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Abstract
We present a new approach to ensemble classifica-
tion that requires learning only a single base clas-
sifier. The idea is to learn a classifier that simulta-
neously predicts pairs of test labels—as opposed to
learning multiple predictors for single test labels—
then coordinating the assignment of individual la-
bels by propagating beliefs on a graph over the data.
We argue that the approach is statistically well mo-
tivated, even for independent identically distributed
(iid) data. In fact, we present experimental results
that show improvements in classification accuracy
over single-example classifiers, across a range of
iid data sets and over a set of base classifiers. Like
boosting, the technique increases representational
capacity while controlling variance through a prin-
cipled form of classifier combination.

1 Introduction
Supervised learning has been by far the most studied task in
machine learning research. The problem is to take a finite set
of observed training examples �������
	����������������������	���� and pro-
duce a classifier �������! that achieves small misclassifi-
cation error on subsequent test examples. Most research has
tended to adopt a standard “iid” assumption that the training
and test examples are independent and identically distributed.
In fact, this assumption is fundamental to much of the theo-
retical research on the topic [Anthony and Bartlett, 1999] and
also characterizes most standard learning methods—as exem-
plified by the fact that most machine learning methods clas-
sify each test pattern in isolation, independently of other test
patterns.

Recently, however, increasing attention has been paid to
problems where the training and test labels are not indepen-
dent, but instead strongly related. For example, in domains
such as part of speech tagging and webpage classification,
each word-tag or webpage-label depends on the tag or label of
proximal words or webpages, in addition to just the features
of the immediate word or webpage. Various forms of “rela-
tional” learning models have been developed to handle these
kinds of problems over the last few years. A notable example
is work on probabilistic relational models (PRMs), where the
correlation between the class labels of different instances is

explicitly represented in a directed graphical model [Getoor et
al., 2001; 2002]. Other approaches for learning multivariate
classifiers include conditional random fields (CRFs) [Lafferty
et al., 2001], relational Markov networks (RMNs) [Taskar et
al., 2002], and maximum margin Markov networks (M3N)
[Taskar et al., 2003]. All of these methods have led to sub-
stantial progress on learning classifiers that make dependent
predictions of test labels that are explicitly related.

Although learning multivariate predictors is an exciting
problem, we nevertheless focus on the classical iid case in
this paper. However, we demonstrate what we believe is a
surprising and counterintuitive connection: that learning mul-
tivariate dependent predictions is a beneficial idea even in
the iid setting. In particular, we develop a relational learn-
ing strategy that classifies test patterns by connecting their la-
bels in a graphical model—hence correlating the subsequent
predictions—even when it is explicitly assumed that all train-
ing and test examples are iid.

Before explaining the rationale behind our approach and
explaining why dependent prediction still makes sense in
the iid setting, we note that standard relational learning ap-
proaches, such as PRMs, CRFs, RMNs and M3Ns, do not
naturally correlate predictions on iid data. That is, these tech-
niques only consider label dependencies that are explicitly as-
serted to hold in the true underlying model of the domain. In
the iid case, since no dependencies are asserted between test
labels, these standard relational approaches reduce to single-
label learning techniques, such as univariate logistic regres-
sion and support vector machines. However, what we are
proposing is different: we intentionally add dependencies be-
tween test labels, even when all labels are explicitly assumed
to be independent in the underlying data generation process.
Surprisingly, we demonstrate that correlating predictions can
still be advantageous.

After introducing our basic approach below, we then mo-
tivate and justify our technique in three separate ways. First,
we show that predicting correlated test labels is statistically
justified in the iid setting, even when the independence as-
sumptions are explicitly taken into account. In fact, we show
that it is incorrect to conclude that a learned predictor can suf-
ficiently treat test cases as independent simply because they
come from an iid source. Second, we show that our pro-
posed relational learning technique can be viewed as a nat-
ural generalization of similarity-based learning techniques.



Moreover, it can also be viewed as a simple form of ensem-
ble learning method that has some advantages over standard
approaches. Third, we show empirically that our proposed
method can achieve improvements in classification accuracy
across a range of iid domains, for different base learning al-
gorithms.

2 Learning Coordinated Label Predictors
We begin by simply introducing our learning method, and
then attempt to motivate it more thoroughly below. Initially,
we will focus on using probabilistic classifiers (although we
briefly consider an extension to nonprobabilistic classifiers in
Section 5 below).

In the iid setting, the standard approach to probabilistic
classification is to learn a univariate model "#��	�$ �%��&'� that as-
serts a conditional probability distribution over a single clas-
sification variable 	 given an input pattern � , where & rep-
resents the parameters of the model. Given such a repre-
sentation, there are two key steps to building a univariate
classifier: The first is to learn a specific predictive model"#��	�$ �%�
&'� given training data ��� � �
	 � ��������������� � ��	 � � , based on
using a principle such as maximum (conditional) likelihood
or maximum a posteriori estimation. Then, given a set of test
patterns ��(� �)�������
�*(+ , one classifies each ��(, independently by
computing the label -	 , that maximizes the estimated condi-
tional probability, -	 ,/.10�2�3%4#0�5�6 "#��	7$ �*(, �
&'� . Natural ex-
amples of this approach are learning naive Bayes classifiers
[Friedman et al., 1997], logistic regression classifiers [Hastie
et al., 2001], kernel logistic regression classifiers [Zhu and
Hastie, 2001], sigmoid network classifiers [Neal, 1996], and
Bayesian network classifiers [Greiner and Zhou, 2002].

Our approach is different. Instead of learning a univari-
ate classifier that predicts only a single label, we instead
propose to learn a pairwise label classifier "#��	 , 	98�$ � , �:8��<;:�
that takes an arbitrary pair of input patterns, � , and �:8 , and
asserts a conditional joint distribution over the pair of la-
bels 	 , and 	98 . For example, if there are two classes, say
0 and 1, then a pairwise classifier would assert the condi-
tional probability of the four possible pair labelings ��	 , ��	98)�>=? �A@B�C@'������@D��E���)�
E���@������FE��)E���G given the two input patterns � ,
and �:8 . In general the pairwise predictor does not assume that	 , and 	H8 are independent given � , and �:8 , even though they
are indeed assumed to be independent in the true model (we
present a justification of this in Section 3 below). We refer
to a pairwise label classifier of this form as a “coordination
classifier” to highlight the fact that it attempts to model any
coordination that might appear between the labels 	 , and 	 8
given the input patterns � , and � 8 . Given the alternative rep-
resentation "#��	 , 	98�$ � , �:8'�<;I� we next describe the two main
processes of, first, training a coordination classifier from data,
and then using it to label test patterns.

2.1 Training a Coordination Classifier
A coordination classifier doubles the number of input fea-
tures and squares the number of output classes from an orig-
inal univariate classifier. Despite the increase in model com-
plexity, training a coordination classifier remains concep-
tually straightforward. Assume a standard training sample

��� � �
	 � ���)�������)��� � �
	 � � is given. First we construct a set of
pairs from the set

? ��� , �:8'�
	 , 	98��<G and then supply these as
a conventional training set for learning a predictive model"#��	 , 	 8 $ � , � 8 �C;I� from data. (In our experiments below we
ignore duplicate pairs but otherwise include both orderings
of each distinct pair to ensure that the learned model is sym-
metric.) Once the training data is constructed, the parame-
ters of the model, ; , can then be estimated in the same way
as the univariate case, either by using a maximum (condi-
tional) likelihood or maximum a posteriori estimation prin-
ciple. For example, given a linear logistic representation for"#��	 , $ � , ��&'� , we use an analogous linear logistic representa-
tion for "#��	 , 	98�$ � , �:8'�<;I� but over the joint feature space � , �:8 ;
thus training the two models under the same estimation prin-
ciple, but using different (although related) data sets.

A coordination model learned in this way will generally
not make independent predictions of 	 , and 	98 , since the ex-
tended parameters ; are not constrained to enforce indepen-
dence.1 That is, we expect the model to learn to make de-
pendent, coordinated predictions of the two labels from the
corresponding input patterns. Interestingly, learning a coor-
dination classifier has the advantage of potentially squaring
the number of available training examples, even though this
advantage is mitigated by subsampling and the increase in the
complexity of the model being learned.

2.2 Classifying Test Data with Coordination
Given a coordination classifier, we require a principle for
classifying individual test patterns ��( . In fact, the problem of
classifying test patterns becomes much more involved in this
case. The approach we take is to consider the set of training
examples ���*���
	J����)�������)�������
	��B� and test patterns ��(� �)���������*(+ as
a whole. That is, rather than classify each test pattern �K(, in
isolation, we instead seek to classify test patterns in a depen-
dent manner. To perform classification, we proceed in three
stages reminiscent of conditional random fields: First, we
construct a graph over the test and training labels. Once the
graph has been constructed, we then use the learned coordi-
nation classifier "#��	 , 	98'$ � , �:8'�<;:� to assign “potentials” to the
possible labelings of each edge ��	 , �
	 8 � . These potentials can
then be used to define a Markov random field over test label
assignments, thereby establishing a joint probability distribu-
tion over the labelings. Finally, we compute a joint labeling	D(� �)�������
	D(+ of the test examples that maximizes (or at least ap-
proximately maximizes) the joint label probability. We de-
scribe each of these three steps in more detail below.

Defining the graph First, to construct the graph, we only
consider edges that connect a pair of test labels ��	:(, �
	D(8 � , or a
test label and a training label ��	L(, ��	 8 � . That is, after training
we do not make any further use of edges between training
labels.

To classify test patterns, the simplest approach, concep-
tually, is to consider the complete graph that connects each

1Many readers are probably objecting at this point that, given the
iid assumption, there can be no new information to be gained from
the MLN example pairs that was not already present in the original M
examples. However, Section 3 argues that this conclusion is gener-
ally incorrect in a machine learning context.



test label 	D(, to all other test and training labels. However,
we have found that it is usually impractical to consider allO �
� OQP E9��R�SUT VW� test pairs (ignoring duplicate pairs).
Therefore, we reduce the number of edges by adding a few
restrictions. The natural alternatives we consider below are:
(i) connecting each test label only to training labels (which,
as we will see, is analogous to standard similarity and kernel
based learning methods), (ii) connecting each test label only
to other test labels (which, surprisingly, gives the best results
in our experiments below), and (iii) connecting each test label
to both training and test labels. To further reduce the overall
number of edges, we then uniformly subsample edges, sub-
ject to these different restrictions.

Defining the potentials Once a graph has been con-
structed, we then assign potentials to the configurations of
each edge. There are two cases depending on whether the
edge connects two test labels, or a test label and a training
label.

For an edge that connects only two test labels, ��	 (, �
	 (8 � ,
we simply assign the potential XY��	L(, �
	D(8 � . "#��	D(, 	D(8 $ �*(, �*(8 �<;:�
given by the learned coordination classifier.

For an edge that connects a test and a training label,��	D(, �
	98�� , we assign a unit potential to the singleton node ��	:(, �
given by the conditional probability of 	L(, given 	98 . That is,
we assignX 6CZ ��	 (, � . "#��	 (, $ 	98��
� (, �:8��C;I� . "#��	D(, 	98�$ �*(, �:8��C;I�[ 6 "#��	J	 8 $ � (, � 8 �<;:�
Once a potential has been assigned to the singleton ��	:(, � we
then remove the edge ��	L(, ��	 8 � from the graph. Thus, the re-
sulting graph only has edges between test labels, and possibly
a combination of singleton potentials on nodes ��	:(, � and pair-
wise potentials on edges ��	L(, �
	D(8 � .

Once all of the potentials have been assigned, we then de-
fine a joint probability distribution over node labelings in the
same manner as a Markov random field, by taking the product
form

"#��	 (� ���������
	 (+ � . E\ +],�^ �
_` ] 8�a X 6 Z a ��	 (, �cbd

_` ]8e , XY��	 (, �
	 (8 �fbd
and normalizing by an appropriate constant

\
.

Computing the labeling Finally, given a joint probability
distribution defined by the Markov random field, our goal is
to compute the joint test pattern labeling that has maximum
probability. (Since we are only interested in computing the
maximum probability assignment, we can ignore the normal-
ization constant above.) Depending on which edge model we
use, there are different implications.

First, assuming model (i) (test labels only connect to train-
ing labels), there are no pairwise potentials and the Markov
random field becomes completely factored. In this case,
computing the maximum probability assignment is easy and
can be determined independently for each test pattern. Es-
sentially, removing test-test edges reduces our technique
to a classical method in which each test pattern is classi-
fied independently. Here the learned coordination model

x1 x2

y1 y2

true
conditional

model

learned
conditional

model

test examples

Figure 1: In an iid setting, the true test labels 	 � and 	�g are
independent given the true conditional model. However, they
are not independent given a learned estimate of the model."#��	D(, 	98�$ �*(, �:8'�<;I� plays the role of a generalized similarity
measure for classifying 	 (, in terms of ��� � ��	 � ����������)��� � �
	 � � .
The only difference is that the coordination model is learned
in an earlier training phase, rather than being fixed before-
hand.

The remaining cases (ii) and (iii) are more difficult because
they introduce edges between test labels, which causes the la-
bels to become dependent. Surprisingly, we have found that
exploiting test label dependence can actually improve clas-
sification accuracy, even when the test data is known to be
iid. (This is one of the main points of the paper.) For these
models, computing the maximum probability assignment is
hard, because the graph can contain many loops. To cope
with the problem of performing probabilistic inference in a
complex graphical model, we use loopy belief propagation to
efficiently compute an approximate solution [Murphy et al.,
1999]. Below we find this gives adequate results.

3 Rationale and Discussion
Before presenting our experimental results, it is important to
explain the rationale behind our technique and suggest why
coordinated classification even makes sense in an iid setting.

Given the assumption that the training and test data are in-
dependent, we are proposing to predict test labels by building
a graph, asserting joint potentials over pairs of labels (from
a learned coordination classifier), and using belief propaga-
tion to make dependent predictions. Why does it make sense
to make dependent predictions of iid labels? It turns out that
this approach is justified even when taking the independence
assumptions into account. Figure 1 illustrates the basic argu-
ment. In a standard machine learning setting, it is indeed true
that, given the correct model for generating iid data, the label	�� for an input pattern ��� is independent of the label 	 g for an-
other pattern �Wg . However, note that this requires knowledge
of the correct model (or at least its correct structure), which is
rarely the case in classification learning. Instead, given only
an estimate of the true model obtained from training data, 	B�
and 	'g remain dependent, as Figure 1 clearly shows. That is,
in the context of supervised learning it is generally the case
that test labels are dependent given a learned model. In fact,
it is obvious that supervised learning algorithms correlate the
labels on the training data. Our observation is simply that the
same principle can also be applied to test data.



Although using a relational technique for an iid problem
might still appear awkward, it has a well known precedent
in machine learning research: transductive learning [Vapnik,
1998; Zhu et al., 2003]. In transduction, the learner knows the
set of test patterns beforehand, and exploits this knowledge
to make predictions that are ultimately dependent. In fact,
this idea has been exploited in recent approaches to semi-
supervised learning using Markov random fields [Zhu et al.,
2003]. What we are proposing is a general framework for ex-
tending standard probabilistic learning algorithms to be trans-
ductive in a similar fashion.

Our method can be further motivated by noting that it is
a natural extension of standard ideas in supervised iid clas-
sification. As observed, learning a coordination classifier"#��	 , 	98�$ � , �:8��C;I� is a natural generalization of learning meth-
ods that use a similarity measure h7��� , ���:89� to classify test
examples �*(, based on similarities h7����(, �
�*�)���)�������<h7���*(, �����B� to
the training patterns. In fact, this corresponds to our graph
choice (i) above, which only connects test labels to training
labels. Coordination classification extends the standard sim-
ilarity based approach by first learning how patterns predict
dependencies between the labels (using standard methods ap-
plied in a novel way), and then correlating test predictions
over a graph. Although there has indeed been recent work on
learning kernels for classification [Lanckriet et al., 2004], as
well as transductive learning with kernels [Xu et al., 2004],
thus far these formulations have remained hard to extend and
apply in practice.

Another interesting view of coordination classification is
that it is a novel form of ensemble method. That is, the label
for a test pattern �*(, is computed by a combination of votes
from multiple predictors associated with different test (and
training) patterns iWj (�k8 . In fact, even remotely connected pat-
terns can influence a classification via belief propagation.

As an ensemble method, coordination classification has
some useful features. First, it only requires the training of
a single base classifier "#��	 , 	98�$ � , �:8��C;I� , rather than multiple
base classifiers trained from perturbed data. Second, as with
boosting and bagging, coordination classification increases
the representational capacity of an original (univariate) classi-
fier. That is, given a classifier representation for a single label"#��	 , $ � , ��&'� , as mentioned previously, a coordination classi-
fier "#��	 , 	98'$ � , �:8'�C;I� doubles the number of input features and
squares the number of output classes. In addition, the pre-
diction of a test label can, in principle, depend on all training
and test patterns. Of course, simply increasing the representa-
tional capacity of a base classifier increases the risk of overfit-
ting. However, the advantage of ensemble methods is that the
resulting classifier, although more complex, is “smoothed” by
a principled form of model combination, which helps avoid
overfitting while exploiting added representational complex-
ity. That is, the process of model combination can be used
to reduce the variance of the learned predictor. In our case,
we base our model combination principle on inference in a
Markov random field. We will see below that, in fact, coordi-
nation classification is competitive as an ensemble technique.

The biggest drawback of coordination classification is the
need to perform probabilistic inference (via loopy belief

propagation) in order to label test instances. However, we
have still found the method to be robust to approximations,
like running only a single iteration of loopy belief propaga-
tion, or even just taking local votes or products.

4 Experimental Results
We implemented the proposed coordination classification
technique for a few different forms of probabilistic classifiers
and using various standard iid data sets. Our intent was to
determine whether the approach indeed had merit and was
also robust to alterations in classifiers and data sets. Our ex-
periments were conducted on standard two-class benchmark
data sets from the UCI repository. The data sets used were:
1. australian, 2. breast, 3. chess, 4. cleve, 5. corral, 6.
crx, 7. diabetes, 8. flare, 9. german, 10. glass2, 11. heart,
12. hepatitis, 13. mofn-3-7, 14. pima, and 15. vote. All of
our experimental results were obtained by 5-fold cross vali-
dation, repeated 10 times for different randomizations of the
graph structures. The tables and plots report averages of these
results, with standard deviations included in the tables.

Table 1 and Figure 2 show the results of our first exper-
iment. In this case, we implemented a standard logistic re-
gression model, using unaltered input features, to learn a base
coordination classifier "#��	 , 	H8�$ � , �:8��C;I� . Classification was
performed by running loopy belief propagation until the test
labels stabilized (usually after 2 to 8 iterations). In the first
experiment we used a graph over test labels only, to deter-
mine whether introducing label dependency would have any
beneficial effect (see “edge” results). Here we subsampled
test-test edges uniformly at random for an overall density of
18 edges per test example. Table 1 and Figure 2 show the re-
sulting misclassification error obtained by coordination clas-
sification in comparison to learning a standard logistic regres-
sion model, "#��	 , $ � , �
&'� . Here we see a notable reduction in
overall misclassification error (19% � 16%), with a signifi-
cant improvement on some data sets (Breast, -10%, Diabetes,
-6%, MofN, -11%, Pima, -6%), and a minor increase on two
data sets (Cleve, + E %, and Corral, +1%).

Table 1 also compares the error of coordination clas-
sification to boosting the base logistic regression model"#��	 , $ � , ��&'� . Here we used 18 rounds of Adaboost [Freund
and Schapire, 1996; 1997], thereby combining approximately
the same number of votes per test pattern as coordination
classification. This experiment shows that as an ensemble
method, coordination classification performs competitively in
this case. An advantage of coordination classification is that
it only needs to learn a single base classifier, as opposed to the
multiple training episodes required by boosting. The need to
run loopy belief propagation on the output labels is a disad-
vantage however.

To investigate the robustness of the method, we repeated
the previous experiments using a different base classifier. Ta-
ble 2 and Figure 3 show the results of an experiment using
naive Bayes instead of logistic regression as the base clas-
sification method. Here the results are not as strong as the
first case we tried, although they are still credible. Note that
boosting obtains a few larger improvements, but also larger
losses. Classification coordination appears to be fairly stable.



Table 1: A comparison of average misclassification error (%)
on UCI data using logistic regression as a base model. l .
average improvement over base.

base boosted lnmpo)qFr edge lsmto)qFr
australian 15.1 14.5 -0.6 u 0.4 14.2 -0.9 u 0.9
breast 14.5 14.9 0.4 u 0.3 4.2 -10.3 u 2.4
chess 7.6 8.3 0.7 u 0.2 7.6 0 u 0.1
cleve 15.3 14.9 -0.4 u 0.6 16.6 1.3 u 1.1
corral 8.8 8.8 0 u 0.0 9.9 1.1 u 0.9
crx 16.5 16.3 -0.2 u 0.4 14.4 -2.1 u 0.8
diabetes 31.2 31.3 0.1 u 0.1 24.8 -6.4 u 1.1
flare 17.4 17.5 0.1 u 0.5 17.5 0.1 u 1.3
german 25.8 25.9 0.1 u 0.1 24.8 -1.0 u 1.0
glass2 29.4 27.5 -1.9 u 1.3 28.8 -0.6 u 4.7
heart 16.3 15.9 -0.4 u 0.4 15.9 -0.4 u 1.9
hepatitis 17.5 17.5 0 u 0.0 14.1 -3.4 u 3.0
mofn-3-7 28.6 28.6 0 u 0.0 17.3 -11.3 u 0.8
pima 30.9 30.5 -0.4 u 0.3 24.9 -6.0 u 0.8
vote 6.7 6.7 0 u 0.8 5.8 -0.9 u 0.8
average 18.8 18.6 -0.2 u 0.4 16.1 -2.7 u 1.4
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Figure 2: A comparison of average misclassification error on
UCI data sets using logistic regression. Top plot: base model
versus boosted logistic regression. Bottom plot: base model
versus “edge”-based coordination classification.

Table 2: A comparison of average misclassification error (%)
on UCI data using naive Bayes as a base model. l . aver-
age improvement over base.

base boosted lnmpo)qFr edge lsmto)qFr
australian 13.8 16.2 2.4 u 1.6 14.2 0.4 u 0.4
breast 2.6 5.0 2.4 u 1.1 2.7 0.1 u 0.1
chess 20.1 8.2 -11.9 u 3.1 19.1 -1.0 u 0.6
cleve 16.3 17.0 0.7 u 0.4 16.4 0.1 u 0.2
corral 13.6 13.6 0 u 5.5 14.2 0.6 u 0.7
crx 14.6 16.6 2.0 u 0.9 14.4 -0.2 u 0.2
diabetes 22.6 22.6 0 u 0.0 22.6 0 u 0.2
flare 16.8 16.7 -0.1 u 0.1 17.0 0.2 u 0.4
german 25.5 26.3 0.8 u 0.7 25.1 -0.4 u 0.6
glass2 15.6 11.9 -3.7 u 1.2 13.9 -1.7 u 1.2
heart 15.9 17.0 1.1 u 1.3 16.1 0.2 u 0.2
hepatitis 13.8 15.0 1.2 u 6.1 9.3 -4.5 u 1.2
mofn-3-7 14.2 0.0 -14.2 u 0.6 1.0 -13.2 u 0.8
pima 21.8 21.7 -0.1 u 0.1 22.2 0.4 u 0.4
vote 9.9 5.5 -4.4 u 1.8 9.8 -0.1 u 0.2
average 15.8 14.2 -1.6 u 1.6 14.5 -1.3 u 0.5
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Figure 3: A comparison of average misclassification error
on UCI data sets using naive Bayes. Top plot: base model
versus boosted naive Bayes. Bottom plot: base model versus
“edge”-based coordination classification.



The above experiments were run using only edges between
test labels. To compare to standard approaches for iid data,
we repeated the experiments using only edges between test
and training labels, hence decoupling the test labels and elim-
inating the need for belief propagation (as discussed in Sec-
tion 2.2). In this case, test labels are predicted independently.
Table 3 and Figure 4 (top) still show, however, that this ap-
proach generally improves the base logistic regression classi-
fier "#��	 , $ � , �
&�� (see “node” results). We conclude that cor-
relating the test labels appears to be a beneficial idea, even
in an iid setting. The marginal improvement of label depen-
dence, although positive, might be secondary to the benefit of
learning a similarity measure.

All of the previous results were obtained by subsampling
edges at a density of 18 edges per test label. To test the sen-
sitivity of our results to the edge density, we repeated the
first experiment (test-test edges) using different edge densi-
ties. Figure 5 shows that the performance of coordination
classification does not appear to be sensitive to edge density.

Finally, we experimented with the combined edge ap-
proach (iii) which randomly mixed test-test edges and test-
train edges yielding the results of Table 3 and Figure 4 (bot-
tom). The results in this case do not appear to surpass the
performance of using test only edges (see “mix” results).

5 Extensions
All of our results so far have involved probabilistic classi-
fiers whose output is a conditional distribution over the label	 given the input pattern � . Of course, many of the most im-
portant classification learning technologies, such as decision
trees and support vector machines do not naturally produce
probabilistic classifications over the class label (although they
can be extended in various ways to do this [Platt, 2000]). This
raises the obvious question of generalizing our technique to
consider nonprobabilistic classifiers.

It is always possible to extend a classification learning
method to learn to predict label pairs ��	 , ��	 8 � given paired
input patterns ��� , �
�:8�� . The difficulty is combining several
paired predictions to render a sensible classification for a sin-
gle test pattern. A convenient way to do this would be to
convert the predicted outputs to nonnegative potentials over
labelings. However, rather than do this, we tried the sim-
pler alternative of combining pair classifications by a simple
vote to classify a single test pattern �K(, . This is a less pow-
erful combination method than loopy belief propagation, but
requires fewer extensions to existing methods to test the co-
ordination classifier idea in these cases.

To test this simple idea, we conducted an experiment on
the same UCI data using a neural network classifier. Specifi-
cally we used a feedforward neural network with one hidden
layer and logistic activation functions. The base neural net-
work used one output unit, whereas the pairwise neural net-
work used four output units (two units to indicate the class
of each of the two input vectors) and double the number of
input units. In each case the number of hidden units was set
to 20, subject to the constraint that ��V in TvV out �xwyV hidden z
train size R�S . We trained the networks to minimize cross
entropy error using the quasi-Newton method from Netlab

Table 3: Alternative comparison of average error (%) on UCI
data using logistic regression as a base model. l . average
improvement over base.

base node lnmpo)qFr mix lsmto)qFr
australian 15.1 14.1 -1.0 u 0.9 14.2 -0.9 u 0.9
breast 14.5 3.8 -10.7 u 2.4 3.8 -10.7 u 2.5
chess 7.6 8.1 0.5 u 0.3 7.9 0.3 u 0.2
cleve 15.3 16.6 1.3 u 1.3 16.8 1.5 u 1.4
corral 8.8 11.2 2.4 u 1.2 10.3 1.5 u 0.8
crx 16.5 14.9 -1.6 u 0.8 14.7 -1.8 u 0.9
diabetes 31.2 24.7 -6.5 u 1.3 24.9 -6.3 u 1.3
flare 17.4 17.6 0.2 u 1.2 17.8 0.4 u 1.1
german 25.8 24.7 -1.1 u 0.9 24.8 -1.0 u 0.9
glass2 29.4 29.7 0.3 u 5.0 29.4 0 u 4.6
heart 16.3 15.7 -0.6 u 2.0 15.9 -0.4 u 1.8
hepatitis 17.5 15.0 -2.5 u 3.4 14.0 -3.5 u 2.8
mofn-3-7 28.6 25.1 -3.5 u 0.2 23.6 -5.0 u 0.4
pima 30.9 25.1 -5.8 u 0.8 24.5 -6.4 u 1.0
vote 6.7 6.0 -0.7 u 0.8 5.9 -0.8 u 0.7
average 18.8 16.8 -2.0 u 1.5 16.6 -2.2 u 1.4
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Figure 4: Alternative comparison on UCI data using logistic
regression. Top plot: base model versus “node”-based co-
ordination classification. Bottom plot: base model versus a
mix of “edge” and “node” based coordination classification.
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Figure 5: Average misclassification error of “edge”-based
coordination classification using logistic regression, compar-
ing different ratios of edges to the number of test patterns.

[Nabney, 2001] (www.ncrg.aston.ac.uk/netlab).
Once a pairwise neural network classifier was learned, we

classified test examples according to the previous “edge”
model, again by building a random graph between test la-
bels (using an average of 18 edges per test label as before),
using the learned coordination neural network to make hard
predictions for each edge, and then combining the edge pre-
dictions using a simple vote to classify each test example.
Table 4 (“edge”) and Figure 6 show the results of this exper-
iment. Surprisingly, we still obtain a slight overall reduction
in misclassification error over the base level neural network
classifier, while again competing well against boosting.

Although encouraging, our results are not as positive in ev-
ery case. We also conducted a simple experiment with de-
cision trees [Quinlan, 1993] as the base coordination classi-
fier, once again combining these predictions with a simple
vote to label specific test patterns. Unfortunately, we did not
observe an overall improvement over the base decision tree
classifier in this case; see Figure 7. This result suggests that a
more powerful model combination idea might be required to
achieve robust improvements more generally.

6 Conclusion
We have proposed a novel classification learning strategy that
coordinates the prediction of test labels on a graph over the
data. The coordination classification idea can be used to ex-
tend any probabilistic classification approach quite naturally,
and even seems to be applicable to nonprobabilistic tech-
niques as well (although more research needs to be done).

One insight behind the technique is that making correlated
predictions of test labels is justified, even advantageous, in
the standard iid setting. This fact has often been overlooked
in classification learning, therefore we believe it to be a point
worth emphasizing. The ability to learn and predict coor-
dinated test labels, combining them with probabilistic infer-
ence, provides a flexible new tool for improving classification
accuracy on iid data.

Table 4: A comparison of average misclassification error (%)
on UCI data using a neural network as a base model. l .
average improvement over base.

base boosted lnmpo)qFr edge lsmto)qFr
australian 19.3 16.5 -2.8 u 0.7 15.4 -3.9 u 0.4
breast 4.0 4.4 0.4 u 0.6 4.1 0.1 u 0.4
chess 3.5 3.6 0.1 u 0.2 6.7 3.2 u 0.9
cleve 22.9 20.0 -2.9 u 1.4 18.8 -4.1 u 1.3
corral 0 0 0 u 0.0 0 0 u 0.0
crx 20.6 18.5 -2.1 u 0.9 15.9 -4.7 u 1.9
diabetes 27.6 28.1 0.5 u 0.8 25.0 -2.6 u 0.9
flare 19.4 21.4 2.0 u 0.5 19.7 0.3 u 0.4
german 28.9 26.4 -2.5 u 0.6 26.4 -2.5 u 1.0
glass2 19.3 16.3 -3.0 u 1.5 19.8 0.5 u 1.2
heart 22.0 21.1 -0.9 u 2.1 18.8 -3.2 u 1.0
hepatitis 15.0 13.8 -1.2 u 3.5 13.5 -1.5 u 2.0
mofn-3-7 0 0 0 u 0.0 0 0 u 0.0
pima 26.7 29.0 2.3 u 0.8 25.0 -1.7 u 0.6
vote 6.0 6.7 0.7 u 0.9 6.2 0.2 u 0.4
average 15.7 15.0 -0.7 u 1.0 14.4 -1.3 u 0.8

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40
base vs boosted

Classification error of boosted

C
la

ss
ifi

ca
tio

n
 e

rr
o
r 

o
f 
b
a
se

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40
base vs edge

Classification error of edge

C
la

ss
ifi

ca
tio

n
 e

rr
o
r 

o
f 
b
a
se

Figure 6: A comparison of average misclassification error on
UCI data sets using a neural network. Top plot: base model
versus boosted neural network. Bottom plot: base model
versus “edge”-based coordination classification.
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Figure 7: A comparison of average misclassification error on
UCI data sets using C4.5 as the base classifier.

One idea for future work that we are considering is to ex-
tend the notion of a pairwise edge classifier to a more general
clique classifier. We are also investigating alternative prin-
ciples for defining potentials on label pairs to see perhaps if
there are other combination ideas that work more effectively.
Finally, we are also investigating whether combining standard
“single node” classifiers with our generalized “edge” predic-
tors might lead to further accuracy improvements.

Acknowledgments
Research supported by the Alberta Ingenuity Centre for Ma-
chine Learning, NSERC, MITACS, and the Canada Research
Chairs program.

References
[Anthony and Bartlett, 1999] M. Anthony and P. Bartlett.

Neural Network Learning: Theoretical Foundations.
Cambridge, 1999.

[Freund and Schapire, 1996] Y. Freund and R. Schapire. Ex-
periments with a new boosting algorithm. In Proceedings
of the 13th International Conference on Machine Learning
(ICML), pages 148–156, 1996.

[Freund and Schapire, 1997] Y. Freund and R. Schapire. A
decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and Sys-
tems Sciences, 55(1):119–139, 1997.

[Friedman et al., 1997] N. Friedman, D. Geiger, and
M. Goldszmidt. Bayesian network classifiers. Machine
Learning, 29:121–163, 1997.

[Getoor et al., 2001] L. Getoor, E. Segal, B. Taskar, and
D. Koller. Probabilistic models of text and link structure
for hypertext classification. In IJCAI01 Workshop on Text
Learning, 2001.

[Getoor et al., 2002] L. Getoor, N. Friedman, D. Koller, and
B. Taskar. Learning probabilistic models of link struc-
ture. In Journal of Machine Learning Research, volume 3,
pages 679–707, 2002.

[Greiner and Zhou, 2002] R. Greiner and W. Zhou. Struc-
tural extension to logistic regression: Discriminant param-
eter learning of belief net classifiers. In Proceedings of the
18th Annual National Conference on Artificial Intelligence
(AAAI), pages 167–173, 2002.

[Hastie et al., 2001] T. Hastie, R. Tibshirani, and J. Fried-
man. The Elements of Statistical Learning. Springer, 2001.

[Lafferty et al., 2001] J. Lafferty, A. McCallum, and F. Pere-
ria. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proceedings of
the 18th International Conference on Machine Learning
(ICML), pages 282–289, 2001.

[Lanckriet et al., 2004] G. Lanckriet, N. Cristianini,
P. Bartlett, L. El Ghaoui, and M. Jordan. Learning the
kernel matrix with semidefinite programming. Journal of
Machine Learning Research, 5:27–72, 2004.

[Murphy et al., 1999] K. Murphy, Y. Weiss, and M. Jordan.
Loopy belief propagation for approximate inference: an
empirical study. In Proceedings of the 15th Conference
on Uncertainty in Artificial Intelligence (UAI), pages 467–
475, 1999.

[Nabney, 2001] I. Nabney. NETLAB: Algorithms for
Pattern Recognition. Springer, New York, 2001.
http://www.ncrg.aston.ac.uk/netlab.

[Neal, 1996] R. Neal. Bayesian Learning for Neural Net-
works. Springer, 1996.

[Platt, 2000] J. Platt. Probabilities for SV machines. In
A. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 61–
74. MIT Press, 2000.

[Quinlan, 1993] J. Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann, San Mateo, 1993.

[Taskar et al., 2002] B. Taskar, P. Abbeel, and D. Koller.
Discriminative probabilistic models for relational data. In
Proceedings of the 18th Conference on Uncertainty in Ar-
tificial Intelligence (UAI), pages 485–492, 2002.

[Taskar et al., 2003] B. Taskar, C. Guestrin, and D. Koller.
Max-margin Markov networks. In Advances in Neural
Information Processing Systems 16 (NIPS), pages 25–32,
2003.

[Vapnik, 1998] V. Vapnik. Statistical Learning Theory. Wi-
ley, New York, 1998.

[Xu et al., 2004] L. Xu, B. Larson, J. Neufeld, and D. Schu-
urmans. Maximum margin clustering. In Advances in
Neural Information Processing Systems 17 (NIPS), pages
1537–1544, 2004.

[Zhu and Hastie, 2001] J. Zhu and T. Hastie. Kernel logistic
regression and the import vector machine. In Advances in
Neural Information Processing Systems 14 (NIPS), pages
1081–1088, 2001.

[Zhu et al., 2003] X. Zhu, Z. Ghahramani, and J. Lafferty.
Semi-supervised learning using gaussian fields and har-
monic functions. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03), pages 912–
919, 2003.


