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Abstract

Many tasks require an imaging system to identify an object,
such as the type of a car; in many cases, it is critical to make
this identification quickly, as well as accurately. This paper
addresses the challenges of producing recognition systems
that consider both of these objectives. In general, an “(recog-
nition) policy” specifies when to apply which “imaging op-
erators”, which can range from low-level edge-detectors and
region-growers through high-level token-combination–rules
and expectation-driven object-detectors. Given the costs of
these operators and the distribution of possible images, we
can determine both the expected cost and expected accuracy
of any such policy. Our task is to find a maximally effective
policy — typically one with sufficient accuracy, whose cost is
minimal. We compare various ways to produce such policies
in general, and show that policies that select the operators that
maximize information gain per unit cost work effectively.

Keywords: vision, recogition, decision theory, real time
systems

1 Introduction

Recognition systems typically try to determine what objects
are within a given scene. Of course, it is critical that the
recognition systems be accurate. It is typically important
that the process also be fast: For example, to work in real-
time, a recognizer examining the frames of a motion picture
will have only 1/30 seconds to identify an object. Or con-
sider a web-searcher that is asked to find images of, say,
aircraft. Here again speed is critical — and most searchers
do in fact sacrifice some accuracy to gain efficiency (i.e.,
they quickly return a large number of “hits”, only some of
which are relevant). This paper addresses the challenge of
producing a recognizer that is both sufficiently accurate and
sufficiently efficient.

Section 2 provides the framework, showing how our
framework generalizes the standard (classical) approaches
to image interpretation, then presents a formal descrip-
tion of our task: given a distribution of possible images
and an inventory of “operators”, produce a “policy” that
specifies when to apply which operator, towards optimiz-
ing some user-specified objective function. It also uses a
simple blocks-world example to illustrate these terms. It
concludes by describing three different policies that could
be used. The rest of this paper demonstrates that one of
these policies, “INFOGAIN” (which uses information gain
to myopically decide which operator is most useful at each

step), is more effective than the other obvious contenders.
Section 3 provides an empirical comparison of these ap-
proaches in the context of the simple blocks-world situation.
Section 4 presents a real-world example: identifying cars
from their rear tail light assemblies. The extended [IG01]
provides a survey of the related work, placing our work
in the context of related frameworks for building [PL94],
and analysing [RH92], vision system; and of related ap-
proaches, such as information theory [GJ96] and influence
diagrams [LAB90]. It also discusses other applications of
our framework — in particular, showing that it can be used
when recognizing faces, within the modern eigenvector ap-
proach.

2 Framework
2.1 Standard Approaches
There are many approaches to recognition. A strictly
“bottom-up” approach performs a series of passes over all
of the information in the scene, perhaps going first from
the pixels to edgels, then from edgels to lines, then to re-
gions boundaries and then to descriptions, until finally pro-
ducing a consistent interpretation for the entire scene. Most
“top down”, or “model driven”, systems likewise begin by
performing several bottom-up “sweeps” of the image —
applying various low-level processes to the scene to pro-
duce an assortment of higher-level tokens, which are then
combined to form some plausible hypothesis (e.g., that the
scene contains a person, etc.). These systems differ from
strictly bottom-up schemes by then switching to a “top-
down” mode: given sufficient evidence to support one in-
terpretation, they seek scene elements that correspond to the
parts of the proposed real-world object that have yet to be
found [LAB90].

Notice the model-based systems have more prior knowl-
edge of the scene contents than the strictly bottom-up
schemes — in particular, they have some notion of “mod-
els” — which they exploit to be more efficient. We propose
going one step further, by using additional prior knowledge
to further increase the efficiency of an interpretation sys-
tem. Consider a trivial situation in which we only have to
determine whether or not a “pick cadillac” appears in an
image; and imagine, moreover, we knew that the only pink
object that might appear in our images is a cadillac. Here
it is clearly foolish to worry about line-detection or region-
growing; it is sufficient, instead, to simply sweep the image
with an inexpensive “pink” detector.
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Figure 1: A simple image of 25 sub-objects

This illustrates the general idea of exploiting prior knowl-
edge (e.g., which objects are we seeking, as well as the dis-
tribution over the objects and views that might appear) to
produce an effective recognition process. In general, we will
assume our system also has access to the inventory of possi-
ble imaging operators. Given this collection of operators, an
“recognition policy” specifies when and how to apply which
operator, to produce an appropriate interpretation of an im-
age.

Our objective is to produce an effective recognition pol-
icy — e.g., one that efficiently returns a sufficiently accurate
interpretation, where accuracy and efficiency are each mea-
sured with respect to the underlying task and the distribution
of images that will be encountered. Such policies must, of
course, specify the details: perhaps by specifying exactly
which bottom-up operators to use, and over what portion of
the image, if and when to switch from bottom-up to top-
down, which aspects of the model to seek, etc. These poli-
cies can include “conditionals”; e.g., terminate on finding a
pink object in the scene. They may also specify applying a
particular operator only to select regions of the image (e.g.,
seek only near-vertical edges, only in the lower left quad-
rant of the image). Based on the information available, this
recognition policy could then use other operators, perhaps
on other portions of the image to further combine the tokens
found.

2.2 Input
We assume that our recognition system “

���
” is given the

following information:� The distribution of images that the
���

will encounter,
encoded in terms of the distribution of objects and views
that will be seen, etc. (Here we assume this information is
explicitly given to the algorithm; we later consider acquiring
this by sampling over a given set of training images.)

As a trivial example, we may know that each scene will
contain exactly ��� sub-objects, each occupying a cell in a
����� grid; see Figure 1. Each of these cells has a specified
“color”, “texture” and “shape”, and each of these properties
ranges over � values. (Hence, we can identify each image
with a ������������� � tuple of values, where each value is
from !#"�$%�&$'�($
�() .) Moreover, our

���
knows the distribution

over these �#*'+ possible images; see below.� The task includes two parts: First, what objects the
���

should seek, and what it should return — e.g., “is there an
airplane in image” or “is there a DC10 centered at ,��#�-$/.0�21
in the image”, etc. In our trivial blocks-world case, we sim-
ply want to know which of the images is being examined.

Second, the task specification should also specify the
“evaluation criteria” for any policy, which is based on both
the expected “accuracy” and its expected “cost”. In gen-

eral, this will be a constrained optimization task, combining
both hard constraints and an optimization criteria (e.g., min-
imize some linear combination of accuracy and cost, or per-
haps maximize the likelihood of a correct interpretation, for
a given bound on the expected cost).

For this blocks-world task, we want to minimize the ex-
pected cost and also have "43�365 correctness.� The set of possible “operators” includes (say) various
edge detectors, region growers, graph matchers, etc. For
each operator, we must specify7 its input and output, of the form: “given a set of pixel

intensities, returns tokens representing the regions of the
same color”;7 its “effectiveness”, which specifies the accuracy of the
output, as a function of the input. This may be of the
form: “assuming noise-type 8 , can expect a certain ROC
curve” [RH92];7 its “cost”, as a function of (the size of) its input and pa-
rameter setting.

When used, each operator may be given some arguments,
perhaps identifying the subregion of the image to consider.

Here, we consider three operators: 9;: (resp., 9=< , 9?> ) for
detecting the “value” of color (resp., “texture”, “shape”);
each mapping a ,
@A$'BC1 location of the current image to a
value in !0"0$/�&$/�-$'�-) . (Note that location is an argument to
the operator.) We assume that each operator, when pointed
at a particular “cell”, will reliably determine the actual value
of that property at the specified location, and it does so with
unit cost.

For each situation, we assume our recognizer will be
given a series of tasks, but will always have the same ob-
jective and criteria; e.g., it is expected to look for the same
objects in each image, and has a single objective function.
([IG01] considers the obvious generalization, in which the
environment could ask different questions for each image,
and impose different penalties.)

At each stage, our
���

will use its current knowledge (both
prior information — e.g., associated with the distribution
and the operators — and information obtained by earlier
probes) to decide whether to terminate, returning some in-
terpretation; or to perform some operation, which involves
specifying both the appropriate operator and the relevant ar-
guments to this operator, and then recur.

2.3 Policies
Each

���
corresponds to a large decision tree, whose leaf

nodes each represent a complete interpretation (which is re-
turned), and whose internal nodes each correspond to a se-
quence of zero or more operator applications, followed by a
test on the original data and/or some set of inferred tokens.
Each arc descending from this node is labeled with a possi-
ble result of this test, and its descends to new node (contain-
ing other operators and tests) appropriate for this outcome.

As such explicit strategy-trees can be enormous, we in-
stead represent strategies implicitly, in terms of a “policy”
that specifies how to decide, at run-time, which operator to
use. Figure 2 shows a general recognition strategy using any
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Figure 2: Recognition algorithm,
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of the policies. We will consider the following three poli-
cies:
Policy RANDPOL: selects an operator randomly.1
Policy BESTHYP: first identifies the object that is most
likely to be in the scene (given the evidence seen so far,
weighted by the priors, etc.) and then selects the operator
that can best verify this object [LHD u 93, p370]: That is,
after gathering information from v previous operators w9 �x c�y �	z y $9{9{l{ $ cS| �}z |S~ , it computes the posterior probabil-
ities of each possible interpretation

�a�
,
b�������� w9;� . To select

the next operator, BESTHYP will first determine which of
the scenes is most likely i.e., �1� � ^P�l���>^ @��A! b����>� w9;� ) )
and then determines which operator has the potential of in-
creasing the probability of this interpretation the most: As-
sume the operator

c
returns a value in !�z y $�zS��{9{9{ $�z�� ) ; thenc

might increase the probability of
���

to best
���1� $ c � ����f� � ! b����1��� w9 $ c �Uz����%) . Here, BESTHYP will use the

operator $o���� � BSX9YSZ�B�:P��" best � � �l�C$r� &
Policy INFOGAIN: selects the operator that provides the
largest information gain (per unit cost) at each time. This
policy computes, for each possible operator and argument
combination

c
, the expected information gained by perform-

ing this operation:

IG � � � - ��P$r�a���>� � < - ��Q�1�9�����l$���K � < � � - T�P�>� � < - =�C$��;K � �
where m � ��� 9d� �N� � b���� � j � � 9���¡£¢�¤ b���� � j � � 9;�
is the current entropy of the distribution over the interpreta-
tions

�
given the evidence ¥ , for ¥ � w9 or ¥ � ! w9 $ c �z�� ) .

INFOGAIN then uses the operator
$f�¦�§ � BSX%YSZ3BS:��¨"�© IG ��- =�P$r��ªl
=�J$o� &

which maximizes , ¥ IG
� w9�$ c �¬«S­ �®c ��1 , where ­ ��c � is the

cost of applying the operator.
1We will use the term “operator” to refer to the operator in-

stantiated with the relevant arguments. Also, we will further abuse
notation by writing $����;K�� to mean that the value K�� was obtained
by applying the (instantiated) operator $�� to the image.

3 Simple Experiments: Blocks World

This section presents some experiments using the simple
blocks world situation presented above, designed simply to
illustrate the basic ideas, and to help us compare the three
policies described earlier.
Basic Experiment: For each “set-up”: We first generated a
set of " 303�3 images, each with 25 sub-objects, by uniformly
assigning values for color, texture and shape for each of the
sub-objects randomly, for each of "43�303 images; we also as-
signed each a “prior distribution” n � to these images (this
corresponds to taking an empirical sample, with replace-
ment). For each run, we randomly select one of the "43�3�3
images to serve as a target for identification, then used each
of the three policies to identify the image.

After observing 9 | � ! c y �¯z y $ c � �¯zS��$9{9{l{ $ c | �°z | )
based on the operators in the first v iterations, RANDPOL
randomly selects a cell ­�, t $'±�1J²�³ and an operator

c ²�³ to
probe the value for a property (color, texture, etc.), insist-
ing only that

c ²�³ was not tried earlier on ­�, t $'±�1 ²�³ in any
previous iterations of this run. BESTHYP chooses a cell­�, t $´±�1Jµ�¶ and an operator

c µ�¶ to maximize the posterior
probability of the most likely image, as explained earlier.
Finally, INFOGAIN chooses ­�, t $'±�1J·¨¸ and

c ·¨¸ such that¥7p s�� w9�$ c ·¨¸¹�¬«S­ �®c ·¬¸1� is the maximum over all possible
cell and operator combinations. For each of these policies,
the posterior probability is updated after applying the chosen
operator on the cell. The process is repeated until the image
is identified — i.e., all other contenders are eliminated.

We considered 10 set-ups (each with its distribution over
objects), and performed 5 runs for each set-up. Over these
50 runs, RANDPOL required on average �º{ »0�½¼½+S¾ ¿lÀ probes,
BESTHYP �º{ ����¼½+�¾ Áo¿ probes and INFOGAIN �W{ �#��¼½+�¾ÃÂ�Á .
INFOGAIN is statistically better than the other two policies,
at the nTÄ 3�{ " level.
Accuracy Curve: We can consider other evaluation criteria.
If the sensors are noise-free, any policy should eventually
identify the target, if there is no limit on cost. However, it
is impractical to expect unlimited cost. The following study
investigates how the accuracy of identifying an image varies
for a given cost, for each policy.

In this set-up we generated � 303 images randomly, and
randomly picked one, call it p � , as the target image to be
identified. We varied the number of probes allowed to iden-
tify this image from " through » and noted the posterior
probability of p � (given these probes) as a function of the
number of probes. We repeated this for " 3 different targets
for this set-up and then repeated the entire procedure for �
randomly generated set-ups. Figure 3(a) shows the results.
Once again, INFOGAIN clearly identifies the target with a
higher probability for a given number of probes. Equiva-
lently, INFOGAIN can retrieve more information about the
target for a given cost. BESTHYP performs nearly as well,
but RANDPOL trails the other two policies, i.e., for a given
cost it cannot identify the object with the same confidence
as the other two.
Identify an image with HIGH (but Ä 1.0) probability:
Identifying an image with very high probability can often be
very expensive. However, we may be interested in identi-
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Figure 3: (a) Probes vs. Accuracy (b) Min. Accuracy vs. Error (c) Min. Accuracy vs. # Probes (d) AMD vs. # Probes
fying the image with a “reasonably high probability”, thus
reducing the cost of identification. To study this effect, we
generated 100 images randomly, and randomly picked one
as the target. We fixed the required “degree of accuracy”
for identifying the target at some value

b7/ �41 ] , 3-$ "�{ 3 1 .
While running the policy, whenever any image’s probability
exceeds

b / �*1 , the
���

system returned the (possibly incor-
rect) image. We repeated this for 10 different targets and ran
this for a total of 10 different set-ups. We varied the values
of
b0/ �41

between 3�{ � and 3W{ .0� .
There are two ways to measure the results: First, the

���
did not always find the correct image; Figure 3(b) shows
the number of errors for the various policies (as a function
of the minimum accuracy required,

b
/ �*1
). Second, we can

ask how many probes were required to make a decision; see
Figure 3(c).

Once again, INFOGAIN clearly requires the least num-
ber of probes, on average, to identify the target with any
accuracy; it is also the most accurate. BESTHYP requires
slightly more probes for a given accuracy than INFOGAIN,
while RANDPOL requires many more probes. Here the dif-
ference between INFOGAIN and RANDPOL is significant at
the nTÄ 3W{ � level.
Image Difference: Clearly, the number of probes required
depends critically on the difference between the “correct”
image and the nearest contender. This quantity may well de-
pend on the “average Hamming distance”; i.e., for image p y ,
we compute the Hamming distance between p y and p¬� for±�� �º{£{ _ (here viewing each image as a � � -tuple of values),
and let

� h¬n � p y � be the smallest of these values. We simi-
larly computed

� h¬n � p | � for the other
� _98 "�� images; then

let :<;>= � !op | )o� � � � n � � hQn � p � � be the average minimum
Hamming distance.

We ran the experiment mentioned above for various set-
ups, measuring this “average minimum Hamming distance”
(AMD) vs the number of probes needed for each identifi-
cation policy; see Figure 3(d). Here, we varied the num-
ber of images

_
, for each set-up from " 3 to "43�303 in a total

of " � set-ups to obtain different Hamming Distance values.
(Clearly, as the number of images increases,

� h¬n � p | � , and
hence AMD, decreases.) Throughout this range, we see that
INFOGAIN needed the least number of probes for a given
AMD value to accurately identify the object, followed by
BESTHYP and RANDPOL.

4 Scaling-Up: Identifying Cars from RTLA

The example used in the previous section was intentionally
very simple, for pedagogic reasons. In general, we would
like a system capable of finding cars, airplanes and any other
general objects that we encounter everyday. Here, we clearly
need to go beyond the simple operators shown above. The
framework needs to accommodate a set of operators which
can do more complex things to be useful for this task (like
detecting edges from pixels, grouping low level features to
perceptually significant tokens, finding regions of the same
color in an image, etc.). This section shows that this current
framework is sufficient to handle a useful (if still fairly sim-
ple) real-world application: identifying a type of car from a
particular type of image.
4.1 Framework
Our goal here is identifying the make and model of a car
(e.g., Toyota Corolla, Nissan Sentra, Honda Civic, etc.)
given an image of the car showing its “rear tail lights ar-
rangement” (RTLA); see Figure 4. These results have many
obvious applications, both in providing a way to help traf-
fic surveillance by object identification [HR96; KWM93],
as well as providing an extension to the indexing methods
used by various researchers [FJ92] to identify objects.

This problem is also well-suited to our techniques. First,
to specify the task, we provide the RTLAs for various types
of cars, which each precisely specify the number of regions,
the color of each region, their relative sizes (in terms of the
number of pixels as seen in an image) and their geometri-
cal arrangement with respect to each other. It also specifies
the expected accuracy of identifying a car and the maximum
cost that can be incurred.

The distribution consists of the vehicles (cars, pick-up
trucks and vans) that are typically found in a parking lot or
on the road — here, we gathered these images from various
New Jersey parking lots. Here, our system is given the rel-
evant distribution information:

� "�� the prior probability of
seeing each type of vehicle !Qn � ) ; � �I� the distribution, over
the 2-D image space, for where the car’s RTLA can be seen;
and

� �P� how these tail-lights will actually be seen (wrt the
shape, color and size) for each type of car.

We use three operators for this task, each taking a region�
as input:7 c >@?BADC�E � � � finds the shape of

�
, in two steps. It first finds

the corners of the region (using “SUSAN” [Smi96]), then



Figure 4: Tail lights of Chevrelot

analyzes the extracted corners to return a geometrically
significant shape. As corners are identified by scanning
the region twice, the computational cost for this step is
� _ (where

_
is the number of pixels in the region). The

second step (analyzing the corners to determine a shape)
involves sorting the corners based on the x-coordinate (or
the y-coordinate) and doing a simple geometric analysis.
Hence, this total computation can be done in 9 � v ��� _ �
computations where v is the number of corners; as the
number of corners is bounded, we found this cost is well
approximated by � _ � »03�303�3 microsecs.7 c :�������� � � � for detecting the color of

�
, as a

x ���
	%~
triple.

As the image is segmented to give homogenous regions,
this operator can simply return the color at any pixel. We
empirically found the cost of applying this operator is just
" microsec.7 c > ��� E � � � for detecting the size (number of pixels) of � .
As the area of every region is noted during region extrac-
tion, the cost of using this operator is again " microsec.

4.2 Recognition Procedure
Figure 2 shows the algorithm that is used to identify a type
of car from a given RTLA. The input to each such algorithm
(for each \ policy), is7 task specification � , specifying required accuracy of iden-

tification, upper limit of the cost of identification, etc.7 distribution = of cars, giving the prior probability of see-
ing any car’s RTLA, and its appearance in an image7 the set of imaging operators 97 the color-segmented image p

Given these inputs, the first step of recognition is region ex-
traction. The current system automatically extracts all re-
gions from the entire segmented image. (Later versions will
let the policy decide where to extract regions, etc.) Once
this is done, the

���
, following its policy (which is one

of ! RANDPOL, BESTHYP, INFOGAIN ) ) begins an itera-
tive process: At each step, it choses an imaging operatorc ] 9 and a region

�
in p , (possibly) based on its current

understanding of the distribution of possible cars – i.e., the
posterior distribution

b�� ­ ^I� � @ � w9 � wzº� after finding
the values wz for the executed operators w9 . As explained in
Section 2.3, RANDPOL selects an operator

c ² A 1�
 and a re-
gion

� ² A 1�
 randomly with the only condition that
c ² A 1�


was not tried on
� ² A 1�
 earlier. BESTHYP chooses an op-

erator c µ�¶ and a region � µ�¶ such that this combination
can best confirm the most likely candidate (car). INFO-
GAIN chooses an operator

c ·¨¸ and a region
� ·¨¸ such thatc ·¨¸ has the maximum information gain per unit cost (i.e.,¥7p s�� 9 | $ c �Q«S­ �®c � ) of all the possible combinations. Thec

operator is applied over
�

, and the
���

then updates its

distribution based on the outcome observed. The process is
repeated until a car is identified with sufficient accuracy (as
specified in � ) or the total cost of the operators applied so
far, exceeds the maximum limit of the cost specified in � .

4.3 RTLA Experiments
With this framework, we performed experiments similar to
the ones done in the blocks-world domain. We created a
database of thirty different cars from NJ parking lots. We
emprically found that our shape detecting operator is 90%
accurate (i.e., it detects the shape correctly 9 out of 10
times), and the color and size detecting operators are per-
fect (they always return the correct answer). Here, we first
considered

b / �41 � 3W{ . and ­ / A�� � ��3�3 msec. For each
set-up, we assigned random probability values to each of the
��3 different cars. For each run we selected one of these cars
as the target and successively attempted to identify it using
each of the three policies, noting both the cost and correct-
ness of each policy.

We then picked a new car as target, repeating the whole
process for a total of "43 targets. We repeated the process
for a total of � different set-ups (i.e., a total of � 3 runs) and
found the accuracy and mean cost of identification for each
of the three policies.

We found that INFOGAIN had an accuracy of . � 5 , fol-
lowed by BESTHYP ���05 and RANDPOL � � 5 . INFOGAIN
also has the least cost computed in terms of CPU time, av-
eraging .0�W{ 3½¼�¿�¿S¾ ��À msec. per run, followed by BESTHYP
" ��.�{ 3½¼���¿f¾ ��Á msec. and RANDPOL � ��3W{ »�3½¼[Â�����¾ ÀlÀ msec.2;
which is significant at the nTÄ 3W{ " level. (RANDPOL is a lot
more expensive than the other two policies because it ran-
domly chose the most expensive shape detecting operator
( c >@?BADC�E ) more often than the other two policies, and applied
it indiscriminately to uninteresting regions.)
Accuracy for a given cost: Here, we set a bound on the total
cost ­ / A�� (and left

b0/ �*1 � 3W{ . ). allowing the recognizer to
make a probe only if the sum of the cost of the current probe
and the prior probes was under ­ / A�� , We varied ­ / A�� from
, " 8 " 3�303 1 msec. per run and noted the accuracy of each pol-
icy for each value. As in the previous case, we ran the exper-
iments with each policy for various different ­ / A�� values,
for a total of � different set-ups with " 3 runs in each set-
up. The percentage of correct identifications for each cost
is plotted against the cost; see Figure 5(a). BESTHYP has a
good accuracy for low costs, but INFOGAIN has much better
costs than the other two policies for reasonably high costs.
Recognition with high probability: Here we consider
identifying the object with a “reasonably high probability”.
For each run, one of the cars was randomly picked as the
target to be identified. The degree of accuracy with which
the car needs to be identified,

b7/ �41
was varied from 3W{ � 3

to 3�{ .03 . While running each policy whenever the probabil-
ity of any car, say � � , exceeds

b / �41 , it is returned (possibly
incorrectly) as the target. We repeated this experiment with
" 3 different runs in each set up, for a total of � set-ups. We
evaluated the experimental results in the same two ways dis-

2All these programs were run on a PC running Liunx 2.0.35 OS
on an Intel Pentium 200 MHz. processor with 32 MB. RAM.
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Figure 5: (a) Cost vs. Accuracy (b) Min. Accuracy vs. Cost (c) Min. Accuracy vs. Error
cussed above: � "o� Plotting b7/ �*1 against the cost required
to identify a car with probability � b7/ �41

(Figure 5(b)) —
note INFOGAIN has the least cost followed by BESTHYP
and then RANDPOL. RANDPOL has such a high cost as
it chooses the most expensive operator ( c >@?BADC�E ) quite often
and applies it on several regions without gaining any use-
ful information.

� ��� Plotting
b / �41 against the percentage

of wrong identifications, for each of policy (Figure 5(c)).
Again, INFOGAIN has the least number of errors for a given
accuracy, followed by BESTHYP and RANDPOL.
5 Conclusions
Future Work: While our results in the cars domain show
that our ideas can be applied to a complex, real-world do-
main, there are a number of extensions to further scale up
our approach. Some are relatively straightforward: e.g.,
extending the set of operators to cover more features; this
will help deal with more complex objects, like complete
cars (not just RTLAs). We were also able to use this frame-
work, mutatis mutandis, to deal with alternative approaches
to recognition – e.g., eigenfaces [TP91], and even eigenfea-
tures [PMS94], for face-recognition; see [IG01].

In other contexts, however, we will need to deal with
thornier issues, such as operators that rely on one another.
This may be because one operator requires, as input, the
output of another operator (e.g., a line-segment produces a
set of tokens — notice this precondition-situation leads to
various planning issues [CFML98]), or because the actual
data obtained from one operator may be critical in deciding
which next operator (or parameter setting) to consider next:
e.g., finding the fuselage at some position helps determine
where to look for the airplane’s wings.

Clearly we will need to re-think our current myopic ap-
proach to cope with these multi-step issues; especially as
we expect heuristics will be essential, as this task is clearly
NP-hard [Sri95]. Finally, all of this assumes we have the
required distribution information. We are now beginning to
explore techniques for acquiring such information from a set
of training images.
Contributions: This paper has three main contributions:
First, it provides a formal foundation for investigating ef-
ficient image interpretation, by outlining the criteria to con-
sider, and suggesting some approaches. Secondly, our im-
plementation is a step towards automating the construction
of effective recognition systems, as it will automatically de-
cide on the appropriate policies for operator applications, as

a function of the user’s (explicitly provided) task and the
available inventory of operators. Finally, it presents some
results related to these approaches — in particular, our re-
sults confirm the obvious point that information gain (as em-
bodied in the INFOGAIN policy) is clearly the appropriate
measure to use here — and in particular, it is better than
the BESTHYP approach. This observation is useful, as there
are deployed imaging systems that use this BESTHYP ap-
proach [LHD u 93].
References
[CFML98] S Chien, F Fisher, H Mortensen, and E Lo. Using ai

planning techniques to automatically reconfigure software mod-
ules. In Lecture Notes in CS, 1998.

[FJ92] P.J. Flynn and A.K. Jain. 3-d object recognition using in-
variant feature indexing of interpretation tables. CVGIP, 1992.

[GJ96] G Geman and B Jedynak. An active testing model for
tracking roads in satellite images. IEEE PAMI, 1996.

[HR96] R Huang and S Russell. Object identification: A bayesian
analysis with application to traffic surveillance. Artificial Intel-
ligence, 1996.

[IG01] R Isukapalli and R Greiner. Efficient interpretation poli-
cies. Technical report, University of Alberta, 2001.

[KWM93] D Koller, J Weber, and J Malik. Robust multiple car
tracking with occlusion reasoning. Technical report, UCB, 1993.

[LAB90] T S Levitt, J M Agosta, and T O Binford. Model-based
influence diagrams for machine vision. In UAI, 1990.

[LHD � 93] T S Levitt, M W Hedgecock, J W Dye, S E Johnston,
V M Shadle, and D Vosky. Bayesian inference for model-based
segmentation of computed radiographs of the hand. Artificial
Intelligence in Medicine, 1993.

[PL94] A R Pope and D Lowe. Vista: A software environment for
computer vision research. In IEEE CVPR, 1994.

[PMS94] A Pentland, B Moghaddam, and T Starner. View-based
and modular eigenspaces for face recognition. In IEEE CVPR,
1994.

[RH92] V Ramesh and R M Haralick. Performance characteriza-
tion of edge operators. In Machine Vision and Robotics Confer-
ence, 1992.

[Smi96] S Smith. Flexible filter neighbourhood designation. In
Proc. 13th Int. Conf. on Pattern Recognition, 1996.

[Sri95] S Srinivas. A polynomial algorithm for computing the
optimal repair strategy in a system with independent component
failures. In UAI, 1995.

[TP91] M Turk and A Pentland. Eigenfaces for recognition. Jour-
nal of Cognitive Neuroscience, 1991.


