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1 Introduction

With too little information, reasoning and learning systems cannot work effectively. Too much
information can also cause the performance of these systems to degrade, in both accuracy and
efficiency. It is therefore important to determine what information must be preserved, or more
generally, i.e., what information is “relevant”.

Reasoning about what is and is not relevant to the goals at hand is ubiquitous in humans. Much
of this meta-theoretic reasoning occurs outside of the scope of our introspection; it is believed
that over 90% of the neuronal connections in our brains are inhibitory and serve to discard or
suppress inputs received through our senses. Moreover, when we engage in deliberate problem-
solving (e.g., writing this introduction, planning a trip, or learning a buyer’s profile from credit
data), we explicitly reason about the relevance of entities in our conceptualization of the problem. In
addition, in the context of computing within a problem formulation, we reason about the relevance
of steps in that computation; e.g., which move to explore in game tree search or which variable
to ignore in data analysis. The object of relevance reasoning is to simplify problem formulations
and to eliminate wasted effort in computation. Relevance reasoning is crucial for agents like us
with limited memory and computational resources; the benefit obtained from being able to derive
appropriate actions within given resource limits far outweighs the expense of such reasoning.

This special issue, motivated by the very successful AAAI Fall Symposium on this topic [1], ad-
dresses questions in automating relevance reasoning, focusing on autonomous systems with limited
computational and sensory resources, embedded in dynamic environments. First, what is relevance
reasoning? Is it different from other kinds of reasoning, such as default reasoning or common sense
reasoning? Are there general definitions of relevance that transcend tasks? If relevance is task-
specific, what is the relationship between a task and the kind of relevance reasoning appropriate for
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it? When is relevance reasoning necessary for autonomous systems? Can we provide a knowledge-
level account of relevance reasoning independent of the syntactic details of how it is implemented
in particular computational systems? What are the costs and benefits of relevance reasoning, and
how do we quantify them?

A key premise underlying the study of relevance is that there are general relevance criteria that
can be articulated explicitly, independent of specific tasks and formulations. A related premise is
that the cost of relevance reasoning will be offset by the ability to compute good action policies
within resource limits. The 11 papers in this special issue put these premises to theoretical and
empirical tests.

One general way to define the meta-theoretic notion of relevance is in terms of “perturbations”:
A specific “entity” (such as an action, training sample, attribute, background proposition, or infer-
ence step) is irrelevant to a task in some context if the appropriate response to the task does not
change by an unacceptable amount if we change the entity in that context. Otherwise, we view that
entity as (somewhat) relevant to the task. This view is explicitly stated in the [Galles+Pearl]
paper, which deals with causality and where a perturbation corresponds to a material change in
the physical world; it is also implicit in most of the other papers appearing in this specific issue.
For instance, the learning papers of [Greiner+Grove+Kogan], [Kivenen+Warmuth+Auer],
[Kohavit+John] and [Blum+Langley] all use the fact that an attribute is irrelevant to a clas-
sification function if the class label of an instance does not change if we change the value of that
attribute. [Baum+Smith] define relevance of individual computational steps; in particular, they
say that a leaf expansion in a game tree search computation is relevant if it has the potential to
alter the choice of move. [Darwiche], [Levy+Fikes+Sagiv] and [Lakemeyer] provide similar
definitions of when a perturbation to a proposition leaves answers to a set of goal propositions
unchanged in the context of some background theory.

While there is significant agreement on the general definition of relevance, there is considerable
variety in how they are instantiated in the context of specific tasks or task classes. [Baum+Smith)]
demonstrate the subtleties involved in instantiating this general definition to a specific computation.
A leaf expansion in a game tree search could impact the utility of the move under consideration as
well as the choice of future leaf expansion decisions. The implementation of their relevance criterion
forces them to move away from the traditional model of making point estimates of the value of leaf
positions to using parametric value distributions that can be learned during the course of a game.
They show that the distinction between important and unimportant lines of play in a game can be
captured using relevance measures on distributions over evaluation scores.

The nature of the learning task necessitates different choices in the structure of criteria for deter-
mining attribute relevance. Thus, while [Kivenen+Warmuth+Auer] and [Kohavi+John] as-
sume the same attributes are relevant over all instances, [Greiner+Grove+Kogan] and [Baluja+-
Pomerleau] consider tasks where different attributes are relevant for different instances, making
attribute relevance a function of the specific instance rather than that of an entire instance set.
The task in [Baluja+Pomerleau] is to detect lane-marking in an image to help a vehicle follow
a road. This task is difficult as the image is often cluttered with distracting extraneous objects
(e.g., other vehicles, pedestrians, etc.) that can look superficially like the lane marking that the
vehicle is seeking. To avoid these distractions, the system focuses its search on the “relevant” part
of the image; this subset is based on its expectation of the lane marking positions, which is based
on previous images in the sequence. In contrast, the [Kivenen+Warmuth+ A uer] analysis does
not require ever explicitly identifying which attributes are relevant — it only uses the observation
that there is a set of k relevant attributes in its analysis. [Blum+Langley] survey work in defining
and using other relevance criteria in concept learning.



The difficulty in finding realizable implementations of relevance definitions in reasoning is illus-
trated by [Galles+Pearl], [Levy+Fikes+Sagiv], [Darwiche] and [Lakemeyer]|. [Lakemeyer]
postulates semantic definitions of the relevance of a proposition to another in the context of a the-
ory and shows that it is intractable to compute exact relevance relations even under propositional
logic. This work motivates the need for approximations as considered by [Khardon+Roth] who
demonstrate that reasoning can be efficient when restricted to relevant models (e.g., vivid knowl-
edge bases of Levesque) of formulas under consideration. [Darwiche] recasts Pearl’s definition
of conditional independence (irrelevance) in probabilistic reasoning [4] in the logical context and
provides several efficient graph-theoretic algorithms for decomposing complex logical calculations
into simpler computations. Similarly, [Galles+Pearl] show that most aspects of causal relevance
can be captured by directed graphs and that such graphs can be used as theorem provers, to test
whether new relevance relations follow from, or are consistent with, a set of relevance premises.

Can a pure knowledge level account of relevance reasoning be provided? [Kohavi+John] and
[Levy+Fikes+Sagiv] provide evidence that such an account is either unlikely to be comprehensive
or not be very useful. [Kohavi+John] empirically demonstrate that the determination of attribute
relevance in an induction task cannot be made independent of the induction algorithm (which
therefore necessitates a symbol level analysis). [Levy+Fikes+Sagiv], building on earlier work
by Subramanian in [5], provide a proof-theoretic account of irrelevance in the context of efficient
deductive reasoning with large Horn theories, in sharp contrast to [Lakemeyer]’s purely semantic
account.

Almost all of the papers in the special issue provide theoretical guarantees and/or experimental
results on the utility of relevance reasoning. [Baluja+Pomerleau] demonstrate that by using
relevance analysis to focus the attention on lane pixels in an image, the accuracy of the choice
of steering direction is improved by 20% — a significant performance improvement on the task.
[Baum+Smith] conduct an extensive empirical evaluation of their policy of expanding relevant
leaf nodes in the context of Othello. They show that their programs play a much stronger game
than alpha-beta pruning and that the superiority of their approach increases rapidly with additional
time resources. An interesting open empirical question is whether the [Baum+Smith] relevance
criterion would benefit the game of chess.

The following papers on logical reasoning demonstrate how logical inference of various forms
can be made more efficient by explicit reasoning about relevance. [Darwiche] provides conditions
under which reasoning about logical conditional independence simplifies complex computations
(belief change, entailment and satisfiability) into small sets of much simpler “local” calculations.
[Levy+Fikes+Sagiv] demonstrates that reasoning with large Horn databases can be significantly
speeded up by explicit elimination of irrelevant facts. [Khardon+Roth] take a very different
approach, showing that models which summarize relevant information in a set of formulas can be
the basis of very efficient schemes for logical as well as default reasoning.

The papers on learning also demonstrate that “less is better”, i.e., they show that learning
algorithms produce more accurate classifiers if trained on only the subset of “relevant” training
examples, or if given only the values of the “relevant” attributes of the training examples. The
[Blum+Langley] review paper uses insights from the machine learning and the computational
learning theory communities to summarize results, both characterizing the “state of the art” im-
plemented systems (e.g., into “embedded” vs “filter” vs “wrapper” approaches, contrasting fea-
ture selection with feature weighting schemes, and considering both selecting relevant examples,
and relevant attributes) and providing useful theoretical explanations. [Kohavi+John] explain
why a learner, trying to produce an accurate classifier from a limited pool of training examples,
can do better if it uses only the subset of relevant attributes. They then present an extensive



empirical comparison between their approach, which involves “wrapping” the basic learner, as a
black box, within an algorithm that searches for the optimal subset of features with a “filter-
ing” algorithm, that uses other, learner-independent principles to select the subset of attributes.
[Greiner+Grove+Kogan] present a learning model where a helpful teacher, who uses the target
decision tree to label instances, also tells the learner which attributes in the target tree were used
to classify the instance. They show that this relevance information can be extremely useful: e.g.,
while there is no known algorithm that can “PAC-learn” arbitrary decision trees in the standard
model (where the learner sees the complete set of attribute values for each instance) [6], this learn-
ing task become trivial if the learner is told exactly which features are relevant for each instance.
Finally, Littlestone earlier presented a very clever algorithm for learning linear-seperators, called
WinNow, which had the intriguing property that it scales linearly with the number of relevant
attributes but only logarithmically with the total number of attributes [2]; by contrast, the typical
PERCEPTRON algorithm scales linearly here [3]. As most of these results were only upper bounds,
it was not clear whether there really was a difference here. The [Kivenen+Warmuth+Auer]
paper answers this, by showing that an adversary can force the Perceptron algorithm to make
exponentially more mistakes (in the context of on-line learning) than WINNOW.

We hope these papers awaken interest in relevance reasoning and inspire new answers to the
open questions posed earlier in this introduction.
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