An Optimized Theory Revision Module*

Russell Greiner, R. Bharat Rao and Glenn Meredith
Siemens Corporate Research, Princeton, NJ 08540
{greiner, bharat, gam }@scr.siemens.com

Abstract

Theory revision systems typically use a set of theory-to-theory transformations {6y}
to hill-climb from a given initial theory to a new theory whose empirical accuracy, over
a given set of labeled training instances {c;}, is a local maximum. At the heart of each
such process is an “evaluator”, which compares the accuracy of the current theory K B
with that of each of its “neighbors” {6x(KB)}, with the goal of determining which
neighbor has the highest accuracy. The obvious “wrapper” evaluator simply evaluates
each individual neighbor theory K By, = 0;(K B) on each instance c;. As it can be very
expensive to evaluate a single theory on a single instance, and there can be a great many
training instances and a huge number of neighbors, this approach can be prohibitively
slow. We present an alternative system X\ which employs a smarter evaluator that
quickly computes the accuracy of a transformed theory 0, (K B) by “looking inside” K B
and reasoning about the effects of the 8y transformation. We compare the performance
of X\ with the naive wrapper system A on real-world theories obtained from a fielded
expert system, and find that X\ runs over 35 times faster than A, while attaining the
same accuracy. This paper also discusses X\’s source of power.

Keywords: theory revision, efficient algorithm, hill-climbing system

*We gratefully acknowledge the many helpful comments on this report from George Drastal, Chandra
Mouleeswaran and Geoff Towell.

1 Introduction

Many currently deployed diagnostic expert systems use a knowledge base (a.k.a. “theory”)
to propose a repair for a device, based on a set of reported symptoms. Unfortunately, due
to modifications of the basic devices, changes in the distribution of device faults as the
device ages, installation of new devices, and errors in the original knowledge base, these
proposed repairs may not always be appropriate. A “theory revision” system uses a set
of labeled training examples to modify the incorrect theory, seeking a new theory that is
more accurate. As no efficient algorithm is guaranteed to find the globally-optimal theory
(assuming P # NP; see [Gre95]), most theory revision systems are implemented as hill-
climbing processes; cf., [Pol85, MB88, Coh90, OM94, CS90, WP93, LDRG94]|. On each
step, these revision systems compute the empirical accuracy, over the given set of examples,
of the current theory KB and each of K B’s “neighbors”, where each neighbor is a slight
modification of KB. These systems first determine which neighbor K B* has the highest
empirical accuracy, then if K B*’s accuracy is greater than K B’s, the system climbs to K B*
and the revision process iterates.

This paper presents an efficient way of evaluating the empirical accuracy of a theory
and each of its neighbors, over a given set of labeled case reports. Section 2 provides the
framework for this system, by describing the operation of the underlying expert system (wiz.,
determining the repair appropriate to a given set of symptoms), and summarizing the theory
revision task (viz., improving the “repair from symptom” function by modifying the under-
lying theory). It also describes a major complication of the revision task — wviz., , that the
training data may not include some critical information. Section 3 then focuses on the “eval-
uator” component of the revision process, which computes the accuracy of each neighbor.
It first presents the obvious implementation of such an evaluator which simply evaluates
each individual neighboring theory on each instance; this approach resembles the “wrap-
per” model [JKP94], currently used when evaluating different sets of features in inductive
inference tasks.!

Unfortunately, as it can be very expensive to evaluate a single theory on a single instance,
and worse, there can be a great many examples and a huge number of neighbors, this
approach is prohibitively slow. Section 3 then describes a more efficient “data-driven” theory
revision algorithm, A\. Section 4 next presents empirical results which confirm that X\
works effectively, showing that it can run over 35 times faster than the naive wrapper-style
system A, while returning essentially the same revised theories. This improvement is very
important, as it allows users to use the revision system in a real-time fashion. Finally,
Section 5 generalizes the specific ideas underlying A\.

Of course, a revision system, even a very efficient one, will only be used if it returns a
more accurate theory. The earlier [LDRG94| demonstrates that the underlying A revision

LOf course, our theory revision task is significantly different from the feature-selection task for which the
Wrapper model was designed. In particular, while it is fairly easy to analyze the revision process’s evaluator,
it is not as easy to determine which features will prove relevant to an induction system.

system (and hence the functionally equivalent X\) is very effective. In particular, it describes
a battery of empirical tests, using real-world theories and data, which demonstrate that A
(and hence X\) can quickly climb to a theory whose accuracy is over 98%, even when starting
from theories whose accuracy is under 50%. Despite the complexities of these theories, it
can work even when given as few as 20 labeled examples. This paper will not further discuss
the accuracy-improvements that A, or X\, can obtain; instead, it focuses on ways of making
these systems more efficient — fast enough that people will actually use these systems.

Related Research

There are, of course, other theory revision systems, which also start from an initial domain
theory obtained from experts, and iteratively modify that theory to obtain a theory with
improved accuracy on a set of training cases; cf., [Pol85, MB88, Coh90, OM94, WP93, CS90].
Most of these systems focus on Horn clause knowledge bases or decision trees, which differ
from the hypothesis space of fault hierarchies searched by X\ (although fault hierarchies can
be translated into these representations). However, the transformations suggested by X\
typically do not correspond to one-step revisions suggested by existing systems. Further,
single revisions suggested by the existing systems can radically change the structure of the
fault hierarchy (see [LDRG94] for further discussion). This paper, in particular, focuses
on the efficiency of our A\ system; the extended tech-report [GRM95] discusses how this
compares with the efficiency measures used in other revision systems. It also provides a
more comprehensive literature survey.

2 Framework

2.1 Theory (Fault Hierarchy) and Instances

This subsection first defines the structures of theories (“fault hierarchies”) and “problem
instances”. It then describes how a fault-hierarchy—based expert system works; i.e., how it
evaluates a theory in the context of a problem instance to produce a repair.

Each “fault hierarchy” KB = (N, E, TS, R, t(-), 7(-), child(-,-)) is a directed-acyclic
forest (N, E), whose nodes n € N represent faults, and whose edges e € E connect faults
to subordinate faults. Each node n € N is labeled with a test ¢(n) = t or t(n) = —t, where
t € TS; in addition, each leaf node n is also labeled with a “repair”, r(n) = r € R. The arcs
under each internal node are ordered; child(n, i) refers to the “i*
let the k: N +— Z7T function map each node to its number of children.

For example, consider the K By hierarchy shown in Figure 1, where the test associated
with the node ¢ is #(¢); hence, the test associated with the A node is ¢(A), etc. The r¢
expression is the repair labeling the associated leaf node; hence, the repair associated with
the node D (whose test is ¢(D)) is rp. A’s children are, in order, C, D and E — hence,
child(A, 1) = C, child(A, 2) = D and child(A, 3) = E. Here, k(A) = 3.

child of n”. For notation,

2

[re] o] [re]

Figure 1: Structure of K By

Running an Expert System: Let “Skp” denote the expert system that uses the KB
hierarchy. When Skp, is “run” (using the K By should in Figure 1) Skp, will ask the user
a series of questions that correspond to a depth-first, left-to-right, no-backtrack traversal of
(part of) the K By structure.? This Sk g, begins at the root, and asks the question associated
with that node; here “Is t(Z) true?”. If the user answers “Yes”, Skp, descends to consider
Z’s children, in left-to-right order — here next asking “Is ¢(A) true?”. If the user responds
“Yes”, Skp, will descend to A’s children. If the user answers ¢(C) with “No”, Skp, will
continue to C’s right-sibling D, and ask about #(D). Assuming the user responds “Yes” here,
Sk, Will return the repair associated with that leaf node, here rp. On the other hand, if
the user had responded “No” to ¢(D), Skg, would have continued to ask about ¢(E). If this
answer was “Yes”, Skp, would return rgi. Otherwise, if this answer was also “No”, Skpg,
would return the “no-proposed-repair” answer, r,. N.b., Skp, will not then continue to B
— answering ¢(A) with “Yes” means the user will only consider tests and repairs under node
A.

Ignoring the details of the actual user-interaction, each “(total) problem instance” is an
assignment 7: TS — {+, —} that maps each test to one of {4, —}, where 4+ means the test
was confirmed (passed), and — means the test was disconfirmed (failed). Given a problem
instance m, Skp will return a repair r € R, written as KB(w) = r. This r is the value
returned by EVALNODE(ROOT(KB), 7), using the subroutine shown in Figure 2, where
Nroot =700t (KB) is K B’s root. (We also assume that the associated test t o0 = t(7r00t) has
already been confirmed, as we are viewing %,,,; as the “presenting symptom” or “triggering
information”.)

2.2 Accuracy of a Hierarchy

A labeled training instance includes the symptoms presented to the expert system plus any
additional information supplied by a human expert, such as the “correct” repair (r.,, € R)
and possibly additional test and their answers. The accuracy of the hierarchy KB for the

2This corresponds to using PROLOG, in which every clause includes a “!”. For example, Figure 1 corre-
sponds to a theory that includes “top(R) :- tz, !, z(R).”, “2(R) :- ta, !, a(R).”, “2z(R) :- tp,
', b(R).”, “a(R) :- t¢, !, cR).”, “a(R) :- tp, !, d®R).”, “aR) :- tg, !, e(R).”, “c(xe).”,
etc.

Procedure EVALNODE(n: node, w: (total)_problem instance)
If n is a leaf node
Then return(r(n))
Else For i := 1..k(n)

n; = child(n, i)
If n(t(ni)) =+ /*ie, if result of test associated with n; is + */
Then return(EVALNODE(n;, @))
End For
return(7) /* Arriving here means NONE of n’s children succeeded */
End EVALNODE

Figure 2: EVALNODE subroutine

“labeled (total) problem instance” (m,rq) is

acc(KB, (T, Tcor))

1 if KB(7) = reor
0 otherwise

Over a set of labeled instances C = {(m;,7;)};, K B’s (empirical) accuracy is
acc(KB,C) = > ace(KB, (m,r))
(myr)eC

Partial Instances: In practice, as each training instance comes from a diagnosis session
with the expert system, only a small subset of the tests in TS will be recorded. However, the
above computations assume that Sk p is always able to obtain answers to all relevant tests.
We must therefore use a “partial problem instance” 7: TS +— {4+, —, ? } where “m(t) =7”
means the value of the test ¢ is not known.

Each such partial instance 7 really corresponds to some total instance 7*, where some
of m’s test values are not recorded. To state this more precisely: a total problem instance
7*: TS — {+, —} is a completion of 7 iff 7* agrees with m whenever 7(t) is categorical (i.e.,
is not “7”):

™ completes ™ f () #£7 = 7 (t) =7(t)]

Hence, the total instance

mre = { H2)/+, tA)/+, 1(B)/=, 1(C)/—, t(D)/+, HE)/+, t(F)/-}

is a completion of the partial instance

;1 = {t(Z)/+, t(A)/+, t(B)/?, t(C)/—, t(D)/+, t(E)/?, t(F)/? } .
We let

Complete(r) = {7*:TSw+— {+,—} | 7* completes 7 }

4

refer to the set of total instances that complete a given partial instance.

In general, the probability Pr[n*|r| that the observed partial instance m corresponds to
the total instance 7* € Complete(w) depends on the joint probability that each unobserved
test ¢ (¢ such that 7(t) = “?”) has the specified categorical value 7*(¢). Here, the probability
that the observed mp; corresponds to the actual total 77, depends on the probabilities that
t(B) = —, t(E) = + and ¢(F) = —. We assume that these tests are independent (of each
other, and other context) which allows us to express this conditional probability in terms of
the probability function p: TS + [0, 1], where p(t) is the probability that the unobserved
test ¢ would be confirmed, if only it had been run and reported.

Notice also that each 7* € Complete(r) has an associated repair, 7, = EVALNODE(ROOT (KB),
7*); we can therefore use the p(-) values to compute the probability that Sk g, will return
each r,.«, given the observed values 7. In general, we will need to compute the probability
that Skp, will return the correct repair 7., Pr[Skp, returns rq, | @ observed |. Us-
ing the observation that this quantity corresponds to acc(KB, (7, r¢r)) when 7 is a total
instance (here, Pr| Skp, returns 7., | m observed | = acc(KB, (m,7rcor)) € {0,1}), we ex-
tend acc(-, -) to be this probability value in general. (The p(-) function is implicit in the
acc(KB, (T, rer)) description.)

Using the ACCNODE subroutine shown in Figure 3, ACCNODE(root(KB), 7, 7o)
computes this probability. This subroutine uses:

0 if m(t(n)) = —
p'(n) = 1 if m(t(n)) =+
p(t(n)) ifw(t(n)) =7

to refer to the probability of a node being confirmed, relative to the partial assignment 7. Of
course, if t(n) is the negation of a test, i.e., t(n) = —it, then p(t(n)) = p(—t) = 1 — p(t) when
7(t(n)) = “?”. This algorithm implicitly uses the fault hierarchy KB and the probability
information p(-).

2.3 Theory Revision Task

As stated above, a theory revision system takes as input an initial theory K By and a set
of “labeled case reports” C = {c;}. Each such system also uses a set of transformations,
© = {6}, where each 6, maps one hierarchy to another. We consider four classes of trans-
formations:

e cach Delete,q,,, transformation deletes the existing link between par and n. Hence,
Deletep (K By) is a hierarchy K B; that includes all of the nodes of KBy and all of
its arcs except the arc from B to E. Hence, in KBy, child(B, 1) = F.

e cach Addy,, ,; transformation adds a new link between par and n, making n the ith
child under par. Notice Deletes p(Adda r2(KBy)) = KB,.

Procedure ACCNODE(n: node, w: (partial)_problem_instance, r: repair)
If n is a leaf node
Then return(r(n)=7r 7 1 : 0)
Else tot := 0; reachme = 1;

Then tot := tot + (reach.me x ACCNODE(n;, m, 7))
return(tot)

Elself n(t(n;)) =7
tot := tot + (reachme X p'(n;) x ACCNODE(n;, w, 7))

reachme := reachme * (1 —p'(n;))
/* If m(t(n;)) = —, just go to next sibling */
End For

return(tot)
End AccNODE

Figure 3: ACCNODE subroutine

o each Moveyari paron,i transformation deletes the existing link between parl and n, and
also adds a link from par2 to n, as the i arc under par2. Hence, Moveyar1 paro.ni(KB) =
Addyaron i(Deleteyg n(KB)).

o each Switchyy, n1n2 transformation switches the positions under par of the links from
par to nl, and from par to n2. Notice each Switchyi noper transformation corresponds
to at most two move transformations.

Notice that each operator # has an associated “negation” operator, -6, such that -6(6(KB)) =
KB. We let © = {Deletepgrn} U {Addpgr i} U {Moveyer paran,i} U {Switchpgr n1n2} include
all meaningful transformations of each type (e.g., we insist that par be an internal node
that includes a link to n for each deletion, move and switch transformation, etc.); and let
N(KB) ={6(KB) |6 € ©} be the set of KB’s neighbors.

A theory revision system will use a set of labeled instances C = {(m;,7;)} to compute
acc(KB, C) and acc(KB', C) for each KB'" € N(KB), and then climb from KB to a
KB* € N(KB) if ace(KB*,C) > acc(KB,C). Here, the revision system will recur,
seeking a new KB" € N(KB') that is better than this KB’, and so forth; see [LDRG94].
The paper focuses on a single step of this revision process: computing the best K B* from
the set N (KB).

3 Finding the Best Revision

The A system uses the obvious “wrapper-esque” algorithm to determine the best revised the-
ory K B*: Tt begins by loading in the KB theory and the first instance 71, and uses Skp to
evaluate K B(m) to compute acc(KB, (m,71)). The A system then builds K B; = 6,(KB)
by applying the first transformation #; to K B and uses Sk g, to compute acc(KBy, (71,71)).

6

Cl ... Cj C|C| C
KB CL . cee acc(KB, C)
01(KB) | - ... : .o+ | acc(61(KB),C)
0;(KB) | - ... |acc(0;(KB),¢j)| -.. - | acc(6;(KB),C)
Om(KB) acc(ﬂm('KB), C)

Figure 4: Operations required by the Naive Wrapper-esque Algorithm

It then builds K B, = 0y(K B) from K By, by applying —6; (to restore K B) followed by 5. In
this fashion, A computes acc(KB;, (m1,71)), for all |©| transformations in /(K B). At the
end of the first iteration, A unloads the first instance, 71, and loads the second instances, o,
and proceeds as above for each (m;,r;) € C. In essence, this involves sequentially computing
each column of the matrix shown in Figure 4, which involves (1 + |0|) x |C| non-trivial com-
putations, {acc(0;(KB), c;)}i;. Finally, A computes acc(KB;, C) = X, acc(KB;, (mj,7;))
(summing every row of the matrix in Figure 4),®> and finds which of these transformations
produced the largest of the values K B* = argmax;{acc(K B;, C)}, and climbs to this theory
if acc(KB*, C) > acc(KB, C). This process can be very expensive as both || and |C| can
be huge — e.g., in the study discussed below, we found values of |©| & 1, 000.

3.1 Beyond the Wrapper Model

There are two basic ideas for improving the efficiency: The first is to evaluate a smaller
number of the {acc(6;(KB), cj)}:; entries; we show below three techniques for this. The
second is to provide a more efficient way to compute this quantity; for reasons explained
below, we will actually use the equally-useful values

diff (0, c) = acc(8(KB),c) — acc(KB, c) (1)
Diff(0, k) = Z diff' (0, c;) (2)

where diff (0, c¢) is the difference in accuracy between (K B) and K B, on instance c; and
Diff(0, k) is the relative score for the transformed (K B) knowledge base, after k instances.
The resulting X\ system is sketched in Figure 5.

RT;: Restrict the Transformations, based on Instance. The first idea exploits the
particular set of transformations we are considering, using the observation that, for almost
every 7;, the value of acc(0;(KB), ¢;) is equal to acc(KB, ¢;) for a great many 6;s. This

3The more “natural” method of sequentially computing each row of the matrix shown in Figure 4 directly
would require A to load and unload transformations, 8, |C| times, and to load and unload instances, m,
(1 +|©]) x |C| times. Because loading and unloading 7 is 1-2 orders of magnitude more expensive than
loading and unloading 6, we sequentially computed the columns of the matrix, as described above.

7

Procedure X\ (KB: fault hierarchy, C: set_of problem_instances): transformation;
Q := {} /* 0 will store set of active (8, Diff(0, k)) pairs.
rem_insts := |C| 5 /* = M — 0, the number of instances remaining */
Err := ZciEC(l — acc(KB, C)) /* remaining “error” of all instances; Erryy */
s* 1= 0; /% current highest value Diff(8, 0) score */
For (m,r) in C
QE_CoMPUTERHOTAU(KB, 7, 7);

* Modifies KB by assigning p(n), 7(n) values to each node in KB, based on w, v *
p

GoodThetas := RTI_ELIGIBLE(KB, (m,7));
/* GoodThetas = transformations 6 where acc(KB, (m, 7)) may be different from acc((KB), (m,7)) */
For 60 in GoodThetas
s = CURRENTSCORE(6, Q); /% if3(8,) € Q, then use s; otherwise, set s := 0 ¥/
if (RTe(s, Err) && RTM(s, rem_insts, s*))
s’ := s + QE_DIFF(KB, 0);
/* QE_DIFF uses KB, which includes values of p(n), 7(n), to compute diff (6, c). */

Q = REPLACE(Q > 0, 3,) 5 /* Q now includes (0,3’) entry */

End For
rem_insts := rem_insts - 1; /* this is M — k */
Err := Err - (1= acc(KB, (m,7))); /* this is Brry */
<0*, 3*> = BeSt(Q) 5 /*(0*,8*) is in Q, and s* is largest score in Q. */
End For
If (s* > 0) return(6*)
Else I‘eturn(NOOp) /* here, nothing was better */
End A\

Procedure RTP(s: Real, Err: Real): boolean;
return(s > - Err);
End RTpP

Procedure RTM(s: Real, rem_insts: Int, s*: Real): boolean;
return(s > s* - rem_insts);
End RTM

Figure 5: Overview of X\ Algorithm

means that most transformations #; do not influence whether a hierarchy will be correct on an
instance. As an illustration, consider the K By hierarchy (Figure 1) and the partial instance
m = {t(Z)/+, t(A)/+, t(C)/—, t(D)/+} that confirms ¢(Z), ¢(A) and #(D) and disconfirms
t(C); here, Skp, returns rp = KBy(m;).* Now consider the Deleteg g transformation that
deletes the (B, E) arc, and observe that, as the original K B arrives at its answer (rp) before
ever reaching B, this new KB; = Deleteg (K By) will also reach the same decision; here
rp. As KBy(m) = KBy(m), clearly acc(KBy, (m1,7)) = acc(Deleteg g (K By), (m1,7)).
(Notice this does not depend or whether rp was the correct answer: if KB, was correct on
71, then so is K By; likewise, if KBy was incorrect on 7, then so is KBy.) The extended
paper presents other classes of deletions which will not change the accuracy score, as well as
showing when additions, switches and moves are similarly no-ops.

Stated more precisely, X\ will only consider the subset of the transformations, returned
by the RT1_ELIGIBLE routine, call the set RT,;(K B, N, ¢;), which excludes many transfor-
mations @ for which diff (€', ¢;) = 0. (The extended [GRM95] presents the actual imple-
mentation, which uses the p(-) and 7(-) values, defined below.)

Of course, many other theory revision systems use some variant of this basic idea —
viz., they too focus on the subset of transformations that appear “relevant” for at least one
instance. The novelty in our approach is the way we determine which transformations to
consider, which is complicated by both the fault-hierarchy representation used, and by our
use of partial instances.

RTp: Restrict the Transforms, based on Positive score. The second insight comes
from two observations: First, X\ will only climb from KB to the transformed theory KB’ =
0(K B) if KB"”s empirical score, after all M instances, is strictly greater than KB’s; i.e., if
Diff(#, M) > 0. Second, as acc(8(KB), ¢,) < 1, the difference between Diff(6;, k) and
Diff(6;, k — 1) can be at most

Diff(0, k) — Diff(0, k — 1) = acc(0(KB), ¢t) — acc(KB, cx)
< 1—ace(KB, ¢)

This trivially means that Diff(§, M) < Diff(6, k) 4+ Erry, where Erry, = ¥, (1 —
acc(KB, (mj,r;))) is the total error of KB on the remaining M —k instances. If Diff(6, k) <
—Erry, then clearly Diff(#, M) < 0, which means X\ will not climb to (K B). Hence,’

RTp(KB,N, Err, Diff(-, k) = {0 €N |Diff(0, k) > —Err} (3)

RT), : Restrict the Transforms, based on Maximal score. The third insight is re-
lated to the RTp filter presented above, and is also based on simple dynamic programming.

*Notice Sk p, would only ask about these 4 tests, and only record their values. The other tests would
not be asked, as their values do not matter here; hence, 7, maps each other test to “?”.

5To produce slightly more efficient code, we first sorted the cases in order of increasing accuracy. This
way, the Diff(6, k) scores go to 0 fastest, which increases the number of transformations 8 that will fail the
RTp test.

It uses two observations: First, X\ will only climb from KB to the transformed version
KB' = ¢'(KB) if KB"”s empirical score is the largest over all members of N (K B); i.e., if
V0, € N,Diff(¢', M) > Diff(6;, M). Second, for any 6;,6;, € N, the difference between
Diff(0;, k+1)—Diff(8;, k+1) and Diff(;, k) —Diff(6;, k) can be at most 1. This trivially
means that

Diff(6;, M) — Diff(0;, M) < (Diff(6;, k) — Diff(6;, k)) + (M — k)

and so

if Diff(0;, k) < Diff(0;, k) — (M — k), then Diff(6;, M) < Diff(6;, M),

which means X\ will not climb to 6;(KB). Letting Best, = maxgen(Diff(8, k)) be the
largest empirical (relative) score, over the transformations, after k& samples, we define

RT (KB, N, k, M,Diff(-, k)) = { §; € N | Diff(6;, k) > Best, — (M — k) }.

QE: Quick Evaluation. Given the above analysis, we need only compute the values of
acc(6;, ¢) for only a subset of the transformations; i.e., only for #; in the set

RT;(KB,N,c) (| RTp(KB,N, Erry, Diff(-, k)) () RTa(KB,N, k, M, Diff(-, k)) .

We could compute these acc(0;(KB), c¢) values by first synthesizing each K B; = 6,;(K B),
and then “running” each KB; on each ¢; = (m;,r;) instance to get their respective repairs
and associated accuracy scores. Our X\ algorithm, however, uses a more effective way of
computing these accuracy scores:

Notice first that it is sufficient to compute diff'(6,,, 7), rather than acc(6,,(KB), 7);
this quantity turns out to be relatively easy to compute (especially as diff' (6,,, 7) = 0 holds
for many (6,,, ™) pairs; see above discussion of RT;). Given a (partial) instance 7 and the
correct repair 7., the QE_COMPUTERHOTAU subroutine identifies, with each node n in
the initial K B, the probability p(n) that Skxp would reach 7., given that it has reached n
(this is essentially ACCNODE(n, 7, 7¢r)). QE_COMPUTERHOTAU also identifies each arc
a in KB (resp., node n in K B) with the probability that Sk p will reach and traverse this
arc 7(a) (resp., the probability that Sk p will reach n, 7(n)). (This information is computed
in time linear in the size of the hierarchy.) Then, for each transformation § € ©, QE_DIFF
uses these p(-) and 7(-) values to compute diff (0, (7, 7.,)), in constant time.®

N.b., our X\ revision algorithm does not produce an explicit S,k gy performance system,
nor does it explicitly compute the value acc(6;(KB), 7) on the instance 7. Instead, it uses
the p(-) and 7(-) values to produce the information it needs, directly.

The extended [GRM95] supplies the many (tedious) details required to specify exactly
how to use this information effectively, which basically requires a non-trivial case statement
for each of the four types of transformation. To give a flavor for the basic idea, the appendix
below sketches how this process works for one type of transformation.

6The time is really bounded by the largest number of arcs descending from any node, which we are
assuming is a small constant.

10

4 Empirical Data

We have implemented this X\ system, and confirmed that its generalization accuracy was
equivalent to that of the wrapper-esque A system, in over 1700 climbs, when revising a
theory from a fielded expert system. However, X\’s average run time is over 35 times faster
than A’s. To state this more precisely: We consider 127 different climbs, taken from 52
different contexts, each involving one of 13 different initial theories 7; (each a corruption of
the particular theory 7,,q"), with unique training sets of various sizes. While X\’s times
range from 5.6 to 54.4 CPU seconds and A, from 175.0 to 2252.1, the ratios of A to X\’s run
times in corresponding contexts range from 29.3 to 49.5, with a mean ratio of 36.3 & 3.6.%

To understand how A\ achieves its improvement over A, we collected some additional
statistics during each climb. In particular, for this set of climbs, the number of neighboring
theories [N (T;)| ranges from 686 to 798, with mean 743.6 & 39.8. The wrapper-esque A
considers them all. By contrast, X\ uses its RT;, RTp and RT}, filters to ignore a great
many of these revisions, when processing each training sample. We therefore record /;,
the number of theories considered when processing the i** sample, and use them to obtain
L= % > i—1.~ i, the average number of revised theories considered for each sample. (Each
/; is the number of “meaningful” entries in the i column of the Figure 4 matrix.) These
values are different in different situations, as they depend on details of the structure of the
initial 7; and the distribution of instances. Here, L varies from 2.4 to 71.1 (mean 22.6+15.4).
By comparing the two means, we see this reduction alone accounts for a speed-up by a factor
of 743/22.6 = 32.9.

The other influence is the time required to evaluate each revised theory on each sample.
A actually produces the new revised 6;(KB), and then evaluates it in the context of the
labeled query 7;; by contrast, X\ uses the quick evaluation scheme (QF) to quickly compute
the value of diff' (6;, (m;,r)). As both systems are implemented within the same framework,
and share essentially the same overhead code, we attribute the remaining ~ 36.3/32.9 = 1.10
(i.e., 10%) improvement to X\’s use of its Quick Evaluation process.’

Finally, the extended [GRM95] presents this data in more detail, and also describes how
much the various ideas (RT; ,RTp ,RTj; and QF) contribute to the overall speedup. It also
presents the similar speed-ups we obtained when we compared A and X\ with respect to
other fault hierarchies, from different, fielded expect systems.

"This Tpwsa, viewed as a hierarchy, had 19 “nodes”, and leads to 13 distinct repairs.

8The “3.6” here is one standard deviation.

9In fact, the best least-square fit of the timing data when M\ is processing N instances, and considering an
average of L revised theories / instance, is timea (L, N) = 0.76+ 0.27N 4 0.00087LN. where timea (L, N)
is the number of CPU seconds required by a Sparc10/42.

11

5 Conclusion

X\ is based on some simple ideas that can certainly be exploited in other contexts as well.
The first idea is to understand the task’s objectives. Here, our goal is NOT to evaluate the
accuracy of each theory, but rather to identify the best neighboring theory, providing it is
better than the current theory. This allows us to ignore any neighbor that is guaranteed to
be either strictly worse than the current theory, or strictly worse than another neighbor. A
second idea is to analyze the underlying performance system, and then seek efficient data-
structures that encode information common to many subtasks, which can be used to produce
the needed information. Here, for example, the p(-) and 7(-) information can be used for
computing the difference in the accuracy scores of the initial theory and each modified one.

We used these ideas to improve the wrapper-esque A, producing the X\ theory revision
system. We have also demonstrated that A\ requires considerably less time to run than A
— by a factor of over 35 — while producing effectively the same results, when handling
real-world knowledge bases. This improvement is significant, as it means the revision system
can be used interactively, rather than in batch-mode.

12

References

[Coh90]

[CS90]

[Gre95]

[GRM95]

[JKP94]

[LDRG94]

[MB88]

[OM94]

[Pol85]

[WP93]

William W. Cohen. Learning from textbook knowledge: A case study. In Proceeding of
AAAI-90, 1990.

Susan Craw and Derek Sleeman. Automating the refinement of knowledge-based sys-
tems. In L.C. Aiello, editor, Proceedings of ECAI 90. Pitman, 1990.

Russell Greiner. The complexity of theory revision. In Proceedings of IJCAI-95, 1995.

Russell Greiner, R. Bharat Rao, and Glenn Meredith. An optimized theory revision
module. Technical Report SCR-95-TR-538, Siemens Corporate Research, 1995.

George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant features and the subset
selection problem. In Proceedings of the Eleventh International Machine Learning Con-
ference, pages 121-129, N.J., 1994. Morgan Kaufmann.

Pat Langley, George Drastal, R. Bharat Rao, and Russell Greiner. Theory revision in
fault hierarchies. In Proceedings of The Fifth International Workshop on Principles of
Diagnosis (DX-94), New Paltz, NY, 1994.

S. Muggleton and W. Buntine. Machine invention of first order predicates by inverting
resolution. In Proceedings of IML-88, pages 339-51. Morgan Kaufmann, 1988.

Dirk Ourston and Raymond J. Mooney. Theory refinement combining analytical and
empirical methods. Artificial Intelligence, 66(2):273-310, 1994.

P.G. Politakis. Empirical Analysis for Expert Systems. Pitman Research Notes in
Artificial Intelligence, 1985.

James Wogulis and Michael J. Pazzani. A methodology for evaluating theory revision
systems: Results with Audrey II. In Proceedings of IJCAI-93, pages 1128-1134, 1993.

13

A Computing acc(Delete, (K B), ¢) — acc(KB, c)

We'? first describe the internal data structure we use: Given a labeled (partial) instance
(m,Teor) and a theory K B, for each node n in K B, define p(n) to be the probability of reaching
the correct repair 7., given that Sxp has reached n. Notice that acc(KB, (7, 7Teor)) =
P(Nroot), Where n0p is the root of K B; and also that p(n) = p'(n) x ACCNODE*(n, 7, Teor),
using the ACCNODE* routine shown in Figure 6.

For each arc e = (ny,ny) in KB, let 7(e) represent the probability that Skp will reach
e. To define this quantity, we first define 7(n) as the probability of reaching the node n.
Clearly 7(n,00t) = 1. Given an internal node n with children n; = child(n, i), let e; = (n, n;)
be the arc connecting n to n;. Then recursively define

() = 7(n)xp'(n)
T(ej1) = 7(eg) x (1= p'(ny))

Finally, to compute each 7(n;), just add up the 7-values of the arcs reaching n;; i.e., 7(m) =
Y n,myer T({n,m)). Notice this can be computed in time linear in the size of the theory.

We can now use those p(-) and 7(-) values to compute diff'(Delete c): Let KB' =
Delete, (K B) the theory produced by deleting from KB the link connecting node a to node
b. Clearly acc(KB', (m,r)) = acc(KB, (m,r)) whenever either 7(t(a)) = — or w(t(b)) = —.
We will therefore deal only with situations when w(t(a)) € {+,?} and = (¢(b)) € {+,7}.
W.l.o.g., we can write

acc(KB, (T,rery) = P[success before (a,b)] + 7[{a,b)] x p(b)
+ 7[{a,b)](1 — p'(b)) x Plsuccess after (a,b) | reached (a, b)]
+ 7la](1 — p'(a))P[success after a

where P[success before (a, b)] is the probability of reaching r.,, following the arcs that occur

strictly before reaching the (a, b) arc (in the obvious traversal of KB); P[success after (a, b) | reached (a, b)]
is the probability of reaching 7., following the arcs that occur strictly after the {(a,b) arc,

given that S p has reached the (a,b) arc; and P[success after a] is the probability of reaching

reor following the arcs that occur strictly after the a node.

For example, using K B, from Figure 1, identify the a with the fault node “A” and b with
“E”. Then P[success before (a,b)] is the probability that either (1) ¢(Z), ¢(A) and ¢(C) all
succeed and the correct repair is 7, or (2) ¢(Z), t(A) and ¢(D) all succeed, ¢(C) fails, and the
correct repair is 7. Here, P[success after (a, b) | reached (a, b)] is 0, as this is the probability
of reaching a success node under A, strictly after reaching and traversing (a,b) = (A, E).
(Notice E has no “right-siblings” under A.)*' Finally, P[success after a] is the probability
that ¢(A) fails, ¢(B) succeeds and either ¢(E) succeeds and the correct repair is rg, or ¢(E)
fails ¢(F) succeeds and the correct repair is r.

10The reviewers should view the material in this appendix as strictly optional reading.
UTf we had, instead, identified a with “A” and b with “D”, then P[success after {a,b) |reached {(a,b)] =
P[success after (A, D) |reached (A4, D)] is the probability that ¢(E) succeeds and the correct repair is rg.

14

Procedure ACCNODE*(n: node, 7w: (partial)_problem instance, r: repair)
If n is a leaf node
Then return(r(n)=7r 7 1 : 0)
Else tot = 0; reachme = 1; unknowns = {}
For i =1..k(n)
n; = child(n, 1)
If n(t(ni)) =+
Then tot += reach.me x ACCNODE*(n;, m, r)
return(tot)
Elself w(t(n;)) =7
Then If —¢(n;) € unknowns
Then tot += reach.me x ACCNODE*(n;, m, r)
return(tot)
Elself ¢(n;) ¢ unknowns
Then unknowns = unknowns U t(n;)
tot += reachme Xp(n;)x ACcCNODE*(n;, m, r)
reachme *= 1 — p(n;)
/¥ if “t(n;) € unknowns”, then either */
/* if m(t(n;)) = —, this node will be ignored; or
if w(t(ni)) =+, Sk has already followed earlier branch. */
End For
return(tot)
End AccNODE*

Figure 6: ACCNODE* subroutine

Similarly,

acc(KB', (m,1¢.or)) = P[success before (a, b)]
+ 7[{a,b)] x P[success after (a,b) | reached (a, b)]
+ 7la](1 — p'(a))P[success after a]

Subtracting these quantities, we find

diff' (Delete,p, (m,7cor)) = 7[{a,b)] { [p'(b) x P'| — p(b) }

where P’ = P[success after (a,b) | reached (a,b)] = Yb_,..1 T[{a, ar)] x p(ar)/7[{a, b)], where
b is the m' child of a, and @ has k > m children, {a, ..., Gmn_1,0m=D>, mi1,...,ax}.

15

