CI test based learning methods, like TPDA-Π, require the 

qualitative DAG-faithfulness assumption for their correctness proof, it is reasonable to think that our 

quantitative CI test based method requires a quantitative assumption.  We view the monotone DAG-

faithfulness assumption used in TPDA as the quantitative counterpart of the DAG-faithfulness 

assumption.  We believe that most real-world probabilistic models are actually monotone DAG-

faithful. 

Even when the underlying probability distribution is DAG-faithful but not monotone DAG-

faithful, our algorithm may still be able to learn the correct graph.  In fact, this algorithm may not be 

able to separate two d-separated nodes only when there is at least one path that connects the two 

nodes by a single collider and removing a node in the condition-set causes the violation of the 

monotone DAG-faithful assumption.  However, since this will only cause one edge to be wrongly 

added to the current graph, the correctness of other edges in the graph will not be affected and the 

resulting graph can still be very close to the real model. 

Appendix C: Introduction to BN PowerSoft Package 

There are several commercial systems and research prototypes for learning Bayesian networks from 

data, including TETRAD II [Scheines et al., 1994], Bayesian Knowledge Discoverer [Ramoni and 

Sebastiani, 1997], CoCo [Badsberg, 1992], BUGS [Thomas et. al., 1992], BIFROST [Hojsgaard et 

al., 1994] and MIM [Edwards, 1995].  (See also 

http://http.cs.berkeley.edu/~murphyk/Bayes/bnsoft.html .)  However, as far as we know, only 

TETRAD II can handle a data set at the size of the ALARM network data we used, which contains 

37 variables and 10,000 records.  Considering that real-world data sets often contain hundreds of 

variables and millions of records, the size of the ALARM network data is actually quite moderate.  

The lack of practicable, easy-to-use learning systems that scale well hinders the real use of Bayesian 

networks in industry.  As a result, most industry users are unaware of the current progress in this 

area.  This is, at least partially, the reason that the Bayesian network method is not as popular as 

other methods, like neural networks and decision trees, in current data mining systems in industry. 

To promote the real use of Bayesian networks and facilitate researchers in related fields, we 

implemented our algorithms into a Bayesian network learning system, named “Bayesian network 
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PowerConstructor”.  This system implements two learners (corresponding to TPDA and TPDA-Π). 

Since October 1997, over 4000 people have visited our web sites and over 2000 people have 

downloaded our system.  We are also very glad to know that some users have used it successfully 
on real-world problems. In May 2000, we also extended the PowerConstructor system to a full-

fledged data mining system – BN PowerPredictor, which has most of the features of 
PowerConstructor and additional features for data mining applications. In addition, our software 

package also includes a data pre-processing tool for data importing and data discretization.  Both 
systems run under 32-bit windows systems (i.e., Windows 95, Windows 98, Windows NT and 

Windows 2000) on PCs.  They are available for download from our web site 
(http://www.cs.ualberta.ca/~jcheng/bnsoft.htm).  

Using this package, we obtained very encouraging results on a set of standard classification 
problems [Cheng and Greiner, 1999; Cheng and Greiner 2001]. We also won the ACM KDD Cup 

2001 data mining competition “Task 1: prediction of molecular bioactivity for drug design”, by 
learning, from training data, the classifier (here a Bayesian network) with the best prediction 

accuracy. There were 114 groups who participated in this task, using various data mining techniques 
[Page and Hatzis, 2001]. 

Summary of BN PowerSoft Package  

This software package includes BN PowerConstructor, BN PowerPredictor and a data pre-

processor. Besides its efficiency and scalability, our systems have the following features. 

• User-friendly interface with online help.  

• Accessibility. The system supports most of the popular desktop database and spreadsheet 
formats, including Ms-Access, dBase, Foxpro, Paradox, Excel and text file formats. It also 

supports remote database servers like Oracle, SQL-server through ODBC.  

• Reusability. The engine is an ActiveX DLL, so it can be easily integrated into other 

Bayesian network, data mining or knowledge base systems for Windows 95/98/NT/2000.  

• Supporting domain knowledge. Complete ordering, partial ordering and causes and effects 
can be used to constrain the search space and therefore speed up the construction process.  

• Automatic feature subset selection and model selection in PowerPredictor by using a 

wrapper approach. 
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• Supporting misclassification cost function definition in PowerPredictor. 


