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Abstract

Many significant real-world classification tasks involve a large number of categories which
are arranged in a hierarchical structure; for example, classifying documents into subject
categories under the library of congress scheme, or classifying world-wide-web documents
into topic hierarchies. We investigate the potential benefits of using a given hierarchy over
base classes to learn accurate multi-category classifiers for these domains.
First, we consider the possibility of exploiting a class hierarchy as prior knowledge that
can help one learn a more accurate classifier. We explore the benefits of learning category-
discriminants in a “hard” top-down fashion and compare this to a “soft” approach which
shares training data among sibling categories. In doing so, we verify that hierarchies have
the potential to improve prediction accuracy. But we argue that the reasons for this can be
subtle. Sometimes, the improvement is only because using a hierarchy happens to constrain
the expressiveness of a hypothesis class in an appropriate manner. However, various
controlled experiments show that in other cases the performance advantage associated with
using a hierarchy really does seem to be due to the “prior knowledge” it encodes.
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1 Introduction

The vast majority of A.I. research into machine learning has been concerned with simple
true/false classification tasks; that is, the problem of learning binary-valued concepts. However,
in the large-scale domains typically considered by KDD, this is generally an inappropriate
oversimplification. A typical KDD application will often involve learning a categorization
scheme over a large number of class labels. This is especially the case in those applications
which involve text or document classification; for example, when learning to insert a world-
wide-web document at the appropriate node in a large concept hierarchy; to classify news
stories by topic; or to choose one out of numerous possible diagnoses for an ill patient; and so
on.

What is notable about these domains is not only that they involve a large collection of
class labels (i.e., possible classifications), but that these labels are also often semantically well-
structured. For instance, WWW search engines often categorize items in a topic hierarchy which
one can navigate in a top-to-bottom fashion; the children of a node tend to be specializations
or subtopics of the parent.

The question motivating this research is this: can, and should, this semantic hierarchy
be used when learning a classifier? Or is it just as effective to treat the set of labels as an
unstructured set? This question is not a new one (we survey some of the related work in
Section 4), but we feel there are many interesting unanswered questions.

In this preliminary report, we explain some of our early experiments and the issues we
have encountered. Several of these issues do not seem to have received significant attention
before, yet we believe that they may be important to research in the field. In particular, we
consider

�
1 � the need to control for expressive power,

�
2 � how robust a technique is if a wrong

or inaccurate hierarchy is used, and
�
3 � whether the hierarchy is used in classification, or

whether it is just used during learning. We have few definitive conclusions about any of these
issues (except perhaps the first), but nevertheless hope that our results may stimulate discussion
and deeper research. We ourselves are in the process of running several much more elaborate
experiments, which we hope to include in the final version of this paper.

We begin with the issue of expressive power, because it is perhaps the the most interesting.
Note that it is rather easy to construct “plausible” learning techniques that use hierarchies—and
some of them even work! (See Section 3). However, it is important to understand that there are
generally two distinct issues arising together here. In addition to the semantic contribution of
the hierarchy (i.e., as a source of prior knowledge), the use of a hierarchy tends to change the
expressive power of the hypothesis class being considered by many learning techniques. For
instance, consider a classifier that makes an irrevokable decision among the possible depth 1
children at the root of the hierarchy, and then recurses. That is, it then moves to the most likely
child of the root node and tries to decide among its children, and so on, until a leaf is reached.
We call this the top-down, hard-decision, model. Let us contrast this with a flat-decision model,
which compares all leaf labels against each other and picks the best. Even without specifying
the details of how these decisions and comparisons are made, it should be clear that these two
possibilities will generally have different expressive power. There will be some classifiers that
simply cannot be expressed in a top-down fashion relative to any particular hierarchy but which
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can easily be expressed in a flat fashion. The converse is generally, if not always, true as well.
(We will see specific examples of this below.) The different expressive power often implies a
difference in model complexity as well. We discuss examples later in which the flat model has
many more parameters to be estimated that the seemingly analogous hierarchical classifier.

Of course, one of the most significant lessons arising out of machine learning research is
the importance of representation expressivity and complexity issues. For any given training-
set size, learning performance may be terrible both if the model is too complex (leading to
overfitting) and also, on the other hand, if it is too simple and has insufficient expressive power.
This is sometimes formalized as a bias-variance trade-off [10, 9, 17]. So the question is this:
Whenever the application of a hierarchical constraint in training appears to help, is it because
of the prior semantic knowledge encoded, or is it just that (in a rather indirect fashion) we have
reduced the model complexity to a more appropriate level?

Several of our experiments were designed specifically for this, and the results surprised
us. We control for expressivity in two ways. First, to control for the fact that imposing a
hierarchical structure might simply reduce the expressiveness of the hypothesis class (without
conveying any true information about the domain), we consider what happens if we use the
same hierarchy but permute the leafs. In the extreme case, we permute the leafs randomly
(so the shape of the tree looks identical, but the labels at leaf are not semantically correlated
with the leaf’s siblings, except by chance). Surprisingly, for some of our learning algorithms,
the results remain almost as good. That is, sometimes expressivity is the main (or at least, a
significant) reason that we see any win at all. This is important because, when this is so, one
might perhaps do even better to confront the expressivity issue directly rather than hoping the
hierarchy somehow find the right tradeoff for us. In particular, it suggests that sophisticated
model selection techniques should be invoked [16, 29]. On the other hand, it is conceivable that
using a tree of approximately the “right” size does tend to have some robust power to select
the “right” model complexity automatically. If so, this would be quite a remarkable fact, and
certainly deserving of more theoretical and experimental research.

However, when controlling for expressiveness in this fashion for other learning algorithms
we see different results. In many cases, using an erroneous hierarchy greatly degrades per-
formance as compared both to an analogous non-hierarchical method and to the use of the
“good” hierarchy. This happens even if using the good hierarchy is still not as good as the
non-hierarchical approach, which is the case for several algorithms we have investigated. This
may seem paradoxical: whenever the bad hierarchy hurts a lot, should we not expect that the
“good” hierarchy will help commensurately? We conjecture that many seemingly plausible
algorithms are in fact rather brittle. Even if the hierarchy is only somewhat wrong, performance
quickly degrades. As we discuss in Section 2 our test hierarchies generally did not perfectly
conform to any clean semantics; we assembled them on the basis of intuition and seeming
reasonableness. This was deliberate: a technique that relies on complete semantic correctness
will be a useless one. However, it may be that the inevitable inaccuracy in our hierarchies is
often enough to erase any potential advantage. This highlights the importance of looking for
robust learning techniques.

The second way of exploring the question of expressive power concerns the third issue
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raised above; namely, when do we use the hierarchy. As we show, it is possible to use a flat
decision model—i.e., where the hierarchy plays no role in classification—but nevertheless use
the hierarchy in a principled way during training, i.e., to choose which flat-decision classifier
to hypothesize. We present details in Section 2. Clearly, by doing this we are controlling for
expressive power in a very direct fashion, because the underlying class of hypotheses is being
held constant.

Our preliminary observations in this second setting are as follows. First, it seems extremely
hard to gain a robust win using hierarchical learning. Of dozens of diverse techniques we have
applied—some ad hoc, some that attempt to be statistically principled—only one displayed a
small but convincing, cross-validated advantage on our test set.

Second, intriguingly, and in spite of the difficulty in improving on non-hierarchical methods,
when we do find a win, we generally got results that were superior to results based on top-down
hard-decision models. Perhaps part of the issue is that once a top-down model makes a bad
decision, it cannot recover. And since such a model has to make several intermediate decisions
before reaching its conclusion, the chance of error compounds quickly. This observation
suggests a third model: top-down soft-decision hypotheses, which use the hierarchy during
classification but do not irrevocably commit to decisions until the end. Probabilistic schemes
such as Bayesian net models [23] and HME’s [15] might perhaps be viewed this way. However,
we have not investigated this idea further as yet.

The rest of this paper is structured as follows. The next section summarizes our experimental
methodology and fills in some of the details of the particular learning algorithms and test
domains we considered. Section 3 then illustrates the points made above with a subset of our
experimental results. Section 4 is a brief survey of related work. We conclude in Section 5.

2 Methodology

2.1 Learning and Classification Algorithms

Our basic representation of examples, both in the training set and test set, is as a feature vector
(assumed in the following to be of length � ). The � ’th component ��� is an integer specifying
how often the � ’th feature occurred in the example. This is motivated by our interest in textual
classification, where an example is a document and the features are words; the vector then
records how often each word occurs in the document.1 This is perhaps the classic technique for
representing documents for automatic text retrieval [26, 27, 21, 28].

Our representation is fairly generic, and thus there are of course countless standard learning
algorithms and hypothesis classes that might be appropriate. However, recall that our goal here
is not (yet) to achieve the best possible classification performance; rather, we are most interested
in engineering a “fair” comparison between hierarchical and non-hierarchical learners. This
dictates the use of rather simple models.

There are two core techniques we consider: pairwise linear discriminants (PLD) and what
1Thus, in this study, we are discarding information on the order of words.
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we call the conditionally-multinomial attributes (CMA) model (similar to the well known Naive
Bayes) model.

The PLD approach is as follows. Consider a collection of labels � 1 ������� ��� and a training-set
of examples � . For every pair of labels � �
	 , let ���� � be the subset of examples whose label is either��� or ��� . Using these examples only, we attempt to learn a good linear classifier that predicts��� against ��� .2 That is, we try to find coefficients � 0 � � 1 ��������� ��� such that � 0 ��� ���� 1 � � � ��� 0
whenever the example has label ��� . Of course, it is unlikely that we can find a linear rule that
predicts perfectly, but we try to find a rule that is correct as often as possible. Having learned
all � � ��� 1 � � 2 such rules (one to distinguish between each pair of labels, e.g., as suggested
in [14, 8]), we classify test examples using a voting scheme. That is, for each label �!� , we
evaluate the predictors of �"� against ��� for all 	$#% � , and count how many times ��� “wins”.
This count is �"� ’s vote. The label with the most votes is our prediction. Note that if the linear
predictors were perfect, the real label must get a vote of �&� 1 (the maximum possible) and no
other label can do better than �'� 2.

Our second core technique, CMA, is even simpler. For label �(� and feature � , let )*�� �
be the expected proportion of times feature � occurs in a document with label �!� . (Recall
that the feature vector is a vector of feature counts, so this proportion is not necessarily 1 � � .)
Under a very standard and simple probabilistic model—essentially, assuming that conditioned
on the label, features are chosen with a multinomial distribution according to the probabilities)+�� � —one can show that the probability that a particular vector ,� has label �!� is a monotonic
function of -

� � ,� � %�. �� 0 � �/
�0� 1

. �� � � �
where . �� � % log )*�1 � for � 2 0, and . �� 0 is the logarithm of the proportion of documents
that have label �3� . Thus, if we can estimate the )4�� � somehow, one could simply choose for,� that label �"� with the highest

-
� � ,� � . Although this seems to be a very simpleminded rule

and that the probabilistic assumptions being made are unlikely to ever really hold in practice,
it has often been noted that such rules can be surprisingly effective anyway [26, 3, 27]. In fact,
related “linear text classifier” representations are a basic technique in Information Retrieval
[21, 26, 28].

Both of these techniques can be applied over the space of all attributes (i.e., without using
a hierarchy). We call this the non-hierarchical setting (NH). However, they can also be used
with a hierarchy, in a fairly obvious top-down fashion. That is, one tries to learn (using PLD
or CMA) how to distinguish between the children of the root of the hierarchy, and then, having
done this, one separates the training data according to the predicted value, and recurses.3 When
one is classifying test examples, we use a similar top-down, hard-decision (TDHD) model—i.e.,
classify at the root; go to the appropriate child and choose among its children, and so on until
we reach a leaf.

2Although finding the optimal classifier is an NP-hard problem, there are many good, well-known, heuristics
for this problem. We omit details of our particular approach.

3Note that, although in our examples documents are only labeled with leaf labels, this induces an obvious
labeling with respect to internal tree nodes as well.
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Implicit in our comments so far are 4 different algorithms; � CMA, PLD ����� TDHD, NH � .
However, the CMA model is particularly interesting because it allows another option. Thus
far, we have not said how one estimates the probabilities ) �� � . Of course the obvious approach
is to estimate these directly based on observed proportions in the training set.4 However,
another possibility is this: We can estimate the probabilities ) �� � by using the hierarchy to bias
the estimates in an appropriate manner, but then classify subsequent test examples using the
CMA model in a “flat” fashion (i.e., not using the hierarchy). As already noted, this allows
us to control for expressive power of the class of potential hypotheses (i.e., possible CMA
classifiers)—and as we see in Section 3, this actually leads to our most successful technique.
The intuition in using the hierarchy is that, when estimating probabilities, the siblings of a
class node should (for most features) tend to have similar probabilities, and therefore we could
perhaps get better estimates by taking into account (in an appropriately discounted fashion) all
training samples with “nearby” labels. To the extent that this works, we would in effect have
access to larger training sets, and therefore should get more accurate estimates.

We have tried many schemes of this sort, ranging from the purely ad-hoc to rather complex
fully-Bayesian schemes. The only one we report on in this paper is a simple scheme based
on the idea of “Stein shrinkage” [5, 6]. We first estimate the probability )��  � at each node
in the tree using a direct estimate, and also compute the variance of these estimates. These
estimated probabilities, which do not uses hierarchical mixing in any way, are the preliminary
probabilities. (For leaves, the variance of the estimate is essentially just the variance associated
with binomial sampling; for internal nodes, we use the variances of the estimates among all
the children of the node.) Then, in a top down fashion, we compute the final probability
estimates at each node as a weighted average of the node’s preliminary probability and the
parent’s preliminary probability, with the weights being inversely proportional to the variances.
Intuitively, the more we trust an estimate, the higher its weight is. This, in effect, shares
weights between sibling nodes, depending on the proximity and variability of their preliminary
probability estimates. In later sections, we call this approach the Stein-CMA (SCMA) model.

2.2 The data and testing methodology

To date, we have considered two domains. The first is a collection of synthetic data-sets.
Because this is less interesting, we omit a fuller description of the models; in essence we
generate data from a probabilistic model contrived so that the labels are clustered into several
sets (where the generators within a “cluster” are more similar to each other than to those
outside); the clusters are grouped together as children of a common parent.

The second is a realistic and relatively large scale problem based around the Reuters-
21578(distribution 1.0) collection of newswire articles [25, 30].5 Many of these stories have
been classified by topic from a fixed set of around 130 topic words. However, several of these
topics occurred only a few times, and a few occurred thousands of times; so to avoid getting

4In practice, one should not use the observed proportions exactly as estimates. Rather, it is preferable to use
a Bayesian estimate based on a suitable Dirichlet prior. However, for samples sizes as large as the one we are
considering, the difference tends to be slight.

5We thank David Lewis, the maintainer of this collection, for suggesting this as a suitable domain for our work.
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skewed results we eliminated both types of topics—restricting ourselves to the 49 topic words
that appeared more than 20 and less than 500 times in the collection. Around 4000 documents
were labeled by one or more of these topics.6

We constructed a hierarchy by hand over these 49 topics. As noted in the introduction,
this construction was ad-hoc and there are certainly several debatable decisions made; this was
in part deliberate, since we are only really interested in learning algorithms that display some
robustness to errors and inaccuracies of this sort. Figure 1 shows the top level of the hierarchy,
ignoring the leaves. So, for instance, the Reuter’s topic COPPER would be classified under the
internal node METALS, and the topic NAT-GAS would be under energy. Note that the internal
nodes shown here not the 49 Reuter’s topics; the latter appear as the leaves of the tree (not
shown).

EVERYTHING

COMMODITY

FINANCIAL

ECONOMY

MEAT

TRADE

VEG. OILS

 ENERGY

GRAIN

INDUSTRY CURRENCY

AGRICULT.

DRYFOOD

METALS

Figure 1: Non-leaf nodes in our Reuters hierarchy

The features we considered were a selection of 400 words, chosen by a very simple entropy-
based measure as being useful to predictive accuracy. The words were take literally; there was
no spelling correction or stemming. This, again, is consistent with our goal of comparing
hierarchical to non-hierarchical techniques: the issue is not so much the quality of the features,
but that we keep the features constant.

In all experiments, we partitioned the examples into a test set (of about 3000 documents)
and a separate training set (the remainder) using a standard split suggested by the annotated
Reuters collection. In addition, for certain techniques we also used a bootstrap-like cross-
validation technique (where time permitted) which repeatedly partitioned the collection into

6A significant percentage of the documents were labeled with more than one topic. This caused some
complications in the training and testing phases, but we omit further details here. We note, however, that the
results in Section 3 are “optimistic” scores—counting as a success any test example in which we predicted any one
of the true labels associated with the example. We have also used various more conservative scoring techniques,
but these does not appear to change the results in any qualitative fashion.
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random training and test samples. Averaging results obtained in this way generates more
accurate statistics. Throughout, the training set included around 3000 documents.

3 Results

Here we show a very small subset of our results, chosen to illustrate the points made in the
introduction. These tables show the percentage error achieved by the various algorithms.

The first table illustrates our point about expressive power. First note that PLD-TDHD
performs significantly better than PLD-NH. One’s first thought might be to attribute this to
additional information being conveyed to the learning algorithm by the hierarchy. However,
note that for PLD imposing any hierarchical structure on topic categories severely restricts the
space of representable classifiers. In the flat case, we must learn to discriminate each of the 48
topics against the rest (thus there are

�
49 � 48 � � 2 % 1176 classifiers to learn); in the hierarchical

case we only need 133. Such an expressiveness change has drastic consequences of its own for
training performance, independent of any prior knowledge expressed in the topic hierarchy. In
fact, to illustrate this point, we considered the effect of training PLD-TDHD on two “bogus”
hierarchies constructed by permuting the leaves of the original hierarchy. Here we see the
surprising result that training PLD-TDHD on the bogus hierarchies also leads to a significant
performance improvement over the flat PLD-NH model! In fact, the results are essentially as
good as training with the proper hierarchy. So here it is not clear that in obtaining the original
performance improvements, one is exploiting any of the domain knowledge expressed in the
hierarchy at all.

PLD-NH PLD-TDHD PLD-TDHD PLD-TDHD
with true hier. bogus hier. 1 bogus hier. 2

Standard split 27.3 23.4 25.3 23.8

Now consider the probabilistic CMA model. Again, we contrast the results obtained by
training under the flat NH model and the hierarchical TDHD model. Here we see a different
phenomenon. Curiously, using a hierarchy never helps at all. But using a bad hierarchy is much
more damaging that the true hierarchy. So sometimes the semantics is important, after all!

CMA-NH CMA-TDHD CMA-TDHD CMA-TDHD
with true hier. bogus hier. 1 bogus hier. 2

Standard split 19.0 23.4 30.5 30.0
Cross-validated7 18.3 22.2 28.0 31.6

However, as our final illustration, we consider the SCMA model, which uses the hierarchy to
help learn the probabilities, but classifies in a “flat” fashion. (i.e., this is the same as CMA-NH,
except for the way the probabilities are estimated.) Below we compare the results of CMA-NH
with using Stein-shrinkage in a degenerate one level tree. Here we see that merely applying
Stein-shrinkage in a naive manner does not help, and in fact hurts classification performance
significantly. However, our results with applying SCMA to the natural hierarchy are positive.

7All cross-validated results are averaged over 100 random training/test splits of the Reuters database.
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Here we see an improvement of around 2% over CMA-NH. Note that cross-validation is over
100 trials, and so these numbers are quite accurate; this gain seems genuine, albeit small. It is
important to note that since this test controls for expressive power, this gain is presumably due
to the semantic information in the hierarchy. Confirming this, we observe that if we use a bad
hierarchy the performance advantage vanishes.

CMA-NH SCMA SCMA SCMA SCMA
(from above) degenerate with true hier. bogus hier. 1 bogus hier. 2

Original split 19.0 22.8 18.1 18.6 17.8
Cross-validated 18.3 21.5 16.7 18.1 18.2

Thus, we conclude that using a hierarchy on class labels does indeed have the potential
to improve classification performance, but this is not necessarily trivial to achieve—naively
applying hierarchical learning also has the potential to degrade classification performance. In
this short paper, we have not been able to present all our results (such as, for instance, the
results on synthetic data), but the pattern we have briefly shown is typical. Our results do show
that if one asks why hierarchies have the effect they do, the answer can be surprisingly subtle.

4 Related Work

The work closest to ours is the earlier paper of Koller and Sahami [18]. They have independently
considered the importance of topic hierarchies for document classification, and in fact have also
experimented with classifying Reuters news stories into a topic hierarchy. (Although the topic
hierarchy they consider is considerably smaller than our own.) They exploit a topic hierarchy
in a hard top-down fashion to achieve performance improvements in their learning algorithms.
Their work differs from ours in important respects, and we view our work as complementary.
The techniques in [18] seem to be principally motivated by the desire to improve accuracy (i.e.,
to obtain good performance in an absolute sense). Their learning algorithms were therefore
much more sophisticated than the algorithms we have considered here; particularly with regard
to the feature selection strategy, which is the focus of their results. They did indeed discover
an advantage in using a hierarchies, just as we do, in spite of the difference in algorithms being
considered.

On the other hand, our goal is to uncover and delineate the possible sources of improvement
from exploiting a hierarchy, and so unlike [18] we have tried very hard to control for expressive
power in a rigorous fashion; one price we pay being able to make “clean” comparisons is
that we have used simpler algorithms. The second important difference is that, in addition
to top-down hard-decision models, we also consider a “soft” approach to training which uses
a hierarchy only as a bias for training a base-level classifier (i.e., under the Stein-shrinkage,
or SCMA approach). Our initial motivation for this was as another way of addressing the
expressive power issue. But we also find that these soft training techniques, which connect to
a large and important literature on Bayesian and empirical Bayesian statistics [6, 5, 22, 11],
actually seem to hold promise for being an effective technique for exploiting hierarchies in a
robust and general fashion.
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To distinguish this general approach, note that there is other work, for instance [7], which
considers learning a hierarchy on classes in an unsupervised fashion (see also “hierarchical
clustering” [4]). However, this does not address the issue of how best to exploit the presumptive
knowledge expressed by a given hierarchy to learn a more accurate classifier. Our expectation
is that one should be able to do better by exploiting a given hierarchy rather than attempting to
bootstrap on an artificial hierarchy learned from the same data.

Hierarchies also arise in many other ways in the KDD and ML research. For instance,
it is common for research in KDD to consider hierarchies on attribute values [13, 12]. But
work of this type generally considers learning a relation over database tuples (a “generalized
relation” [12]), classifies tuples in a binary fashion as being “in” or “out” of the learned relation.
Here, generalization or specialization on attribute values is simply a technique for expanding
or restricting the extent of the learned relation in an appropriate way. Although an important
technique in database mining applications, this is somewhat orthogonal to the issue we address
here.

There is a significant literature on learning flat multicategory classifications. For example,
this is predominant in the connectionist literature on perceptual learning tasks such as speech
and handwriting recognition [19, 20]. The most important recent advance in this area perhaps
is Dietterich and Bakiri’s approach to arranging binary classifiers in error correcting output
codes to achieve high classification accuracy in multicategory domains [2]. However, none of
these techniques exploit the existence of a prior hierarchical structure over the class labels.

Finally, we note that decision tree classifiers [1, 24], which classify examples in a hierar-
chical fashion and naturally encode multicategory classification schemes, are not designed to
exploit a hierarchy on class labels to obtain better performance.

So, to conclude, while other uses of hierarchies are common in the KDD and ML literatures,
the idea of exploiting hierarchies over domain categories (i.e., regarding the hierarchy as prior
knowledge that can improve learning performance) seems to be comparatively unexplored.

5 Conclusions

In this paper, we have presented some ideas and preliminary results concerning hierarchical
classification, concentrating on the issue of expressive power versus semantic knowledge.
We close by briefly noting two of the many other interesting research questions in this area.
First, it would be useful to have a deeper theoretical understanding (from the standpoint of
computational learning theory) of the advantages and disadvantages of hierarchically based
classifiers. A more practical issue is the following: What if one is allowed to classify to internal
nodes in a tree, and not just leaves? One can imagine various plausible loss models (which
would specify the penalties associated with not giving a maximally specific classification, versus
the penalty for being wrong). Can one find a good learning algorithm designed to minimize
expected loss in this sense?
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