Discriminant Parameter Learning of Belief Net Classifiers

Russell Greiner and Wei Zhou*
Department of Computing Science
University of Alberta
Edmonton, AB T6G 2E8 Canada
{ wei, greiner }@cs.ualberta.ca

June 25, 2001

Abstract

Recent results have shown that “Bayesian classifiers”, including NaiveBayes, perform ex-
tremely well as classifiers. Essentially all of the associated learners seek the parameters that
maximize the likelihood of the sample. As these parameters may not maximize the classification
accuracy, we propose instead finding the parameters that maximize conditional likelihood, of
the class label given the instance description, over the training sample. This paper first for-
mally describes this “discriminant learning” task and analyzes its inherent complexity. Based
on this analysis, we present an effective gradient-descent algorithm DEP for learning the best
(read “most accurate”) parameters for any given belief net structure, from either complete or
incomplete training data. We then provide empirical evidence that DEP effectively produces
accurate classifiers — often competitive with the best state-of-the-art classifiers, and in certain
situations, more accurate than the standard learning algorithms. We show that this is espe-
cially true in the common situation where the BN-structure is incorrect; e.g., when learning
NaiveBayes classifiers.

Keywords: Naive Bayes, Classification Performance, Discriminant Learning, (Bayesian) Belief Nets

1 Introduction

Many tasks — including fault diagnosis, pattern recognition and forecasting — can be viewed as
classification, as each requires assigning the class (“label”) to a given instance, which is typically
specified by a set of attributes. There are a number of learners that try to learn accurate classifiers
from labeled instances, using a variety of representations for these classification functions, including
decision trees, rules sets, and neural nets [Mit97]. While (Bayesian) belief nets (BNs) [Pea88]
are known to be useful tools for representing and reasoning about uncertain information, they
were not considered as classifiers until the observation [LIT92] that it was easy to learn very
accurate “NaiveBayes classifiers” [DH73], which are trivial BNs whose attributes are conditionally
independent given the classification.

This success has led to a number of effective “Bayes classifiers”, each corresponding to some
special type of belief net (BN) structure, including Tree-Augmented Networks, BN-augmented
networks, feature-selection NaiveBayes, etc. [FGG97, KS96, CG99]. Each of the associated learning
algorithms first learns a good network structure from this class (if necessary), then seeks the

*Authors listed alphabetically.

parameters appropriate for this structure. Essentially all of these learners use the parameters that
maximize the likelihood of the training sample [Hec98, Bun96]. This approach does produce BNs
that are good models of the distribution; moreover, the associated parameter-learning subroutine
is incredibly efficient [CH92, Hec98]. However, as explained below, these parameters need not
maximize the classification accuracy, which is the relevant objective function.

This paper pursues an obvious alternative: explicitly seek the most accurate classifier, rather
than the closest distribution — i.e., discriminative rather than generative learning [Bis98, Vap98].
We implement this by seeking the parameters (for the fixed structure) that maximize the conditional
likelihood, of the class label ¢; given the instance e;; this differs from the standard (non-discrimant)
approach of finding the parameters that maximize the likelihood of the labeled instances (e;, ¢;).
We demonstate below that this approach works effectively over a wide variety of situations.

Section 2 provides the foundations — overviewing belief nets, then motivating our specific
approach: learning the parameters (for a fixed belief net structure) that maximize conditional
likelihood. After Section 3 shows this task to be N P-hard, it then provides a gradient-descent
learning algorithm, DEP.

Section 4 reports empirical results which demonstrate that DEP performs well over a variety of
situations; and in certain situations, better than the standard learning algorithms that maximize
likelihood. (1) We first consider the simple case of learning accurate NaiveBayes classifiers from
complete data. Our study, over a number of datasets, shows that the classifiers obtained using
DEP are typically more accurate than the ones obtained using the standard “observed frequency
estimate” (OFE) approach [CH92]. We show, moreover, that our NaiveBayes+DEP classifiers are
competitive with the best learners, BN-based or not. (2) We next consider learning from par-
tially specified instances, and show that DEP is comparable to (and occasionally superior to) the
standard algorithms for this situation: expectation-maximization “EM” [Hec98] and adaptive prob-
abilistic networks “ApN” [BKRK97]. (3) Finally, we include a simple example to reinforce the
common wisdom that the advantage of our discriminant learner DEP over generative learners (OFE
for complete data and APN/EM for incomplete data) comes from DEP’s ability to cope with incorrect
BN-structures. Section 5 discusses these results, and related issues. Section 6 surveys the relevant
literature, indicating how this works differs from other work on learning belief nets, as well as the
body of work on discriminant learning in general. The appendix presents proofs of the theoretical
claims made in the paper.

2 Framework

A (Bayesian) belief net (BN), B = (V, A, ©) is a directed acyclic graph whose nodes each represent
a random variable, and whose arcs a = (R, F) € A each represent a probabilistic dependency
between R and F'. There is also a conditional probability distribution (CPtable) 8 € © associated
with each node R € V that describes R’s posterior distribution, as a function of the values of its
(immediate) parents F C V; in particular, the parameter 6, ¢ represents the network’s term for
P(R=r|F=f{) [Pea88].

As a belief net represents a joint distribution over the variables V, it can be used to determine
the conditional probability P(C | E=e) of any variable C, conditioned on any assignment to some
set of other variables E=e. As we are dealing with the classification task, we will consider C to be
the class variable, and (if the data is complete) E =V — {C}. The classifier classp(-) for the BN B
will “label” an instance E = e with the most likely class classg(E=e) = argmax {P(C=c|E=e)}.

A good classifier is one that produces the appropriate answers to these unlabeled instances
as often as possible. We use the standard “classification error” (aka “0/1” loss) to evaluate the

resulting B-based classifier classp

errf(B) = Pel(classp(e) # c) (1)

over the true distribution of labeled instances (e, c),! which we will approximate with the empirical
score over a given labeled sample S:

&(B) = % S Jelassp(e) #c | @)

| | (c,e)eS

where | A # B is 1 when A # B and 0 otherwise.

Our goal is a belief net B* = (V, A, ©*) with the given structure (), A), that minimizes the
error with respect to the true distribution. That is, we want an learner that takes as input a
belief net structure G = (V,.A), and a sample of labeled instances S = {(e;, ¢;) }i, and returns the
CPtable entries for G that produce the smallest empirical score é1(*)(-) score (Equation 2). Given
a sufficiently large large sample, this will correspond to the BN with the best err(-) score.

Conditional Likelihood: The expected error of a classifier corresponds to the conditional proba-
bility — e.g., if P(Cancer = true|Smoker = true) = 0.8, then we expect the associated classifier,
which labels the instance “(Smoker = true; Cancer) as “True”, will be wrong 20% of the time
— i.e., have an error of 20%. In general, the expected error of a classifier, for each instance, is
err(? e)(B)=1- Pg(H = h|E = e). This suggests that minimizing error corresponds to max-
imizing the conditional likelihood of that instance P(H = h|E = e). As log() is a monotonic
function, this is equivalent to maximizing the log of the conditional likelihood.

We therefore define the “(negative) log conditional likelihood” of a belief net B, over the dis-
tribution of labeled instances, as

LCLp(B) = — > P(e) logPp(c|e) (3)
(e0)

where Pg(x) corresponds to the value the “distribution” B assigns to the event x. Given a sample
S, we can approximate this as

ron”(B) = —ﬁ S log(Ps(cle)) (4)
(c,e)es

([FGGY7] similarly note that minimizing Equation 3 is equivalent to minimizing the conditional
cross-entropy, which means the model that minimizes this LCL-scoring function should be a good
classifier.) Note also that many research projects, including [BKRK97], use this measure when
evaluating their BN classifiers.

While this L/C\L(S) (B) formula closely resembles the “log likelihood” function

L¥(B) = = Y log(Pa(ec)) (5)
|S| (e,c)eS

used by many BN-learning algorithms, there are some critical differences: [FGG97] note

—~ (S) 1
LL7(B) = > log(Pp(cle)) + D log(Ps(e
BEl
(c,e)eS (e,c)eS
'Following standard convention, we will assume that the “distribution over instances” corresponds to the under-
lying tuple distribution, from which we derive P(C |E); and so we will use P(-) to refer to both; see [GGS97].

where the first summation resembles our L/C\L(')() score, which measures how well our network will
answer the relevant queries, while the second summation is irrelevant to our task. In particular, it

) (B,) < TL” (Bs) but LOLY (B,) > TCL™(

criterion will prefer B, over Bg, even though By is a better classifier.
—~ (S
(Section 5 provides other arguments explaining why our approach may work than the LL()(-)-

based approaches; and Section 6 surveys other relevant literature.)

is easily possible that LL
—~ (S
that uses the L1\)()

Bg). Here, a learner

3 Learning Algorithm

As explained above, we are seeking the CPtable entries that have the optimal conditonal likelihood,
wrt the data. Unfortunately, this task is intractable:

Theorem 1 It is NP-hard to find the values for the CPtables of a fized BN-structure that produce

(S)

— (S
the smallest (empirical) LCL" ' (-)-score for a given sample S. |

To sidestep this problem, we defined a simple gradient-descent algorithm, DEP (for “Discriminant

Estimation of Parameters), that attempts to improve the empirical score L/C\L(S)(B) by changing
the values of each CPtable entry 6, ¢. Following [BKRK97], we first built the DEPy, system that
considered the © space: On each iteration, it first climbed down the gradient with respect to each
0, then corrects the resulting 6, € © values to insure that 6, > 0 and >_, 6,r = 1.

We next built a system DEP = DEPg that avoids this complication by using a different set of
parameters — “fB,¢” — where each

Pg(R=r|F=f) = 0,5 = ePrir/> el
7.I

As the S, ¢’s sweep over the reals, the corresponding 6, ¢’s will satisfy the appropriate constraints.
(These are also called the “softmax” parameters [Bis98].?)

Given a set of labeled queries, DEP descends in the direction of the total derivative wrt these
queries, which of course is the sum of the individual derivatives:

Proposition 2 For a single labeled instance [e;c]:
9 L/CTL([e;cD(B)
0 ﬁr\f

= [PB(raf|ea C) _PB(raf|e)] - 97"|f[PB(f|ea C) _PB(f‘e)] .

We then incorporated several enhancement to speed-up this computation, including standard
ideas of line-search and conjugate gradient [Bis98]. Another important improvement stems from the
observation that this derivative is 0 whenever R is independent of C given E — which makes sense,
as this condition means that the 6,¢ term plays no role in computing Pp(c|e); see [BKRK97].
This led to very significant savings in some situations (but, of course, not in the complete-data
case; see below.)

*Note that these parameters can be viewed as the natural parameterization in an exponential family representation
for conditional distributions [Thi95].

@ ///////v' \\\\d\Eg*Q E6
—7 SR
@ @ @ E1 O— >

E4
Figure 1: (a) NaiveBayes Structure; (b) TAN structure (see [FGGY7, Fig 3])

4 Empirical Exploration

The DEP algorithm takes, as arguments, a BN-structure G and a dataset S = {(e;,c;)};, and
returns a value for each parameter 6,y € ©. To explore its effectiveness, we compared the err(-)
performance of the resulting © ppp with the results of other algorithms that similarly learn CPtable
values for a given structure.

We say the data is “complete” if every instance specifies a value for every attribute; hence
“E1=e1,...,E, =e,” is complete (where {C, E1, ..., E,} is the full set of variables) but “Ey = e9, F7 = e7”
is not. When the data is complete, we compare DEP to the standard “observed frequency estimate”
(OFE) approach, which is known to produce the parameters that maximize likelihood for a given
structure [CH92]. That is, assume C is a parent of F1, as in Figure 1(a), and let #[C = 1] (resp.,
#[E1 = 0,C = 1]) be the number of instances in the dataset where C = 1 (resp., E; = 0 and
C = 1). Then OFE sets the value of the 0E,—o0|c=1 parameter as:

Opi=ojc=1 = #[E;[ZCO’:CZ;]:H ©)

#] F1=0,C=1]+1

Z[C=1T52 assuming

(Some learners instead use the Laplacian corrected version, O —0c=1 =
E is binary; see [Hec98].)

When the data is incomplete, we compare DEP to the standard expectation-maximization algo-
rithm EM [Hec98] and to the gradient-ascent algorithm APN [BKRK97].3

We present only the results of the DEP (that is, DEPg) algorithm, as we found its performance
strictly dominated DEPy’s. Also, as we are concerned with classification performance, this paper
focuses on classification error; where appropriate we will also present the results wrt mean-squared-
error:

mse®(B) =) P(e) x [Pp(c|e)—P(c|e)) (7)
(c,e)esS

In either case, we use hold-out or cross-validation datasets.

4.1 NaiveBayes — Complete, RealWorld Data

Our first experiments dealt with the simplest situation: learning the NaiveBayes parameters from
complete data. Recall that the NaiveBayes structure requires that the attributes are independent
given the class label — see Figure 1(a).

Here, we compared the relative effectiveness of DEP with various other classifiers, over the
same 25 datasets that [FGG97] used for their comparisons: 23 from UCIrvine repository [BM00],

3While the original APNg [BKRK97| climbed in the space of parameters §;, we instead used a modified APNg
system that uses the 3; values, as discussed in Section 3, as we found it worked better.

40

0.4

DEP -~

0.35 DEP 8";5 - 35 -
5 03¢] 30 |
£ ! 5

0.25 |, 2 25t N
g w &
§ 02« & 20t 7/
L [— o |
? 015} .] & 15t e
© P4
O %
© o1f . 10 + o

ke
0.05 | * 1 5t 5o
0 L L L 0) L L L L L L L
0 500 1000 1500 2000 0 5 10 15 20 25 30 35 40
Sample Size NB+OFE Error

Figure 2: Comparing NB+DEP with NB+OFE: (a) learning curves for CHESS dataset; (b) over
25 datasets

plus “MOFN-3-7-10” and “CORRAL”, which were developed by [KJ97] to study feature selection.
To deal with continuous variables, we implemented supervised entropy discretization [FI93]. Our
accuracy values were based on 5-fold cross validation for small data, and the holdout method for
large data [Koh95]. As our data and testing procedure followed [FGG97], we can compare DEP
system against the other classifiers they considered; see below. Table 1 summarizes the datasets,
and our testing splits.

We use the CHESS dataset (36 binary or ternary attributes) to illustrate the basic behaviour of
the algorithms. Figure 2(a) shows the performance, on this dataset, of our NB+DEP (“NaiveBayes
structure + DEP parameter instantiation”) system, versus the “standard” NB+OFE, which uses OFE
to instantiate the parameters. We see that DEP is consistently more accurate than OFE, for any size
training sample. We also see how quickly DEP converges to the best performance. The ILQ-OFE
line corresponds to using OFE to initialize the parameters, then using the DEP-gradient-descent.
(This is as opposed to beginning with some randomly initialized parameter values.) We see this
has some benefit, especially for small sample sizes. All of our results, therefore, actually use this
DEP-OFE.

Figure 2(b) provides a more comprehensive comparison, across all 25 datasets. (In the first
set of scatter-plot figures, each point below the £ = y line is a dataset where NB4+-DEP was better
than other approach — here NB+OFE. The horizontal and vertical lines around each point express
the 1 standard-deviation error bars in each dimension.) As suggested by this plot, NB+DEP is
significantly better than NB4+OFE at the p < 0.005 level.* (We suggest why this may be true in
Section 4.4.)

We also compared NB+DEP with other classifiers. A SNB+OFE classifier is produced by us-
ing OFE to instantiate a NaiveBayes structure that contains only a selected subset of the at-
tributes [KJ97]; and C4.5 is a well-known decision-tree learner [Qui92]. As suggested by Fig-
ures 3(a) and 3(b), NB+DEP is significantly better than SNB+OFE (resp., slightly better than
SNB+OFE) at the p < 0.025 level (resp., p < 0.2). (These SNB+OFE and C4.5 values are taken
from [FGGY7, Table 3]. Here we omitted three of the datasets where we obtained significantly differ-
ent accuracy values on our common classifiers (NB+OFE, TAN+OFE), probably due to the different
cross-validation partitioning of the small datasets, and/or different discretization implementation.)

4Each significance result reported is based on a 1-sided paired-t test [Mit97]. We report values up to p < 0.2; of
course, values larger than p < 0.05 are probably not significant.

40 ‘ : : : : : : 40

35 | 1 35 |

30 f : 30 |
u% 25 | & L% 25 |

_d
@ @

b 20t % & 20|
[a) [a)] —4
T T —
m 15 % m 15
z & 9 @

10 b : 10 | ——

5 R 5¢r

0 L L L L L L L O L L L L L L L

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
C4.5 Error [FGGY7] SNB+OFE Error [FGGY7]

Figure 3: Comparing NB+DEP vs (a) SNB4+OFE (b) C4.5

4.2 TAN — Complete, RealWorld Data

We next considered TAN (“tree augmented network”) structures [FGG97]. In a TAN-structure,
there is a link from the classification node down to each attribute. If we ignore those links, the
remaining links, connecting attributes to each other, form a tree; see Figure 1(b). (Hence this
representation allows each attribute to have at most one “attribute parent”, and so this class of
structures strictly generalize NaiveBayes.) [FGGY7] provide an efficient algorithm for learning such
TAN structures, given complete data.

Here, we first compared NB+DEP to TAN+OFE; the results appear in Figure 4. We see that
DEP, even when handicapped with the simple NaiveBayes structure, performs about as well as OFE
on TAN structures. (No significance, either way, using a paired-t test.) Of course, the limitations
of the NaiveBayes structure may explain the poor performance of NB+DEP on some data. For
example, in the artificial dataset CORRAL, as the class is a non-trivial function of the four relevant
attributes, one must connect the four relevant attribute to predict the class. As NaiveBayes permits
no such connection, all three NaiveBayes classifiers (NB4+DEP, NB+OFE, SNB+OFE) perform poorly
on this data. Of course, as TAN allows more expressive structures, it has a significant advantage
here. It is interesting to note that our NB+DEP is still comparable to TAN+OFE, in general.

Would we do yet better by using DEP to instantiate TAN structures? Figure 5(a) shows that
TAN+DEP does in fact work slightly better than NB+DEP, but only at the p < 0.2 level. Moreover,
Figure 5(b) shows that TAN+DEP does consistently better than TAN+OFE — at a p < 0.025 level.

Notice that TAN+DEP actually did perfectly on the the CORRAL dataset, which NB+DEP found
problematic. (The [FGG97, Table 3] paper compared TAN+OFE to NB4+OFE, and to SNB+4OFE.
As we obtained similar results, we will not duplicate those figures; see Table 2.)

4.3 NaiveBayes — InComplete, RealWorld Data

All of the above studies used complete data. We next explored how well DEP could instantiate the
NaiveBayes structure, using incomplete data.

Here, we used the datasets investigated above, but modified by randomly removing the value of
each attribute, within each instance, with probability 0.25. (That is, this data is missing completely
at random, MCAR [LR87].) We then compared DEP to the standard “missing-data” learning
algorithms, APN and EM. In each case — for DEP, APN and EM — we initialize the parameters
using the obvious variant of OFE that considers only the records that include values for the relevant

TAN+DEP Error

40
35 | 1

30 r 1

20 | 9]
15 | 9+]
10 &]

NB+DEP Error

O 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

TAN+OFE Error

Figure 4: Comparing NB+DEP vs TAN+OFE

40 40
35t o 35 ¢ o]
30t : 30t]
s
25t o : S 25t]
o
20 ¢ —b=] W 20]
= a 2
L 4 =2 L 4
15 1
10 ¢ “e] 10 @]
5t : 5t]
<
O C} L Fal L L L L L 0 L L L L L L L
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
NB+DEP Error TAN+OFE Error

Figure 5: Comparing TAN+DEP with (a) NB+DEP; (b) TAN+OFE

40 ‘ : : : : : : 40

35 - 1 35 |
30 1 30 |
2 251 2 5t
L w
& 20t _ & 2t
[a) — [a)]
é 15 |] é 15 |
10 | e 1 10 | Al
L L
5 1 5t
0 L L L L L L L O L L L L L L L
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
NB+APN Error NB+EM Error

Figure 6: Comparing NB+DEP with (a) NB+APN; (b) NB+EM on Incomplete Data

35 T T T T T T T T T
* DEP -
EM *
i APN -
30
]
= :
c 25+
o }
b
S L
g 20 3 &
< ' .
(@) . - T
15
10

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Sample Size

Figure 7: Comparing Parameter Learners, DEP vs EM,APN, for CHESS; incomplete data

node and all of its parents.

Here, we first learned the parameters for the NaiveBayes structure; Figure 7 shows the learning
curve for the CHESS domain, comparing DEP to APN and EM. We see that DEP does better for
essentially any sample size.

We also compared these algorithms over the rest of the 25 datasets; see Figures 6(a) and 6(b)
for DEP vs APN and DEP vs EM, respectively. As shown, DEP does consistently better — in each
case, at the p < 0.025 level.

Note that EM’s first step corresponds to the obvious varient of OFE mentioned above: when
computing the frequencies of an attribute A given the class C (to estimate the value of 6 A|C), it
will simply ignore a record if A was not specified. In this specific situation, EM will terminate after
this single iteration, as these values actually maximize the likelihood of the data.’

Proposition 3 When instantiating a NaiveBayes-structure from a data sample where the class
variable is always specified but some attribute values are missing completely at random, EM will
always

e converge after a single iteration,

o produce the mazimum likelihood parameters. |

S0f course, this claim is not true in general!

40 : 40
35 1 35
30 1 30
S S
g 25 r o 25 r
i {h
ol 20 ol 20
% 15 % 15
< S
10 1 10
5 5
0 L L L L L L L O L L L L L L L
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
TAN+APN Error TAN+EM Error

Figure 8: Comparing TAN+DEP with (a) TAN+APN; (b) TAN+EM on Incomplete Data

40 T T T T T : T 100

T ‘ ‘ e
I | 90 | EM v
35 o DEP -
30 _ 80f |
— o
e = 70°f A
5 251 _ = v
o N S 60r
& o) iz
2 s B g ol .
< o & 40+t ey
I ® | o e
10 30 Lo
5 1 20 L v
OCJ L o L L L L L 10 L L L L
0 5 10 15 20 25 30 35 40 1e-05 0.0001 0.001 0.01 0.1
NB+DEP Error Amount Missing
Figure 9: (a) Comparing TAN+DEP with NB+4+DEP on Incomplete Data

(b) Comparing DEP to APN and EM on LETTER dataset, varying the quantity of missing data

We next tried to learn the parameters for a TAN structure. The standard TAN-learning algo-
rithm computes the mutual information between each pair of attributes, conditioned on the class
variable. This is straightforward when given complete information. Here, given incomplete data, we
approximate mutual information between attributes A; and A; by simply ignoring the records that
do not have values for both of these attributes. Our results, comparing TAN+DEP to TAN+APN
and to TAN+EM, are shown in Figures 8(a) and 8(b) respectively. Here, we see that these systems
are roughly equivalent: TAN+DEP is better than TAN+EM at p < 0.1, but it is not significantly
better than TAN+APN.

Finally, we compared NB+DEP to TAN+DEP (Figure 9(a)), but found no significant difference.

Table 3 presents all of our empirical results related to missing data. (As we were concerned with
the poor, but uniform, performance of all classifiers on the LETTER dataset, we further investigated
their performances on this dataset, using various different missing-value rates. The results, shown
in Figure 9(b), show that the error rate were not always so high (for smaller rates of missing data),
and that various classifiers did have different performances when the missing data rate was smaller.)

10

0.2

0.12

DEP DEP
018 | OFE = OFE
U% 01t
5 0161 z -
O 014 | .
c Qo
S S
S 042 & 006 |
= ©
@ 01t]
k: 3 0.04
O o008 < @ .
[
. 3 002}
0.06 v) = «
0.04 L T L L . . . ox N . .
0 1 2 3 4 0 1 2 3 4

Number of Missing Arcs Number of Missing Arcs

Figure 10: Comparing DEP to OFE, on Increasingly Incorrect Structures (NaiveBayes) using Com-
plete Data, based on (a) Classification Error; (b) Mean Square Error

4.4 NaiveBayes — “Correctness of Structure” Study

It is well known that, in general, discriminant learning tends to be more robust to incorrect as-
sumptions than generative learning, wrt the classification goal [CS89, Jor95, Rip96]. Here, this
suggests our discriminant DEP should be more robust to incorrect structures than the generative
learners — OFE, APN, EM.

Our earlier studies support this claim: The NaiveBayes structure, which makes the typically-
incorrect assumption that the attributes are independent given the classification variable, is known
to handicap generative learners, especially OFE [DP96]. The earlier studies demonstrated that
DEP was not as handicapped here. We designed the following simple experiment to empirically
investigate this claim, in general.

We used synthesized data, to allow us to vary the “incorrectness” of the structure. Here, we
consider an underlying distribution, Py over the k + 1 binary variables {C, F1, Es, ..., E;} where
(initially)

P(C)=09 P(E;|C)=02 P(E;|C)=08 (8)

and our queries were all complete; i.e., each instance of the form E = (E1,£E,,...,£E).

We then used OFE (resp., DEP) to learn the parameters for the NaiveBayes structure (Fig-
ure 1(a)) from a data sample, then used the resulting BN to classify additional data. As the
structure was correct for this Py distribution, both OFE and DEP did quite well, efficiently converg-
ing to the optimal classification error.

We then considered learning the CPtables for this NaiveBayes structure, but for distributions
that were not consistent with this structure. We therefore formed the m! distribution P,, by
asserting that By = By = ... = E,, (ie, P(E;|E1) = 1.0, P(E;|-~E;) = 0.0 for each i = 1..m)
in addition to Equation 8. Hence, Py corresponds to the m = 0 case. For m > 0, however, the
m-th distribution cannot be modeled as a NaiveBayes structure, but could be modeled using that
structure augmented with m — 1 links, connecting F;_1 to E; for each i = 2..m.

Figure 10(a) shows the results, for £ = 5, based on 400 instances. We see that, as predicted, DEP
can produce reasonably accurate CPtables here, even for increasingly wrong structures. However,
OFE does progressively worse.

(The “blip” at m = 1 is due to the quantization of selecting a classification value; we see a strictly
monotonic relation if we instead consider “mean squared error” (Equation 7); see Figure 10(b).

11

0.17 —
0.16 EM -~
015 L APN =
0.14
013 | *
0.12
0.11
0.1} x
0.09
0.08 |
0.07 : L : : : : :

0 1 2 3 4

Number of Missing Arcs

Classification Error
.

Figure 11: Comparing DEP to OFE, on Increasingly Incorrect Structures (NaiveBayes) using In-
Complete Data; using Classification Error

Notice that the DEP error actually becomes processively smaller as the structure become worse,
i.e., as we increase the number of additional links in the true model. This is because, for DEP, each
additional link (in the true model) makes the task easier, as there are fewer degrees of freedom.
Of course this does not help the maximal likelihood approach OFE, because it is forced to consider
only the immediate connections provided by the links.)

4.5 “Correctness of Structure” Study...Incomplete Data

We next degraded this training data by randomly removing the value of each attribute, within each
instance, with probability 0.5. We then compared DEP with the standard systems APN and EM.
These results appear in Figure 11. Here, we again see that DEP is more accurate, in each case.

5 Discussion

Executive Summary: Qur empirical studies on the UCI datasets suggest, when given complete
training data,

TAN+DEP > TAN+OFE
= NB+DEP > C4.5)
> SNB+OFE
> NB+OFE
and when dealing with incomplete data,
NB+APN
NB+DEP > {NB—I—EM }
TAN+DEP (10)
= = TAN+EM
TAN+APN

We use “>” to indicate a statistical significance at the p < 0.05 level or better; and “>” to indicate
plausibly better, at the level of p < 0.2 or better.

12

Why DEP Works Well: In a nutshell, DEP worked effectively in many situations; and it was
especially advantageous (i.e., typically better than the alternative ways to instantiate parameters)
whenever the BN-structure was incorrect — i.e., whenever it is not an I-map of the underlying
distribution by incorrectly claiming that two dependent variables are independent [Pea88]. This
is a very common situation, as many BN-learners will produce incorrect structures, either because
they are conservative in adding new arcs (to avoid overfitting the data [Hec98, VGO00]), or because
they are considering only a restricted class of structures (e.g., NaiveBayes [DH73], poly-tree [CL68,
Pea88], Tree-Augmented Network [FGG97], etc.) which is not guaranteed to contain the correct
structure.

To understand why a bad structure is problematic for OFE, recall that OFE is guaranteed to
produce the parameter values that have the optimal likelihood value for the structure G, given
the data S. However, if the structure G is incorrect, even the optimal-likelihood-for-G parameters
might yield a fairly poor model of the true tuple distribution, which means it might return incorrect
values for queries. By contrast, the DEP algorithm is not as constrained by the specific structure,
and so may be able to produce parameters that yield fairly accurate answers, even if the structure
is sub-optimal. (See the standard comparison between discriminative versus generative training,
overviewed in Section 6 below.)

Computational Efficiency: Our current DEP implementation — in unoptimized JAVA code —
was relatively slow. In general, it required a handful of iterations to converge for the small datasets,
and dozens for the larger ones. APN and EM typically used slightly more iterations. DEP’s time
per iteration varied, from around 0.5 seconds per iteration for the smaller datasets through a few
minutes for larger datasets Again, this is roughly comparable to the performance of the incomplete
data algorithms, APN and EM.

These times are, of course, considerable more than required by OFE, which is arguably the most
efficient possible algorithm. We are currently investigating whether there could be a more efficient
algorithm for our task (computing parameters that optimize conditional likelihood) in the complete
data case.

Tradeoff: Our results, in general, suggest an interesting tradeoff: Most BN-learners spend most
of their time learning a near-optimal structure [CGH94]|, then use a simple algorithm (OFE) to fill
in the CPtables. When the goal is classification accuracy, our empiricial studies suggest instead
quickly producing trivial structures — such as NaiveBayes — then spending time learning good
parameters, using DEP.

6 Related Results

There are a number of researchers providing techniques, and insights, related to learning belief nets.
Much of their work focuses on learning the best structure, either for a general belief net, or within
the context of some specific class of structures (e.g., TAN-structures, or selective NaiveBayes);
see [Hec98, Bun96] for extensive tutorials. By contrast, this paper suggests a way to learn the
parameters for a given structure.

Most of those structure-learning systems also learn the parameters. Essentially all use the OFE
algorithm here (Equation 6). This is well motivated in the generative situation, as these parameter
values do optimize the likelihood of the data [CH92].

As noted earlier, our goal is different, as we are seeking the optimal classifier — i.e., discriminant
learning. While a perfect model of the underlying distribution would also be the optimal classifier,
the converse is not true; i.e., we are happy with parameters that yield a good classifier, even if

13

those parameters do not reflect the true underlying distribution. That is, the eventual performance
system will be expected to address a certain range of questions — e.g., about the probability of
cancer given gender, smoking habits, etc. We consider our learner good if it produces parameters
that provide appropriate answers to these questions, even if the overall distribution would return
completely wrong answers to other (unasked) questions, e.g., about the conditional probability of
smoking given gender, etc.

There have been many other systems that also considered discriminant learning of belief nets [KMST99,
JMJ00, FGG97, CGY99]. These systems, however, focused on structure learning; and usually used
OFE to instantiate the resulting parameters.

Our results also relate closely to the work on discriminant learning of Hidden Markov Models
(HMMs) [SMK197, CJL92]. In particular, much of that work uses “Generatized Probabilistic
Descent”, which resembles our DEP system by descending along the derivative of the parameters,
to maximize the conditional likelihood of the hypothesis (which typically are words) given the
observations — which they call “Maximimum Mutual Information” criterion.

This relates directly to the large literature on discriminant learning in general; see [CS89,
Jor95, Rip96]. One standard model is Linear Discriminant Analysis (LDA), which typically assumes
P(E|C=c) is multivariate normal (i.e., P(E|C=c) ~ N (i, X) where each y. mean is dependent
on the class C = ¢, and the covariance matrix is the same for all classes). The LDA system then
estimates the relevant {y., 3, P(C = ¢)} parameters from a body of data, seeking the ones that
maximize the likelihood of the data relevant to that parameter. Given this model, it can then use
Bayes Rule to compute the posterior distribution of P(C |E=e’) given new evidence E=¢'.

Notice this approach is, in essense, generative, in that it deals with the entire (C;E) joint
distribution. By contrast, Multiple Logistic Regression (MLR) estimates the parameters explicitly
associated with the posterior distribution, of the form

exp(ac + B - €)

P(C:C|E:e) Zjexp(aj+,8j'e)

seeking the {«;, 8;} parameters that maximize the conditional likelihood P(c|e). Note this form
corresponds to the multivariate conditions used by LDA; indeed, this form is appropriate whenever
P(E|C) is in the exponential family.

We can view LDA as being generative (aka “causal” or “class-conditional” [Jor95], or “sam-
pling” [Daw76]), as it is attempting to fit parameters for the entire joint distribution, while MLR
is discriminant (aka “diagnostic”, “predictive” [Jor95]), as it focuses only on the conditional prob-
abilities. We can therefore identify LDA with (generative) OFE, and MLR with (discriminant)
DEP.

Our results echo the common wisdom obtained by these prior analyses of discriminant systems.
In particular, (1) accuracy: discriminant training typically produces more accurate classifiers than
generative training (see the comparative studies throughout Section 4); (2) robustness: typically
discriminant is more robust against incorrect models than generative (see Section 4.4 and 4.5);
(3) efficiency: typically generative is more efficient than discriminant (compare the efficient OFE with
the NP-hard DEP). Due to the final point, many discriminant learners initialize their parameters
based on generative (read “maximum-likelihood”) estimates, especially as the latter are often “plug-
in parameters” [Rip96]; our OFE-DEP algorithm incorporates this idea as well.

The work reported in this paper has significant differences, of course. First, we are dealing
with a different underlying model, based on discrete variables (rather than normal ones), in the
context of a specified belief net structure, which corresponds to a given set of independency claims.
(While our empirical evidence focuses on NaiveBayes and TAN structures, our algorithm of course

14

works for arbitrary structures.) We also describe the inherent computational complexity of this
task, produce algorithms specific to our task, and provide empirical studies to demonstrate that
our algorithms works effectively, given either complete or incomplete training data.

Finally, our companion paper [GGS97] also considers learning the parameters of a given struc-
ture towards optimizing performance on a distribution of queries. Our results here differ, as we
are considering a different learning model: [GGS97] tries to minimize the squared-error score (a
variant of Equation 7) which is based on two different types of samples — one with tuples, to
estimate P(C | E), and the other with queries, to estimate the probability of seeing each “What is
P(C|E=e)?” query. By contrast, the current paper tries to minimize classification error (Equa-
tion 1) by seeking the optimal “conditional likelihood” score (Equation 3), wrt a single sample of
labeled instances. Also, of course, our current paper includes new theoretical results, a different
algorithm, and completely new empirical data.

7 Conclusions

7.1 Future Work

1. This paper investigtes the challenges of filling in the CPtables of a given BN-structure. While
this is an important subtask, a general learner should be able to learn that structure as well —
perhaps using conditional likelihood as the selection criterion; see [KMST99, JMJ00]. We plan to
investigate ways to synthesize these approaches.

2. While the LCL-optimization task is N P-hard in general (Theorem 1), there may be useful special
cases where this task is easy. We are currently investigating whether the learning task is easy when
the data is complete.

7.2 Contributions

Most BN-learners seek the network that maximizes likelihood of the data; this is appropriate when
the learner’s goal is obtaining an apt model of the underlying distribution. In many cases, however,
the learner is trying to produce an accurate classifier; here it makes sense to use “discriminant”
learning techniques — typically by seeking the parameters that maximize the conditional likelihood.

This paper focuses on the specific task of finding the parameters for a fixed belief net structure,
over discrete variables. After showing that this task is intractable in general, we provide an effec-
tive gradient-descent learning algorithm DEP and demonstrate empirically that DEP works well in
practice over a variety of situations (e.g., both complete and incomplete data) — in many cases,
performing better than the algorithms developed for the more familiar “maximize likelihood” con-
text; see Equations 9 and 10. We also illustrate that our DEP works especially well in the common
cases where the structure is incorrect.

Our results are consistent with the standard knowledge about discriminant vs generative learn-
ing. We contribute to this knowledge by provide a concrete demonstration in our specific context:
estimation of discrete parameters for a fixed structure, wrt a 0/1 loss function, etc. In addition,
while the idea of using gradient descent here is not original, some aspects of our specific algorithm
may provide insights to future researchers considering this approach — in particular, the various
tricks we use to reduce the computation (e.g., effectively ignoring the d-seperated parameters), and
our use of the “softmax” encoding to satisfy the constrained optimization task.

15

Table 1: Description of data sets used in the experiments; see [FGG97]

Dataset # Attributes # Classes # Instances
Train Test
1 australian 14 2 690 CV-5
2 breast 10 2 683 CV-5
3 chess 36 2 2130 1066
4 cleve 13 2 296 CV-5
5 corral 6 2 128 CV-5
6 crx 15 2 653 CV-5
7 diabetes 8 2 768 CV-5
8 flare 10 2 1066 CV-5
9 german 20 2 1000 CV-5
10 glass 9 7 214 CV-5
11 glass2 9 2 163 CV-5
12 heart 13 2 270 CV-5
13 hepatitis 19 2 80 CV-5
14 iris 4 3 150 CV-5
15 letter 16 26 15000 5000
16 lymphography 18 4 148 CV-5
17 mofn-3-7-10 10 2 300 1024
18 pima 8 2 768 CV-5
19 satimage 36 6 4435 2000
20 segment 19 7 1540 770
21 shuttle-small 9 7 3866 1934
22 soybean-large 35 19 562 CV-5
23 vehicle 18 4 846 CV-5
24 vote 16 2 435 CV-5
25 waveform-21 21 3 300 4700
Acknowledgements

We thank Tom Dietterich, Charles Elkan, Adam Grove, Peter Hooper, Daphne Koller, Dale Schu-
urmans, and Lyle Ungar for their many helpful suggestions. We also thank Fabio Cozman for
making his JAVABAYES code available, which is the foundation of our implementation. RG was
partially funded by NSERC, and by Siemens Corporate Research; and WZ was partially funded by
NSERC and by Syncrude.

References

[Bis98] C. Bishop. Neural Networks for Pattern Recognition. Oxford, 1998.

[BKRK97] John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. Adaptive probabilis-
tic networks with hidden variables. Machine Learning, 29:213-244, 1997.

[BM00] C. Blake and C. J. Merz. UCI repository of machine learning databases.
Technical report, Dept. Info. & Comp. Sci., Univ. Calif. at Irvine, 2000.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

16

Table 2: Empirical Results (Accuracy) of 6 approaches to Learning Classifiers, over 25 datasets,
for complete data (SNB+o0FE, C4.5 data from [FGG97, Table 3])

Data set NB+orFe TAN+oOrE NB+DEP TAN+DEP SNB+OFE C4.5
1 | AUSTRALIAN 86.81+0.84 85.07+1.09 84.93+1.06 85.07+1.09 86.67+1.81 85.65+1.82
2 | BREAST 96.55+0.83 96.55+0.58 95.54+0.48 96.12+0.37 96.19+0.63 94.73+0.59
3 | CHESS 87.34+1.02 92.40+0.81 95.40+064 97.09+051 94.2840.71 99.53+0.21
4 | CLEVE 82.33+3.27 82.00+3.78 82.33+3.89 81.33+4.33 78.06+2.41 73.31+0.63
5 | CORRAL 86.40+2.99 99.20+0.80 90.40+1.60 100.00+0.00 83.57+3.15 97.69+2.31
6 | CRX 86.09+1.49 85.07+1.14 84.64+1.15 85.07+1.14 85.92+1.08 86.22+0.58
7 | DIABETES 75.56+1.32 75.824+1.17 75.69+1.26 75.95+1.25 76.04+0.83 76.04+0.85
8 | FLARE 79.62+1.17 83.29+1.75 82.72+2.22 82.35+2.14 83.40+1.67 82.55+1.75
9 | GERMAN 73.50+1.45 73.60+0.94 74.00+1.28 73.60+0.94 73.70+2.02 72.20+1.23
10 | GLASS 41.90+2.45 41.90+2.45 41.90+2.45 41.90+245 71.98+2.15 69.62+1.95
11 | GLASS2 76.25+3.22 75.63+3.03 77.50+3.3¢ 76.2543.22 79.17+1.71 76.67+1.63
12 | HEART 78.89+3.91 81.114+3.38 79.26+3.81 80.00+3.68 81.85+2.83 81.11+3.77
13 | HEPATITIS 81.94+1.29 85.16+2.41 85.16+0.79 85.16+1.64 90.00+4.24 86.25+4.15
14 | IRIS 95.33+0.82 94.67+0.82 95.33+0.82 95.33+0.82 94.00+1.25 94.00+1.25
15 | LETTER 72.72+0.63 84.52+0.51 83.54+0.52 88.90+0.44 75.36+0.61 77.70+0.59
16 | LYMPHOGRAPHY 82.7643.27 78.62+1.29 83.45+2.53 79.31+1.09 77.72+2.46 77.03+1.21
17 | MOFN-3-7-10 86.72+1.06 90.72+0.91 100.00+0.00 100.00+0.00 87.50+1.03 85.55+1.10
18 | PIMA 73.46+1.12 75.4240.84 75.42+1.00 75.69+0.76 74.86+2.61 75.13+1.52
19 | SATIMAGE 81.70+0.86 87.85+0.73 85.50+0.79 88.60+0.71 82.05+0.86 83.15+0.84
20 | SEGMENT 85.32+1.28 89.35+1.11 89.74+1.09 89.74+1.09 93.25+0.90 93.64+0.88
21 | SHUTTLE-SMALL 98.86+0.24 99.38+0.18 99.28+0.19 99.38+0.18 99.28+0.19 99.17+0.21
22 | SOYBEAN-LARGE 92.65+0.33 91.47+1.27 92.65+0.66 92.65+1.54 92.89+1.00 92.00+1.11
23 | VEHICLE 56.80+1.46 61.07+1.10 62.72+1.62 64.97+068 61.36+£2.33 69.74+1.52
24 | VOTE 90.34+2.32 94.25+2.06 96.09+1.39 95.40+1.50 94.71+059 95.63+0.43
25 | WAVEFORM-21 76.55+0.62 76.30+0.62 78.45+0.60 76.74+062 76.53+0.62 74.70+0.63

17

Table 3: Empirical Results (Accuracy) of 6 approaches to Learning Classifiers, from incomplete

data

Data set NB+EM TAN+EM NB+APN TAN+APN NB+DEpP TAN+DEP

1 | AUSTRALIAN 83.62+1.69 82.90+1.48 83.62+1.60 83.62+1.20 83.33x1.65 82.32+0.96
2 | BREAST 83.60+6.43 83.74+6.49 83.60+6.43 83.60+6.43 83.31+6.29 83.74+6.49
3 | CHESS 81.89+1.18 84.80+1.10 82.08+1.17 84.62+1.11 84.62+1.11 87.24+1.02
4 | CLEVE 81.00+3.40 80.67+4.07 82.00+3.70 81.67+4.74 80.33+2.07 80.33+3.89
5 | CORRAL 78.40+2.71 85.60+2.40 78.40+2.71 88.80+3.44 78.40+2.40 86.40+2.71
6 | CRX 82.75+0.77 82.32+0.75 82.75+0.96 81.30+0.93 83.04+0.88 82.32+0.75
7 | DIABETES 67.19+2.90 67.06+3.11 67.84+2.84 67.06+3.11 67.84+2.81 67.06+2.99
8 | FLARE 80.28+1.58 83.19+2.03 80.00+1.53 81.50+1.64 82.72+2.10 82.54+1.95
9 | GERMAN 73.10+0.97 70.50+1.08 73.40+1.04 70.00+0.92 72.80+1.22 70.50+1.08
10 | GLASS 30.48+3.32 30.48+3.32 30.48+3.32 30.48+3.32 30.48+3.32 30.48+3.32
11 | GLASS2 55.63+1.53 55.63+1.53 55.63+1.53 55.63+1.53 55.63+1.53 55.63+1.53
12 | HEART 72.96+4.04 72.22+3.56 73.33+3.73 72.224356 73.33+£3.91 73.70+3.99
13 | HEPATITIS 82.58+0.79 80.00+1.88 82.58+0.79 80.65+1.02 80.65+2.04 79.35+1.64
14 | IRIS 48.67+10.98 48.67+10.98 49.33+10.61 48.67+10.36 57.33+11.22 57.33+11.22

15 | LETTER 3.70+0.27 3.70+0.27 3.70+0.27 3.70+0.27 3.70+0.27 3.70+0.27
16 | LYMPHOGRAPHY 82.07+3.84 75.86+1.09 82.07+2.97 75.17+3.68 82.07+4.14 75.86+1.09
17 | MOFN-3-7-10 84.57+1.13 86.62+1.06 84.57+1.13 85.74+1.09 88.28+1.01 87.30+1.04
18 | PIMA 70.46+0.96 70.59+0.92 70.72+1.04 70.85+1.00 70.72+1.04 70.59+0.92
19 | SATIMAGE 67.55+1.05 70.60+1.02 67.20+1.05 71.65+1.010 70.65+1.02 71.25+1.01
20 | SEGMENT 72.60+1.61 72.86+1.60 72.34+1.61 72.73+1.60 73.12+160 72.60+1.61
21 | SHUTTLE-SMALL 78.90+0.93 78.90+0.93 78.90+0.93 78.90+0.93 78.90+0.93 78.90+0.93
22 | SOYBEAN-LARGE 88.82+0.91 76.47+1.12 89.56+0.85 83.24+1.34 89.56+1.26 82.06+1.72
23 | VEHICLE 43.55+2.77 49.47+4.25 43.20+2.92 49.11+451 47.34+420 48.52+4.61
24 | VOTE 89.66+2.21 94.94+0.86 89.66+2.21 95.17+0.92 92.64+1.34 94.25+1.21
25 | WAVEFORM-21 70.70+t0.66 70.15+0.67 T70.85+0.66 69.68+0.67 70.04+0.67 70.15+0.67

18

[Bun96]

[CG9]

[CGHY4]

[CH92]

[CIL92]

[CL68]

[Co090]

[CS89)
[CY99]

[DawT76]
[DHT73]

[DP96]

[FGGY7]

[F193]

[GGS97]

[Hec98]

[TMJO0]

Wray Buntine. A guide to the literature on learning probabilistic networks from data.
IEEFE Transactions on Knowledge and Data Engineering, 1996.

Jie Cheng and Russell Greiner. Comparing bayesian network classifiers. In Proceedings
of the 15th Conference on Uncertainty in Artificial Intelligence (UAI’99), pages 101—
107. Morgan Kaufmann Publishers, August 1999.

David M. Chickering, Dan Geiger, and David Heckerman. Learning bayesian networks
is NP-hard. Technical Report MSR-TR-94-17, Microsoft Research, November 1994.

G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic
networks from data. Machine Learning Journal, 9:309-347, 1992.

W. Chou, B. Juang, and C. Lee. Segmental GPD training of HMM based speech
recognizer. In ICASSP, volume 1, pages 473-476, 1992.

C.K. Chow and C.N. Liu. Approximating discrete probability distributions with depen-
dence trees. IEEE Trans. on Information Theory, pages 462—-467, 1968.

G.F. Cooper. The computational complexity of probabilistic inference using Bayesian
belief networks. Artificial Intelligence, 42(2-3):393-405, 1990.

D. R. Cox and E. J. Snell. Analysis of Binary Data. Chapman & Hall, London, 1989.

G. Cooper and C. Yoo. Causal discovery from a mixture of experimental and observa-
tional data. In UAI99, 1999.

A. P. Dawid. Properties of diagnostic data distributions. Biometrics, 32:647-658, 1976.

Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. Wiley,
New York, 1973.

P. Domingo and M. Pazzani. Beyond independence: conditions for the optimality of the
simple bayesian classier. In Proc. 13th International Conference on Machine Learning,
1996.

Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classifiers. Ma-
chine Learning Journal, 29:131-163, 1997.

U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued at-
tributes for classification learning. In Proceedings of the Thirteeth International Joint
Conference on Artificial Intelligence, pages 1022-1027, San Francisco, CA, 1993. Mor-
gan Kaufmann.

Russell Greiner, Adam Grove, and Dale Schuurmans. Learning Bayesian nets that
perform well. In Uncertainty in Artificial Intelligence, 1997.

David E. Heckerman. A tutorial on learning with Bayesian networks. In M. 1. Jordan,
editor, Learning in Graphical Models, 1998.

T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. In NIPS52000,
2000.

19

[Jor95]

[KJ97]

[KMST99]

[Koh95]

[KS96]

[LIT92]

[LRS7]

[Mit97]
[Pea88]

[Qui92]

[Rip96]

[SMK™97]

[Thi95)]

[Vap98]
[VGOO0]

M. Jordan. Why the logistic function? a tutorial discussion on probabilities and neural
networks, 1995.

Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2), 1997.

Petri Kontkanen, Petri Myllymaki, Tomi Silander, and Henry Tirri. On supervised
selection of bayesian networks. In UAI99, pages 334-342, 1999.

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, pages 1137-1143, San Francisco, CA, 1995. Morgan Kaufmann.

Daphne Koller and Mehran Sahami. Toward optimal feature selection. In Proc. 13th In-
ternational Conference on Machine Learning, pages 284-292. Morgan Kaufmann, 1996.

Pat Langley, Wayne Iba, and Kevin Thompson. An analysis of bayesian classifiers.
In William Swartout, editor, Proceedings of the 10th National Conference on Artificial
Intelligence, pages 223-228, San Jose, CA, July 1992. MIT Press.

J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data. Wiley, New York,
1987.

Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann, San Mateo, 1988.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
San Mateo, 1992.

B. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press,
Cambridge, UK, 1996.

R. Schliter, W. Macherey, S. Kanthak, H. Ney, and L. Welling. Comparison of op-
timization methods for discriminative training criteria. In Proc. EUROSPEECH’97,
pages 15-18, 1997.

B. Thiesson. Accelerated quantification of bayesian networks with incomplete data.
In Proceedings of First International Conference on Knowledge Discovery and Data
Mining, pages 306-311, 1995.

V. Vapnik. Statistical Learning Theory. Springer, 1998.

Tim Van Allen and Russell Greiner. Model selection criteria for learning belief nets:
An empirical comparison. In ICML’00, pages 1047-1054, 2000.

20

e S Y
@\@@ (o) () (o)

5 |
@6y

-6
e

Figure 12: Belief Net structure for any SAT problem [Co090]

A Proofs

Proof of Theorem 1: We reduce 3sSAT to our task, using a construction similar to the one in
[Co090]: Given any 3-CNF formula ¢ = A C;, where each C; = \/ £X;;, we construct the network
shown in Figure 12, with one node for each variable X; and one for each clause C}, with an arc
from X; to C; whenever Cj involves X; — e.g., if C1 = x1 V Z2 V23 and Cy = Z1 V I3 V 14, then
there are links to C7 to X7, X9 and X3, and from C5 from X7, X3 and X,4. In addition, we include
K — 1 other boolean nodes, {Ds,...,Dk_1, A}, where D, is the child of D;_; and C;, where D is
identified with C1, and A is used for D

Here, we intend each C; to be true if the assignment to the associated variables X;1, X9, X;
satisfies C;; and A corresponds is the conjunction of those variables. We do this using (all-but-
the-final) instances in Figure 13. There is one such instance for each clause, with exactly the
assignment (of the 3 relevant variables) that falsifies this clause. Hence, the first line corresponds
to C1 = x1 V Z2 V X3. One complication here is that the “label” of each instance must always be
the single variable A.

We now prove, in particular, that

There is a set of parameters for the structure in Figure 12, producing 0 L/(-]\LO()-score
over the queries in Figure 13,
iff there is a satisfying assignment for the associated ¢ formula.

<: Just set each C; to be the disjunction of the associated X;;, Xj;o, X;3 variables (its par-
ents), with the appropriate sense. Eg, using C; = z1 V T3 V X3, then C;’s CPtable would have

X1 X X3 | P(+er| Xy, Xs,X3)

0 0 0 1.0

0 0 1 1.0

0 1 0 1.0

0 1 1 0.0 . Similarly set the CPtables for the D; to correspond to the
1 0 0 1.0

1 0 1 1.0

1 1 0 1.0

1 1 1 1.0

21

X1 Xo X3 Xy X, | A
0 1 0 0
0 0 1 0
0 1 1 0

1

Figure 13: Queries used in Proof of Theorem 1

0 0 0.0
conjunction of its 2 parents D; = D; 1 ACj; eg.,| 0 1 0.0
1 0 0.0
1 1 1.0
Finally, set X; to correspond to the satisfying assignment; i.e., if X7 = 1, then —10 | and
if i.e., if X4 = 0, then % . Note that these CPtable values satify all k + 1 of the labeled

instances.

<: Here, we assume there is no satisfying assignment. Towards a contradiction, we can assume that
there is a 0-LCL set of CPtable entries. This means, in particular, that P(+4a|z;1,Zi2, zi3) = 0,
where z;1, %2, ;3 correspond to the assignment that violates the ith constraint. (E.g., for C; =
X1V -X2V X3, this would be X; =0, Xo =1, X3 =0.)

Now consider the final labled instance, P(a). As there is no satisfying assignment, we know
that each assignment x violates at least one constraint. For notation, let v* refer to one of
these violations (say the one with the smallest index). So if x = (0,1,0,...), then 4{®1.0m) —
(X1 =0, Xo =1, X3 =0) corresponds to the violation of the first constraint C;. We also let g*
refer to the rest of the assignment.

Now observe
P(+a) = X, P(+a, x)

= XxP(+a|y*)-P(v*)-P(B*| +a, 7v*)

= 2x 0 -P(y*)-P(F*[+a,7v*) = 0
which shows that the final instance will be mislabeled. This proves that there can be no set of
CPtable values that produce 0 LCL-score when there are no satisfying assignments. 1
Proof of Proposition 2: Below, we will use P(x) to refer to Pg(x), the value the belief net B
will assign to the x event. In general, for any assignment 7,

P(zZ) = Y > P(Z|R=r,F=f'") P(R=r'|F=f) P(F=f') (11)
I !

As we assume the different CPtable rows are independent, and F are the parents of R, this means

0P(B|Z) , o\ O P(r|1)
g\zi2) p(z|r,) L pg
0 :Br\f ; (|) 0 :Br\f ()
Recalling 0, ¢ = P(r|f) = ePrie | 5, €Prie | observe that %ﬂfﬂ = 0,¢(1—0,¢), and when r # 1/,
8 P(r’ . i)
g(TlLf) = —0,¢0,s¢. This means %”Zf) = P(Znf)-0,¢P(Zf).

22

Hence, as InP(c|e) = InP(c,e) — InP(e),

0 InP(cle) = 0 InP(ce) 0 InP(e)
0 ﬁr|f B 0 /Br|f 0 /67"|f
B 1 9P(ce) 1 09P(e)
a P(Cae) 8/8'/‘|f P(e) 6167"|f
1 1
= P(c,e)[P(C,e,’f‘,f)—9T|fP(C,e,f)] - W[P(earaf)_er\fp(eaf)]

= [P(rflc,e) = P(flc, e)] — O e[P(f]c, e) - P(f|e)]

Proof of Proposition 3: For a given NaiveBayes structure with root C' and attributes 4;, and
parameter values ©, the log likelihood function for data D = {{a},...,al),c'}i=1.pm with M iid
cases is

M
LLe(D) = > WnPe(al,...,a,,c")
=1

M

= Zln(P@(ci) X HPG(G§'|Ci)>
i=1 J
M

- Z(lnP@(ci) + ZlnPe(aé-lci)>

i=1 J

Now notice each of the terms can be maximized independently. If any aj-’s are missing, we can
simply omit these these in the summation because they will not contribute to the likelihood score;
ie., Po(C =¢,A=7) is just calculated as Pg(C = ¢) This means

LLe(D) = ZlnP@(ci) + Z Z lnPe(a§-|ci))

J i=1..M,a}#?

To maximize this sum, we need only maximize each individual term, which corresponds to setting
each parameters to its observed frequency 04,—gc=y = %, ignoring (for A;) the records

where A; was not mentioned. i

23

