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A belief net (BN),2 whether produced by interviewing domain expert(s) or learned
from a body of data, can be incorrect. This report presents two tools for evaluating a
given BN, by determining whether that network is statistically consistent with a body
of accurate auxiliary information, I4. It also suggests how this information can be used
to improve the BN.

Tool#1: Error bars: The first tool provides “error bars” around the answers produced
by a BN — e.g., allowing the BN-based system to state that P(cancer | headache) =
0.72 +£0.02 with 95% confidence. These error bars are based on the training sample that
was used to instantiate the CPtables for a given BN-structure.

Here, we start with a structure for a belief net, and then use the observed frequencies
over a collection S of typles to fill-in the CPtables [Hec95, CH92]. Then given the query
P(X|Y), the instantiated BN can compute an answer; call it P(5) (X |Y) € [0,1]. We
prove that,

Theorem 1 If the belief net structure is correct, then for any query “P(X |Y )” (whose
correct answer is p), with probability at least 1 — 0,
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when there are K CPtable entries (each of the form (q,r)) that participate in this
P(X|Y) computation, where each {q,r) in the summation corresponds to the CPtable
entry for P(Q = q|R =1), for node Q with parents R. 1

If the auxiliary information I4 states that the answer to this P(cancer | headache)
query should be, say p = 0.65, then we have reason to question the given structure of the
network, as we can be confident that the particular training sample used cannot explain
the 0.72 vs 0.65 discrepancy. One can often use a set of queries — some of whose answers
were “within tolerances” and others not — to isolate which parts of the network appear
problematic.

Tool#2: Does the Sample Support Existing Links? The second tool provides a
more fine-tuned probe into the structure of the network. The I4 here corresponds to

IFor more information, see http://www.cs.ualberta.ca/~greiner/BN-results.html#consistent

2We assume the reader knows that a belief net (aka Bayesian network, probability net, causal net)
is a graphical model of a (factored) distribution, whose nodes correspond to random variables, which
each include a “CPtable” that specifies the conditional probabilities of that node given each possible
assignment to its parents; see [Pea88]. We also say a BN-structure is “correct” if it correctly models
the (in)dependencies of the underlying distribution.



a body of sample tuples, and the probe determines whether these samples support a
specified link between a pair of nodes.

Definition 2 1. Let Gy be a belief net structure, and G be a substructure of Gy, pro-
duced by deleting an existing link. Given any sample S, let BN, (resp., BNy) be the
mazimum-likelihood belief net corresponding to G5 (resp., Gy) [produced by filling the
CPtables using the observed frequencies], and let P, (resp., Py) be the associated proba-
bility measure. Let v = v(Gs,Gp,S) = —2In(Ps(S)/Py(9)).2

2. Let {¢,0) be a parameterization of P, with the property that (¢,0) is a parameteri-
zation of the constrained P;.

3. Let Hs (resp., Hy) be the hypothesis that the data S was generated (iid) by a distri-
bution representable by G (resp., by Gy, but not by G5). 1

We expect v to be close to —21n1 = 0 when H; holds, and to blow up towards infinity
otherwise. In fact,

Proposition 3 ([SO91]) When Hy holds, v asymptotically has a non-central x* distri-

bution with n = || degrees of freedom and non-central parameter A = 6T M 0 where
3%In Py(S
My = —EBx,,..x. (Sg5m2). 1

Given a body of data and a specified link, we can first compute associated A and v
parameters. Next, for any specified confidence value « € (0,1), we can then determine
the threshold t, = t4[n, ] such that 1 —a = P(X < t,), where the r.v. X is drawn
from a x? distribution with n degrees of freedom and non-centrality parameter \. We
then reject Hy (i.e., decide to exclude the specified link) with probability p > a if v < ¢,.

The major challenge is computing the non-centrality parameter A. Fortunately,

Theorem 4 Let the belief net Gy include only nodes A and B, where A is the only parent
of B, and the BN G differs from Gy only by deleting this one link. Then after observing
the (complete tuple) sample S, the non-centrality parameter is
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where each P(-) value is based on the empirical distribution. 1

Obvious corollaries show that this result scales up, to handle the situation where
(1) B has > 1 parents; (2) we are considering simultaneously removing the links from
B to several parents; and (3) we are considering simultaneously removing the links from
several nodes to several (respective) parents. In addition to deciding whether to delete
an existing link, we can use a similar approach (based on standard x? test) to decide
whether to add new links.

31t is easy to compute this v quantity, as most of the terms involved in the Ps( S )/Py( S ) computation
cancel out.



Open problems: These tools were originally motivated by the goal of helping a domain
expert to evaluate and revise an existing belief net, based on auxiliary information. (As
that information was not necessarily correct, we left the expert in the loop.) Of course,
these ideas can also be used to help learn a belief net, by “revising” the 0-link belief
net. Here, we need ways to automate many of the decisions — e.g., decide which link to
consider adding (or deleting), and also deciding how to use the “error-bar”-based analysis
to decide which specific links (or CPtable entries) are problematic.
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