
Predicting UNIX Command Lines:
Adjusting to User Patterns

Abstract

As every user has his own idiosyncrasies and preferences,
an interface that is honed for one user may be problematic
for another. To accommodate a diverse range of users, many
computer applications therefore include an interface that can
be customized — e.g., by adjusting parameters, or defining
macros. This allows each user to have his “own” version of
the interface, honed to his specific preferences. However,
most such interfaces require the user to perform this cus-
tomization by hand — a tedious process that requires the user
to be aware of his personal preferences. We are therefore ex-
ploring adaptive interfaces, that can autonomously determine
the user’s preference, and adjust the interface appropriately.
This paper describes such an adaptive system — here a UNIX-
shell that can predict the user’s next command, and then use
this prediction to simplify the user’s future interactions. We
present a relatively simple model here, then explore a variety
of techniques to improve its accuracy, including a “mixture
of experts” model. In a series of experiments, on real-world
data, we demonstrate

�����
that the simple system can correctly

predict the user’s next command almost ���	� of the time, and
can do so robustly — across a range of different users; and��
��

that it is extremely difficult to further improve this result.

Keywords: human computer interaction, machine
learning, automated modeling

1 Introduction

Today there are a wide variety of interactive computer appli-
cations, ranging from web-browsers and searchers, through
spreadsheets and database management systems, to editors,
as well as games. As these systems become more compli-
cated — as required to be able to accomplish more tasks,
better — their interfaces necessarily also become more com-
plex. Many of these systems have begun including tricks to
help the users; e.g., if the user begins an empty file with
“Dear John”, WORD will suggest a “Letter” template; sim-
ilarly, if the user begins a line with an asterisk (�), WORD
will change that character to a bullet (
) and go into its List
environment.

Unfortunately, different users have different preferences,
therefore the tricks that are appropriate for one user may
be problematic for another (e.g., not all users like the fact
Copyright c

�
2000, American Association for Artificial Intelli-

gence (www.aaai.org). All rights reserved.

that WORD automatically formats anything starting with
“http://” as a web link). Moreover, different users want to
do different things with the system, as they have very dif-
ferent abilities, background knowledge, styles, etc. This re-
alization — that “one size does NOT fit all” — argues for
customizable interfaces that can provide different interfaces
for different users, and hence allow each user to have an in-
terface that is honed to his individual preferences.

Of course, many of today’s application programs can be
customized; e.g., most editors and shells include macro- or
scripting- facilities. However, this customization process
must typically be done by the user — this typically means
that it is not done by the user, as this customization process���	�

requires that the user knows how to make this modifica-
tion (e.g., knows both the names of the relevant parameters,
and how to modify them);

�����
requires the user to be aware

of his specific preferences, and
�����

is usually quite tedious.
This research project, therefore, pursues a different ap-

proach: Build application systems that can autonomously
adapt themselves to the individual users. In particular, we
focus on techniques for detecting patterns in the user’s in-
teractions, and then use this information to make the in-
teraction simpler for the user (perhaps by automatically re-
setting some system parameters, or defining appropriate new
macros).

This paper investigates a specific manifestation of this
task: We design and implement a UNIX command shell that
predicts the user’s behavior from his previous commands,
and then uses these predictions to simplify his future in-
teractions with the shell. The rest of this introductory sec-
tion presents two illustrative examples to help describe our
task more precisely. Section 2 provides the background for
this work, focusing on the Davison/Hirsh system (DH98)
which serves as a precursor to our system. Section 3 first
scales their system to address our “learn complete com-
mands” task, and observes that the resulting system can cor-
rectly predict the user’s next command almost ����� of the
time, over a wide range of different users. It then presents
a body of well-motivated techniques that should improve
on that system — e.g., provide the adaptation system with
other types of information, including longer history, etc. Our
empirical studies, however, demonstrate that these ideas of-
ten produced inferior results. Section 4 explains these dis-
appointing (read “what not to do”) results, then presents

% vi cw.c
% make cw
cc -g cw.c -o cw -lm

% cw puzzle01
bus error (core dumped)

% vi cw.c
% make cw
cc -g cw.c -o cw -lm

% cw puzzle01
Solution found in 15584 attempts.

% cw puzzle02
Solution found in 349295 attempts.

% cw puzzle03
segmentation violation (core dumped)

% ddd cw core
% vi cw.c
% make cw
cc -g cw.c -o cw -lm

Undefined symbol: print first refer-

enced in file cw.o

ld: fatal: Symbol referencing errors. No out-

put written to cw

*** Error code 1

make: Fatal error: Command failed for target ‘cw’

% vi cw.c
% make
cc -g cw.c -o cw -lm

% cw puzzle03
Solution found in 13 attempts.

% elm -s"it works" fred

Figure 1: Wilma’s Command Sequences
a slightly different approach, of combining the predictions
made by a set of relatively-simple experts, each using its
own class of information. It then demonstrates that this ap-
proach does work slightly more effectively than the base
system. We conclude by arguing that the relatively simple
system appears to have “gleaned” essentially all of the in-
formation available; if true, this explains why no number of
tricks can produce a system that will be significally more
accurate.

1.1 Examples

Figure 1 shows Wilma’s interactions with a shell, as she
works on her crossword-solving program. It is easy to see
that there is a consistent pattern within Wilma’s activities;
e.g., the vi-make-cw sequence is repeated several times.
Although Wilma has taken advantage of traditional UNIX
facilities, she still has to type a number of characters.

Now examine Fred’s command sequences; Figure 2. He
has already completed the assignment and is trying to write
up his results. Unfortunately, Fred is not very familiar with
LATEX and is having trouble formatting an equation. Here, an
even more obvious pattern is visible. Note that, if Fred had
a script to perform the latex-dvips-gv steps for him,
he would not have make the mistake of running dvips on
a LATEX source file.

[1]% vi cw.tex
[2]% latex cw.tex
[3]% dvips cw.dvi
[4]% gv cw.ps
[5]% vi cw.tex
[6]% latex cw.tex
[7]% dvips cw.dvi
[8]% gv cw.ps
[9]% vi cw.tex
[10]% latex cw.tex
[11]% dvips cw.tex
dvips: ! Bad DVI file: first byte not preamble

[12]% dvips cw.dvi
[13]% gv cw.ps
[14]% wall
Can anyone help me with latex???

ˆD

Figure 2: Fred’s Command Sequences
2 Background

UNIX command line prediction appears at first glance to
be a trivial task: after all, how many commands can one
person possibly use regularly? Although novice users1 are
typically easy to predict (as their command set is typically
very small), novice users become advanced users with ex-
perience, and these advanced users often use hundreds of
commands, and moreover often augment these repertoire of
commands over time. The problem of predicting UNIX com-
mand lines has been targeted for the last decade by a num-
ber of people in the Human-Computer Interaction (HCI) and
Machine Learning (ML) communities. Greenberg collected
a large amount of data (Gre88), providing the community
with the usage patterns (287,000 command lines) of 168
users of varying skill levels (non-programmers, novice pro-
grammers, experienced programmers, and computer scien-
tists), over a period of two to six months. There are approxi-
mately 5,100 distinct command stubs, ranging from 7 to 359
per user (average = 89) and approximately 62,000 distinct
command lines, ranging from 35 to 3,160 per user (average
= 467). Although the data is ten years old, it is still quite us-
able, and provides a reasonable benchmark to compare our
work against others.

Davison and Hirsh (DH97; DH98) more recently pro-
vided a hand-crafted algorithm that adapts to user activity
over time, generating a simple probabilistic model to pre-
dict command stubs2. They keep track of which sequences
of commands are typed, and use this to estimate the proba-
bility that any command ������� will immediately follow each
possible � � . However, predicting a user’s next command
line is a moving target — e.g., external unobserved events
(such as mail arriving or deadlines approaching) can occur,
and the user goals can change. As this means the under-
lying command distribution is not stationary, standard ML

1Novice users are typically characterized by a lack of knowl-
edge about existing commands, as well as a lack of knowledge
about how to effectively use (or abuse) system resources.

2A stub is the “executable” of the command, rather than the
complete command line — i.e., if the command line is “latex
foo.tex”, the stub is “latex”.

vi la
te

x

dv
ip

s

gv w
al

l

vi 0 1 0 0 0
latex 0 0 1 0 0
dvips 0 0 0.16 0.84 0
gv 0.8 0 0 0 0.2

Table 1: Probability of Stub ����� following Stub �

techniques are not applicable. Therefore, instead of build-
ing a conditional probability table (CPT) based on stub fre-
quencies, they instead use a pseudo-probability: Each time
they see one command following another — say � ��� ���
and � ����� �����
	�� — they first update all of the cur-
rent � �

��
���� � ����� ������������
 � � ��� �
entries by multiplying

each by some fixed �! � �#" � � ; they then add
�%$ � to the

particular � �
�
��&� �'�(���
	��)� � �����*�*��
 �+� �,� �

entry. (Note
they explicitly maintain only the observed pairs, and implic-
itly assign each unseen pair the probability of � .) For exam-
ple, applying this scheme (which we call “AUR”) to the se-
quence shown in Figure 2, produces the distribution shown
in Table 1. (Here we use � � ��- . .)

Their system is “on-line”: at each point, after observ-
ing the sequence of stubs /� � �1032�465

� "3-7-7-7" 032�4�5 � � , it then
predicts the five stubs with the largest probability values:8 072�46579 ������ "7-7-3-7" 072�46579�:�����<; . It is then told the correct

032�465
�����

that the user actually typed, which it uses to update its CPT,
(which in turn is then used to predict

032�4�5 9
���>= , etc.). To

define accuracy, we observe how frequently the predicted
command completely matches the user’s actual command,
This Davison and Hirsh method obtains nearly 75% accu-
racy, in that the user’s actual command stub is one of the �
predicted stubs, three-fourths of the time.

Our task is extremely similar to theirs, except we will fo-
cus on learning entire commands, rather than just stubs; and
we have built a real-time system for this task, rather than just
performing a retrospective analysis. Moreover, many of our
experts will use something very similar to AUR.

Yoshida and Motoda (YM96) examine another aspect
of the issue: by exploring file I/O relationships (i.e.,
which programs use which files) they can suggest de-
fault commands to run on files. For example, suppose
a user runs “emacs foo.tex”, “latex foo.tex”,
“dvips foo.dvi” and “gv foo.ps”. Later on, when
the user creates another file “bar.ps”, their system will
suggest running “gv”, because the file ends in “.ps”. Af-
ter a number of interactions have been observed, complete
shell scripts can be generated for a sequence of events (e.g.,
when compiling or writing LATEX documents). Additionally,
they explore file/Web cache pre-fetching to reduce load de-
lays (MY98).

Finally, the Reactive Keyboard (DW92) uses length- ?
modeling to predict the next keystrokes based on the pre-
vious keystrokes typed. This is similar to our work, except
we are predicting the next complete command line based on
the previous command lines typed rather than a keystroke
at a time. One fundamental difference is that, while they
deal with only a small number of possible “tokens”, our sys-

Command � Command ��� � Prob
vi cw.tex latex cw.tex 1.0

latex cw.tex dvips cw.dvi
dvips cw.tex

0.8
0.2

dvips cw.dvi gv cw.ps 1.0
dvips cw.tex dvips cw.dvi 1.0

gv cw.ps vi cw.tex
wall

0.8
0.2

Table 2: Probability of Command ����� following Command �

tem must deal with an unbounded number of possible com-
mands.

3 Basic Approach

As noted above, our goal is to extend the Davison and Hirsh
system, in several ways. First, we implemented an inter-
active system. As described below (Section 4.1), we first
estimate a distribution over the next command — comput-
ing the probability that this

2A@ �CB � command will be “ls”,
versus “cd ..” versus “latex foo.tex”, etc. We then
map the top five to the F-keys — the best prediction to F1,
the second best to F2, . . . , the fifth best to F5 — and lists
these mappings (read “predictions”) in the title bar of the
xterm; see Figure 3. Throughout our many designs, we in-
sisted that the adaptive system remain “real-time”; i.e., the
total process — updating the various datastructures, com-
puting the most likely commands, resetting the display, etc.
— had to could not take over DED HERE: ?10 FEF milliseconds.
Note, also, that this approach complements the existing his-
tory and file/command completion and correction facilities
already available with ZSH.

The second extension is to predict complete commands,
rather than just stubs. Our first approach wsa simply to
extend the Davison/Hirsh system to predict these complete
commands; producing Table 2 from the Figure 2 dialog.
The resulting system was GIH,- G � accurate over the Green-
berg data.3 Hoping to improve of this score, we then imple-
mented several modifications.

First, we built a system that used both the previous com-
mand and the error code it returned. For example, after
runnning latex foo.tex, we figured the user would
only go on to dvips foo.dvi if the latex command
was successful (read “return error code of � ”), and would
otherwise go perhaps to emacs foo.tex. Unfortunately,
our empirical data shows this degraded the performance; see
Table 4. We had similar negative results when we tried in-
corporatig day-of-week, or time-of-day.

We also considered parsing the actual commands, to
enable some simple types of generalization — e.g., after
observing that “dvips foo.dvi” followed “latex
foo.tex” and “dvips bar.dvi” followed “latex
bar.tex”, our system should anticipate that “dvips
blop.dvi” may follow “latex blop.tex”, even
though it has never seen anything related to “blop” before.
To do this, we used an parser to produce an “abstract”

3As noted above, we could get almost J	��� accuracy when pre-
dicting stubs.

Figure 3: Implementation
pattern of commands; e.g., to re-represent the commands
from Figure 2 as:

[1]% vi cw.tex
[2]% latex � T-1 ARG1 �
[3]% dvips � T-1 ARG1 STEM � .dvi
[4]% gv � T-1 ARG1 STEM � .ps
[5]% vi � T-1 ARG1 STEM � .tex
...

Our system can then attempt to match the “current pat-
tern” against these abstracted command lines (rather than
the actual commands). This too degraded performance.

Finally, we considered conditioning on the pre-
vious two commands, �������	��
��
������� , rather than
just ������� . (That is, we used AUR to compute��� � ������� � ���	�����
�� �������! #" based on the ob-
served triples
 �
 � .) So from the Figure 1 dialog, we
would claim an $&%(' chance that that the user will type cw,
after seeing her type the the sequence �*),+.-0/1
32�45� — i.e.,��� � ���7698:� � ���	�;�)�+.-0/0
�� ������� 2�4 "<� =0> $&% . This
too failed — producing a system whose accuracy dropped
to only ?.@ > A ' .

So, while we thought each of these approaches had to
work, our data proved otherwise: essentially all of these
winning ideas caused the performance to degrade. Un-
daunted, we tried another approach. . .

4 ”Mixture of Experts” Approach

Each of the previous ideas attempted to exploit some other
type of information. Of course, we would like to include
them all. One major problem, of course, is dimensional-
ity: Even assuming there are only 500 commands, we first
need to consider B =�= � possible command-pairs. For each of
these, we need to also consider time of day (say in % buck-
ets), error code (say in C buckets), and day of week (say inD buckets) which means we will need to estimate at least
14,000,000 parameters. Unfortunately, this is not just cum-
bersome, but unlearnable: people will change their patterns
long before observing enough commands to produce good
estimates here.

We therefore need to reduce the dimensionality of this

Source of Prediction Accuracy E1F
Previous 1 Cmd G�H�I G�JKEML�N LOLOLOP
Previous 1 Cmd, w/parsing G*G.I Q9JKE1L�N LOLOLOP
Previous 2 Cmds RTS&I U9JKEML�N LOLOLOP
Previous 1 Cmd V Error Code GTS�I U9JKE1L�N LOLOLOP
Previous 1 Cmd V Day of Week GTS�I HTJKE1L�N LOLOLOP
Previous 1 Cmd V Time of Day GTS�I S9JKE1L�N LOLOLOP

Table 3: Early Results

space. Here we used a standard trick of “factoring” the
range of options. We word this using the “mixture of ex-
perts” model (JJNH91): Building several relatively sim-
ple experts W9X�Y[Z , each predicting the next command from
some different set of available information; see Figure 4.
After Section 4.1 motivates and provides the combination
rule we used, the remaining % subsections describe the four
actual experts we used: X]\�^ uses the previous _ Actual
Commands (for various _); X�` ^ uses the previous _ Parsed
Commands; X;a �Ob�b focuses on the Last c =.= commands; andX;d � uses the First c command in a session. The concluding
Subection 4.6 then shows provides empirical data to illus-
trate that these experts, when combined, did produce a slight
improvement.

4.1 Combining the Voices

Here, we assume each expert X�Y has used some aspects of
the current body of information e (previous commands, er-
ror code, time and date, etc), to produce its prediction for
what command the user will type next;

��� X]Y �K��� e " .
(These specific predictors are described below.) Our goal
is to combine these, to produce an improved prediction —�f� �:g �K�h� e " .

To simplify the derivation, assume there are only two
experts. We can then writeikj9l�m0nporq�sutvnxw yTz {]if|.l m n}o�~[����n}�M~[����np��q�sp� nw yTz { i���l m npo������

�;��np�� � np�s � i��0����np� ���� ����np�s � ikj�����np�Mq s�tn w yTz {�i���l m npo ���� ����np�� � np� � ikjT� � np�]q�s}t�ikjT� � np�#q�spt
where the last line uses the assumptions that the pre-
diction will depend only on the values that the ex-
perts say (i.e., ��� ��g ����� X�� �K�
�X;� ���
�e " ��f� �:g �K�h� X �;�K�
�X �]�K�v"); and X � ’s prediction
is independent of X � ’s (given the background e —�f� X�� �K��� X;� ���
�e " � ��� X]� ����� e "). We
further simplify the equations by making the assump-
tion that ��� �:g �K��� X �;���
�X �]����" � = when���� W �
 � Z , and moreover, that we can lump together
the cases � �� � . We also ignore the actual com-
mands — i.e., assume

��� ��g � ls � X]� � ls
�X;� � ls "!��f� �:g � make � X ��� make
�X ��� make " , and so forth.
This means we need only estimate ? additional numbers:

Prediction

Sequence of Commands
Expert

Command History

Expert
First Command

Expert
Last 100 Commands

Sequence of Parsed
Commands Expert

Figure 4: Combination of multiple Experts

����� � � � �
�
� � ��� � � ��� " � = � � �

� ������ � � �
�
� � ��� � � ��� " � =	�� � �

� ���� � � � �
�
� � ��� � �
���� " � = � � �

(Recall��������� � � �
�
� � ��� � � ���� " � = �� � � � � �

This means� ��
���������� ��� ����� � ��� � ���!� � ��" �#�
��� �$ � ���&%� ��� � ���!� � ���(' ��" �#�)�!� � �$ �(%��� � ���(' � � � ���*� � � � " �+�
��� �
where ��, � ���.- �

abbreviates � � � , � ���/- �
. To further

simplify the computation, we only consider a subset of the
possible commands � — only those commands that either� � or � = rank in their (respective) top

� � .
Of course, this all scales up to larger sets of experts:

In general, if we are considering ? experts, then (in ad-
dition to having each expert learn its own distribution� � � , �����/- �

), we will also need to estimate
�10 $ �

prob-
ability values.

4.2 Using 2 Previous Actual Commands
As noted above (when outlining AUR; Section 2), the distri-
bution over the user’s next command is not stationary, which
means standard techniques (such as using simple frequen-
cies) will not work. The �43�5 expert therefore adopts a ver-
sion of the AUR approach, in using the observed previous
commands � ��6 � " � ��6�= "3-7-3- in predicting the next (currently
unobserved) ��� command. Of course, we are dealing with
the entire command, rather than just stubs. See Table 2.

We initially used only the immediately previous com-
mand � ��6 � , then tried conditioning on the previous two
commands, D � ��6 �C" � ��6 = F . Unfortunately, relatively few
command-pairs occurred frequently; this means we are rela-
tively unlikely to have seen many examples of any particular
pair before. . . which meant our system overfit the available
data, and produced a system with reduced accuracy (only�87 - 9��).

A better approach is to condition on the previous two
commands only when we have reason to believe these pre-
dictions will be meaningful; that is, only when this pair has
occurred frequently before. Otherwise, we just condition on
the single, immediately previous � ��6 � . Of course, we can
apply this recursively, to consider conditioning on the previ-
ous three � ��6 � " � ��6�= " � ��6�: when there is sufficient data to
support any conclusions reached, or previous 4, or whatever.
(This is idea underlying the IMM system (SDKW98).)

Commandt-1
Probability
DistributionCommandt

Probability
Distribution

wall

latex crossword.tex
ghostview crossword.ps
dvips crossword.tex
dvips crossword.dvi vi crossword.tex

vi crossword.tex ghostview crossword.ps

Figure 5: History Expert

We therefore built a data structure to encode this in-
formation; such as Figure 5, which corresponds to the
Figure 2 example. As shown on the left-hand-side, each
single command indexes a node, which also has a dis-
tribution; e.g., the top left node contains the distribution� �

� �'��� � � ��6 �)�<;1=�> ? �A@�B - ;1=�> �
. As there are at least? � �

examples of D � ��6 �!�C;D=�>+? �E@�B - ;D=�> " � ��6 = �=F> @�B - G �1H F , this top-left node also has a child, shown
to its right. That node also includes a distribution� �

� �'��� � � ��6 �)�<;1=�> ? �A@�B - ;1=�> " � ��6 = �<=�> @ B - G �8H �
.

Of course, that “dvips cw.dvi” node could have
several children, and any of these children could their
own have children. E.g., if I had the child J which had
the child K , then the K node would include a distribution� �

�
� ��� � � ��6 � � I " � ��6�= � J�" � ��6F: � K �

, and so
forth. Here, we update this data structure by generating
a new child whenever there are a sufficient number of
instances, here ? � � , that reach the child’s location.
Although the possibility of growth is unlimited, in practice
the number of levels of children rarely exceeds

�
.

4.3 Using 2 Previous Abstracted Commands
The

�4L 5
expert first “abstracts” the command line, by re-

placing the details of the filename components (path name
and extensions such as “/usr/ralph/” and “.tex”)
with generic, matchable terms; see Section 3. This allows
it to re-use the patterns, in matching new terms. After com-
mand lines have been converted into patterns, this expert
uses the same prediction method as in Section 4.2.

4.4 Short-Term Frequency Predictions
The

�4M �*NON expert maintains a frequency table for the last2 � � ��� commands, and predicts the distribution over the26@ � B � command will be from this empirical distribution
� M �*NON �

� ��� � �QP��R- � � S �UTDV
5XWZY8[�]\]\]\ � 5FW!^ S

This method performs surprisingly well by itself, and pro-
vides a robust mechanism for predicting commands — e.g.,
after erroneous command lines (a.k.a. typos) are entered.

4.5 Predicting the Sessions First Command
The first command in a session is a special case, and prob-
lematic as there is no previous command on which to base
predictions. In a method very similar to that of Section 4.4,
the

�`_ � expert maintains a simple probability table for the
first commands of the user’s last a � � � � sessions, and uses
this to predict the user’s first command. Of course,

� _ � is
only active for the first command of each session.

Source of Prediction Accuracy ���
5 Most Frequent Lines ����� � �	��

�
�
�
��
5 Most Frequent in Last 100 ����� � �	��

�
�
�
��
Simple AUR method (1 previous cmd) ��J�� � ����

�
�
�
��
Combination of Experts ��J�� � �	��

�
�
�
��

Table 4: Command Line Prediction Accuracy

4.6 Results
Table 4 summarizes our results, showing that our algo-
rithm, with all of its experts, can guess the correct command
slightly more accurately than the simple AUR system. While
the improvement seems minor, notice it is significant, at the
��� �#- ��� � level.

We explored using yet other tricks (including combina-
tions with the “obviously appropriate” ones listed in Ta-
ble 3), but were unable to produce significantly better re-
sults. We therefore think we have reached the limits of suc-
cessful prediction with this dataset — the remaining error is
simply a function of the underlying stochasticity of the pro-
cess. Towards confirming this, we investigated how well our
algorithm would work if it had complete knowledge of the
future; i.e., we trained it on the complete data, and then ran
the trained version over the same data. We saw this system
was only correct G��,- ��� of the time. In fact, on average, onlyH � � of commands are duplicates of previous commands.
That is,

� .�� of commands are very difficult to predict, since
they have never been seen before.

5 Conclusion
Future Work: Although the Greenberg data helped us to
start our work, we have found it misses information that is
needed for better in-depth analysis of user patterns. We are
therefore collecting our own data (see Figure 3). While we
have collected many fewer command lines, we store with
each command line substantially more information, includ-
ing

 current working directory (track directory navigation)

 command timing (allowing timing of under one second)

 computer and display identification

 shell aliases and functions
We plan to exploit this additional information in the au-
tomated construction of shell macros. (Here we will, of
course, use the abstracted patterns; see Section 4.3. We also
suspect that the other available information, such as error
codes, will be essential here.)

Our user interface, while functional, suffers some draw-
backs and would benefit greatly from auto-completion and
integration with ZSH’s correction facilities.

We are also investigating other applications — i.e., other
situations where it would be useful to predict the user’s next
command. In addition to detecting and exploiting patterns
in other software systems (like WORD or POWERPOINT),
we are also considering using this to help optimize commu-
nication; e.g., when using a PalmTM organizer to telnet
to a remote computer or to administer a NetWinder server.
Bandwidth is not a large concern, but command input can

be. Providing command lines on a pull-down menu could
improve general telnet access, and accurate construction
of useful aliases for long command lines would be far more
valuable.
Contributions: This paper has investigated various ways of
producing a system to predict the user’s next command. Our
explorations have produced many insights into this task: for
example, we found that a fairly simple algorithm (AUR, on
the single previous command) can perform adequately. We
then considered many obvious “improvements”, which used
other types of information. We found, however, that these
modifications, typically degrade, not improve, performance.
We attribute this to both the vast number of parameters that
these systems needed to estimate, and to the fact that user
commands are typically non-stationary.

To achieve any improvement required using more sophis-
ticated techniques: here, we used a “mixture of experts” ap-
proach, together with a body of “approximations” to dras-
tically reduce the number of parameters that needed to be
estimated. We are continuing to explore this framework, in
incorporating other types of information (e.g., about error
codes and time of day). The current system, however, is
quite usable, and demonstrates that it is possible to predict
complete user commands correctly almost half the time, and
do so in real-time.

For more information about our system, please visit
http://www.OurUniversity/~Author/AUI/.
References
[DH97] Brian D. Davison and Haym Hirsh. Toward an adap-

tive command line interface. In Advances in Human Fac-
tors/Ergonomics: Design of Computing Sytems: Social and Er-
gonomic Considarations, pages 505–508. Elsevier, 1997.

[DH98] Brian D. Davison and Haym Hirsh. Predicting sequences
of user actions. In Predicting the Future: AI Appreaches to Time-
Series Analysis, pages 5–12. AAAI Press, July 1998.

[DW92] John J. Darragh and Ian H. Witten. The Reactive Key-
board. Cambridge Series on Human-Computer Interaction.
Cambridge University Press, New York, New York, 1992.

[Gre88] Saul Greenberg. Using unix: Collected traces of 168
users. Research Report 88/333/45, Department of Computer Sci-
ence, University of Calgary, Calgary, Alberta, 1988.

[JJNH91] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hin-
ton. Adaptive mixtures of local experts. Neural Computation,
3(1):79–87, 1991.

[MY98] Hiroshi Motoda and Kenichi Yoshida. Machine learning
techniques to make computers easier to use. Artificial Intelli-
gence, 103(1–2):295–321, 1998.

[SDKW98] S. Salzberg, A. Delcher, S. Kasif, and O. White. Mi-
crobial gene identification using interpolated markov models.
Nucleic Acids Research, 26(2):544–548, 1998.

[YM96] Kenichi Yoshida and Hiroshi Motoda. Automated user
modeling for intelligent interface. International Journal of
Human-Computer Interaction, 8(3):237–258, 1996.

