The Complexity of Revising Logic Programs*

Russell Greiner!
Department of Computing Science
University of Alberta
Edmonton, Alberta T6G 2H1

greiner@cs.ualberta.ca

January 25, 1999

Abstract

A rule-based program will return a set of answers to each query. An impure pro-
gram, which includes the Prolog cut “!” and “not(-)” operators, can return different
answers if its rules are re-ordered. There are also many reasoning systems that return
only the first answer found for each query; these first answers, too, depend on the
rule order, even in pure rule-based systems. A theory revision algorithm, seeking a
revised rule-base whose ezpected accuracy, over the distribution of queries, is optimal,
should therefore consider modifying the order of the rules. This paper first shows that
a polynomial number of training “labeled queries” (each a query paired with its correct
answer) provides the distribution information necessary to identify the optimal order-
ing. It then proves, however, that the task of determining which ordering is optimal,
once given this distributional information, is intractable even in trivial situations; e.g.,
even if each query is an atomic literal, we are seeking only a “perfect” theory, and
the rule base is propositional. We also prove that this task is not even approximable:
Unless P = NP, no polynomial time algorithm can produce an ordering of an n-rule
theory whose accuracy is within n” of optimal, for some v > 0. We next prove similar
hardness, and non-approximatability, results for the related tasks of determining, in
these impure contexts, (1) the optimal ordering of the antecedents; (2) the optimal set
of new rules to add; and (3) the optimal set of ezisting rules to delete.

Keywords: Theory Revision, Inductive Logic Programming,
Computational Complexity & Approximatability, PAC-Learning

*This paper extends the short article “The Challenge of Revising an Impure Theory” that appears in the
Proceedings of the Twelfth International Conference on Machine Learning, Lake Tahoe, July 1995.

T gratefully acknowledge the many helpful comments I received from the anonymous reviewers. Much of
this work was done while I worked at Siemens Corporate Research, in Princeton, NJ.

The Complexity of Revising Logic Programs 2

1 Introduction

A knowledge-based system (e.g., an expert system, logic program or production system)
will return incorrect answers if its underlying knowledge base (also known as its “theory”)
contains incorrect or mis-organized information. In some situations, we will be able to obtain
the correct answers to the queries — e.g., these answers may be supplied by an human expert
who was called when expert system returned an answer that was found to be incorrect (e.g.,
if the proposed repair does not correct a device’s fault), or perhaps these answers are known
by the programmer, debugging his code (see Subsection 1.1 below). Here, we would like to
use these query/correct-answer pairs to produce a theory that is (more nearly) correct.

A typical “Inductive Logic Programming” (ILP) system would use only this set of
correctly-answered queries to produce a new, more accurate theory. If the initial theory
Ty was already very accurate (which is typically the case when Ty is part of a deployed
system), the ILP algorithm would in effect have to re-learn most of Ty; this seems very
wasteful. Instead, it is often more efficient to correct Ty. Theory revision is the process of
using these correctly-answered queries to modify the given initial theory, to produce a new,
more accurate theory.

Many implemented theory revision systems hill-climb in the space of theories, using as
operators simple theory-to-theory transformations, such as adding or deleting a rule, or
adding or deleting an antecedent within a rule. An alternative class of transformations re-
arrange the order of the rules, or of the antecedents. These transformations can effectively
modify the performance of any knowledge-based system written in a shell that uses operators
corresponding to PROLOG’s cut “!” or “not(-)”, as well as any system that returns only
the first answer found; this class of shells includes TESTBENCH! and other fault-hierarchy
systems, prioritized default theories [6, 29], most production systems [33, 20|, as well as
Prorog [8].

The goal of a theory revision process is to improve the accuracy of the reasoning system
on its performance task of answering queries. Section 2 first defines this objective more
precisely: as identifying the revision (i.e., “sequence of transformations”) that produces a
theory whose expected accuracy, over a given distribution of queries, is maximal. Section 3
then proves that a polynomial number of training samples (each a specific query paired
with its correct answer) is sufficient to provide the information needed to identify a revision
whose accuracy is arbitrarily close to optimal, with arbitrarily high probability. Section 4
then presents our main results, showing first that this task is tractable if the initial theory is
“syntactically close” to the optimal theory, but then that this task becomes intractable? in
other trivial situations — e.g., even if each query is an atomic literal, we are only seeking a
“perfect” ordering (which returns the correct answer to each given query), and the knowledge
base is propositional and k-Horn. This also demonstrates the intractability of finding the
smallest number of “individual re-orderings” required to produce a perfect ordering.

We next deal with the “agnostic” version of this task [32]: asking for the most accurate

I TESTBENCH is a trademark of Carnegie Group, Inc.

2Throughout, we will assume that P# N P [24], which implies that any NP-hard problem is intractable.
This also implies certain approximation claims, presented below. Also, we will define below the terms used
in this section, including “syntactically close” and “k-Horn”.

The Complexity of Revising Logic Programs 3

reordering, in cases where perhaps no reordering will produce a perfect theory. We prove
that the agnostic task is not even approximable; i.e., unless P = NP, no polynomial-time
algorithm can identify an ordering of an n-rule theory whose accuracy is within n” of optimal,
for some v > 0. (As this result applies to arbitrarily large theories, this means no polynomial-
time algorithm can identify an ordering that is within any constant, or any logarithmic
function, of optimal.) This section also proves similar hardness, and non-approximatability,
results for the related tasks of determining the optimal ordering of the rule antecedents, and
the optimal set of rules to add (resp., delete) in the impure case. The appendix provides
complete proofs of the theorems, to augment the sketches that appear within the main text.

We first close this introduction by first mentioning two other obvious applications of this
framework, and then describing related research, including the work in “Inductive Logic
Programming” and “belief revision”.

1.1 Other Uses of Theory Revision

Anytime ILP: As mentioned above, typical inductive logic programs build a logic program
from scratch, based only on a set of training examples that exhibit the desired behavior of
the program. Most such programs assume access to a sufficient number of correct training
examples to determine the appropriate logic program.

In some situations, however, one may need to produce and use a program before obtaining
such resources. Here, one may want an “anytime” algorithm [4] that can, at any time, return
an adequate program. (Of course, later programs, based on more samples, will usually be
superior.) A naive implementation for such a system would start from scratch each time a
program is requested; Given m samples, it would run an ILP system to produce the program
T,,; and later, when given k£ more samples, it would run this ILP system on (only) the m+k&
samples to produce the program T,,.,. This is clearly wasteful, as the algorithm would be
forced to re-learn the “correct parts” of the program each time. A better approach would
use the additional k£ samples to improve the stored T,, program.

Of course, this requires an algorithm that can take an initial program, together with a
set of samples, and produce a superior program; notice theory revision systems are designed
to do exactly this task.

Debugging Logic Programs: While we earlier worded our revision task as improving a
deployed knowledge-based system, another obvious application is debugging code in general:
Few people are able to directly write perfect code; instead, most write code that seems about
right, and then “try it out” on some test cases, whose behavior they wish to match. That is
exactly the task being considered here.

Our results specify how many test cases should be used, for each of the classes of modi-
fications being considered; they also show that this task is (trivially) feasible if the current
program has only a few bugs. We then prove the underlying task is extremely difficult if the
original program is very buggy, by proving that no theory reviser (be it a computer program,
or a human programmer) can efficiently find even a near-optimal revision in such situations.
(Indeed, here it may seem better to simply throw out the original program and start afresh;
but see the negative results from Inductive Logic Programming [10, 11].)

The Complexity of Revising Logic Programs 4

As specific evidence that people who write logic programs often use such debugging
techniques, please note that this is an essential step in building rule-based systems, where it
has been shown to work effectively; cf., texts on Knowledge Acquisition [41].

1.2 Related Research

A theory revision process “learns from ezamples’, as it uses “labeled samples” (here, correctly-
labeled queries) to produce an accurate theory [15]. As the resulting “concept” is a logic pro-
gram, such processes fits within the sub-topic of “Inductive Logic Programming (ILP)” [39].
Most ILP systems, however, consider only adding new information to an initial (often empty)
starting theory; by contrast, theory revision systems consider other ways of modifying an
existing, not-necessarily-empty initial theory, often including rule- or antecedent-deletion.

There are many implemented theory revision systems, including AUDREY [44], FONTE [38],
E1THER [40] and DELTA [34]. Most of these system deal (in essence) with the “pure” Horn
clause framework, seeking all answers to each query; they therefore do not consider the
particular class of transformations described in this paper. The DELTA system is an excep-
tion, as it does reorder the rules. The empirical results discussed in [34] show that such
transformations can be used effectively.

There are a variety of related complexity results. (1) The companion paper [28, 27]
analyses the classes of transformations used by those other systems: adding or deleting either
a rule or an antecedent within a rule, in the standard pure context. Among other results, it
proves that the task of finding the optimal set of new rules to add (resp., existing rules to
delete) is intractable, but can be approximated to within a factor of 2, in the pure context.
(2) Valtorta and Ling [36, 37] also considers the computational complexity of modifying a
theory. Those papers, however, deal with a different type of modifications: viz., adjusting the
numeric “weights” within a given network (e.g., altering the certainty factors associated with
the rules), but not changing the structure by arranging rules or antecedents. (3) Wilkins and
Ma [43] show the intractability of determining the best set of rules to delete in the context
of such weighted rules, where a conclusion is believed if a specified function of the weights
of the supporting rules exceeds a threshold. Our results show that this “optimal deletion”
task is not just intractable, but is in fact, non-approximatable, even in the propositional
case, when all rules have unit weight and a single successful rule is sufficient to establish
a conclusion. (4) There are a number of results on the complexity of (PAC-)learning logic
programs from scratch (i.e., of the ILP task); cf., [10, 9, 11, 18]. We outlined above how our
framework is different. Note also that we focus on Horn theories that are syntactically close
to an initial theory; by contrast, most ILP systems can return any Horn theory. (Although
by construction, they tend to return theories which are syntactically close to the empty
theory — i.e., small programs.)

Bergadano et al. [3] also considers the challenges of learning impure logic programs (which
can include the PROLOG cut “!” and “not (-)” operators), noting that it can be more difficult
than learning pure programs. Our paper gives additional teeth to this claim, by showing
specific tasks (viz., learning the best set of rules to add or to delete) that can be trivially
approximated in the context of pure programs, but which are not approximatable for impure
programs — see Theorems 8 and 9 below.

The Complexity of Revising Logic Programs 5

This paper has some superficial similarities with [26], as both articles consider the com-
plexity of (in essence) finding the best ordering of a set of rules. However, while [26] deals
with the efficiency of finding any answer to a given query, this paper deals with the accuracy
of the particular answer returned.

In some situations, there may be no rearrangement of the clauses that is “perfect”; i.e.,
which entails all the positively-labeled queries, and none of the negatively-labeled queries.
Here, we seek the “optimal arrangement” (i.e., with the highest accuracy); this corresponds
exactly to the “agnostic learning” model. Kearns, Schapire and Sellie [32] also show that a
particular agnostic learning task is intractable. Our results differ by dealing with a different
class of “samples” (arbitrary queries, not bit vectors), and by having a different class of
hypotheses (predicate calculus Horn theories, rather than propositional conjunctions). More
significantly, we present situations where the computational task is not just intractable, but
is not even approximatable.

Like theory revision systems, belief revision systems [1, 13, 23, 31| also modify a given
theory to incorporate some new observations about the world. Such formalisms take as input
an initial theory Ty and a new assertion (g, +), (resp., new retraction (r, —)) and return a
new (consistent) theory T’ that entails g (resp., does not entail) but otherwise is “close” to
Ty [13]. Most belief revision frameworks provide an axiomatic description of the preferred
revision, which explicitly prefers a theory that is “semantically close” to the initial theory,
and which does/does-not entail a single new proposition [13]. In general, the resulting revised
theory will not depend on the syntactic structure of the initial theory — i.e., if T; = Ty,
then the theory obtained by revising T with the assertion (g, +) is equivalent to the theory
obtained by revising Ty with (g, +).

Belief revision systems typically use only a single labeled query to modify an initial theory
Ty, seeking a theory close to Ty which correctly does/does-not entail that query.* By
contrast, theory revision uses a set of labeled queries when modifying T, searching within
the space of theories that are syntactically close to Ty for a theory with optimal accuracy
with respect to those queries. Notice a theory revision system (1) does not require that
the revised theory be correct for any specific labeled query, and (2) may produce different
theories from semantically equivalent initial theories (as it may search different spaces of
theories). As a final distinction, we show that the theory revision task is difficult even
if both initial and final theories (as well as the queries) are propositional and k-Horn; by
contrast, many belief revision frameworks deal with arbitrary predicate-calculus formulae.
(Of course, the standard belief revision tasks — e.g., the “counterfactual problem” — are
complete for higher levels in polynomial-time hierarchy [19].)

3While the work on “iterated revision” [5, 25, 21, 14] also considers more than a single assertion, it usually
deals with a sequence of assertions, where each new assertion must be incorporated, as it arrives. Afterwards,
it is no longer distinguished from any other information in the present theory (but see [22]). We, however,
consider the assertions as a set, which is seen at once, and whose elements need not all be incorporated.

The Complexity of Revising Logic Programs 6

2 Framework

Section 2.1 first describes our task within the context of propositional PROLOG programs.
Section 2.2 then extends this description to predicate calculus, and Section 2.3 presents
several further generalizations of our framework.

2.1 Propositional Horn Theories

We define a “theory” as an ordered list of Horn clauses (also known as “rules”), where each
clause includes at most one positive literal (the “head”) and an ordered list of zero or more
literal antecedents (the “body”), all over a finite language. Such a theory is “k-Horn” if
each of its clauses contain at most k literals. A theory is “impure” if it includes any rule
whose antecedents use either the PROLOG cut “!” or negation-as-failure “not (-)” operator.
See Clocksin&Mellish [8] for a description of how PROLOG answers queries in general, and
in particular, how it uses these operators. The two most relevant points, here, are that
PROLOG processes a theory’s rules, and each rule’s antecedents, in a particular order; and
on reaching a cut antecedent within a rule, PROLOG will not consider any of the other rules
whose heads unify with the current subgoal.

As a trivial example, consider the theory

q :- !, fail.

T, = q. (1)
r :- not(q).

[P

Given the query “q”, PROLOG first finds the rules whose respective heads unify with this goal
(which are the first two rules in Equation 1), and processes them in the top-to-bottom order
shown. On reaching the “!” antecedent in the “q :- !, fail.” rule, PROLOG will commit
to this rule, meaning it will now not consider the subsequent atomic rule “q.”. PROLOG
will then try to prove the “fail” subgoal, which will fail as T contains no rules whose head

[}

unifies with this subgoal. This causes the top-level “q” query to fail as well. Now consider
the “r” query, and notice that it will succeed here as “q” had failed. In general, not(7)
succeeds whenever its argument 7 fails, and fails whenever 7 succeeds.

Now let Ty be the theory that differs from T only be exchanging the order of the first

two clauses; i.e.,

q.
T, = q :- !, fail. . (2)
r :- not(q).

Here, the q query will succeed, and so the r query will fail.

Borrowing from [35, 17], we also view a theory T as a function that maps each query to
its proposed answer; hence, T: Q — A, where Q is a (possibly infinite) set of queries, and
A = { Yes, No } is the set of possible answers. Hence, given the T; and T; theories defined
above, T1(q) = No, T;(r) = Yes, and Ty(q) = Yes, Ty(r) = No.

For now, we will assume that there is a single correct answer to each question, and
represent it using the real-world oracle O: Q — A. Here, perhaps, O(q) = No, meaning
that “q” should not hold.

The Complexity of Revising Logic Programs 7

Our goal is to find a theory that is as close to O(-) as possible. To quantify this, we first
define the “accuracy function” a(-, -) where a(T, o) is the accuracy of the answer that the
theory T returns for the query o (implicitly with respect to the oracle O):

def 1 if T(o) =0(0)
o(T,0) = { 0 otherwise

[{Pl]

Hence, a(Ty, “q”) = 1 as T provides the correct answer O(q) = No, while a(Ts, “q”) =0
as Ty returns the wrong answer.

This a(T, -) function measures T’s accuracy for a single query. In general, our theories
must deal with a range of queries. We model this using a stationary probability function
Pr: Q@ + [0,1], where Pr(o) is the probability that the query o will be posed.* Given this
distribution, we can compute the “expected accuracy” of a theory T:

A(T) = Ela(= Y Pr(o) xa(T, o) .

0€eQ

We will consider various sets of possible theories, T(T) = {T,}, where each such T(T)
contains the set of theories formed by applying various transformations to a given theory T;
for example, YO7d-Rules(T) contains the n! theories formed by rearranging the clauses in the
n-clause theory T = (p;) ;. Our task is to identify the theory T,y € T(T') whose expected
accuracy is maximal;® i.e.,

VT € T(T): A(To) > A(T'). (3)

There are two challenges to finding such optimal theories. The first is based on the
observation that the expected accuracy of a theory depends on the distribution of queries,
which means different theories will be optimal for different distributions. While this dis-
tribution is not known initially, it can be estimated by observing a set of samples (each a
query/answer pair), drawn from that distribution. Section 3 below discusses the number of
samples required to obtain the information needed to identify a good T* € Y(T), with high
probability.

We are then left with the challenge of computing the best theory, once given these
samples. Section 4 addresses the computational complexity of this process, showing that the
task is not just intractable, but it is not even approximatable — i.e., no efficient algorithm
can even find a theory whose expected accuracy is even close (in a sense defined below) to
the optimal value.

4A distribution is “stationary” if it does not change over time; here this means that Pr(-) is a function.

SWhile “maximal accuracy” is equivalent to “minimal error”, these two descriptions lead to different
approximatability results. We word our claims in terms of “accuracy” to be compatible with our approxi-
matability results.

The Complexity of Revising Logic Programs 8

2.2 Predicate Calculus

To handle predicate calculus expressions, we must consider answers of the form Yes[{ X; =v;}],
where the expression within the brackets is a binding list of the free variables, corresponding
to the first answer found to the query.® For example, given the theory

T { tall(john). rich(fred). rich(john). }
pc

eligible(X) :- rich(X), tall(X).

(where the ordering is the obvious left-to-right, top-to-bottom traversal of these clauses), the
query tall(Y) will return

T,c(tall(Y)) = Yes[Y =john];
the query rich(Z) will return the answer
Tpe(rich(Z)) = Yes[Z=fred]
(recall the system returns only the first answer it finds); and
T,c(eligible(A)) = Yes[A=john]

(here the system had to backtrack).

As a second example, we will later use the theory:

aORb(Z) :- a(X), b(Y), or2(X, Y, 7).
T = a(0). a(1). b(0). b(1).
or2(0, 0, 0). or2(0, 1, 1). or2(1, 0, 1). or2(1, 1, 1).
(4)

Here the query aORb(Z) will return the answer
Tw(a0Rb(Z)) = Yes[Z=0]

as a(0) comes before a(1), and b(0) comes before b(1). Notice a theory that inverts the
order of either of these would instead return, as its first answer, Yes[Z =1].

2.3 Extensions

All of the theorems in this paper will hold even if we use a stochastic real-world oracle,
encoded as O': Q@ x A — [0, 1], where the correct answer to the query ¢ is a with probability
O'(g,a). (Notice here that a(T, ¢) = O'(q,T(g)).) Our deterministic oracle is a special
case of this, where O'(q,a,) = 1 for a single a, € A and O'(¢,a) = 0 for all a # q,.

6Following PROLOG’s conventions, we will capitalize each variable, as in the “X;” above. Also, to simplify
our notation, if only a single variable is bound, we will omit the {...} braces and simply write Yes[X =v].
Moreover, if there are no variables involved, we will write simply Yes.

The Complexity of Revising Logic Programs 9

There are obvious ways of extending our analysis to allow a more comprehensive accuracy
function a(T, o) that could apply different rewards and penalties for different queries (e.g.,
to permit different penalties for incorrectly identifying the location of a salt-shaker, versus
the location of a stalking tiger). We also contrast the task of finding the first answer with
finding all answers; clearly we can also consider the task of finding the first fwo answers,
or in general, of seeking the first £ answers to a query. As these extensions lead to strictly
more general situations, our underlying task (of identifying the optimal theory) remains as
difficult; e.g., it remains computationally intractable, and non-approximatable, in general.

3 Sample Complexity

This short section considers how many training samples are required to obtain the informa-
tion needed to identify a good T* € Y(T) with high probability, as a function of the space
of theories Y(T) being considered.

As mentioned above, a “training sample” S = {(o;, O(0;))} is a (finite) multiset of
specific “labeled queries”, each of which is a query paired with its correct answer. Given
such a training sample, we define the “empirical accuracy” of a theory T, written Ag(T),
as .

Ag(T) = ‘S‘Za(T,oi)

0, €S

Notice Ag(T) € [0, 1]; moreover, the Law of Large Numbers guarantees that this quantity
will approach T’s true accuracy A(T) as the sample size grows large (with probability 1).
Many standard statistical tools bound the probability that Ag(T) will be far from A(T),
as a function of sample size. We can use such a tool to derive [7]:

Theorem 1 (from [42, Theorem 6.2])
Given a class of theories T = Y(T) and constants €,0 > 0, let T, € T be the theory with the
largest empirical accuracy after

2 T
Mypper(Y,€,0) = ’76—2 In <%>-‘

samples (each a labeled query), drawn from the stationary distribution, Pr(-). Then, with
probability at least 1 — 6, the expected accuracy of T, will be within € of the optimal theory
in Y; ie., using the Top from Equation 8, Pr{A(T.) > A(Top) —€] > 1—0.

This means a polynomial number of samples is sufficient to identify a 1 — e-good the-
ory from YT with probability at least 1 — ¢, whenever In(|Y|) is polynomial in the rele-
vant parameters. Notice this is true for T = YOrd-Rules(T): Using Stirling’s Formula,
In(| Y974 Rules(T)|) = O(nlIn(n)), which is polynomial in the size of the initial theory n = |T|.
We will see that (a variant of) this “In(|Y|) = poly(|T|)” claim is true for essentially every
class of theories T considered in this paper.

The Complexity of Revising Logic Programs 10

T = a theory; i.e., a set of (possibly impure) Horn clauses
Functions YX mapping a theory T to set of theories YX(T)

YOrd—Rules() — get of theories formed by re-ordering clauses of theory T

YOrd—Antes(T) — get of theories formed by re-ordering antecedents of T’s clauses

YAdd—Rules(T) — get of theories formed by adding new clauses to T
Y Del—Rules(T) — get of theories formed by deleting existing clauses from T

For any YX that maps a theory to a set of theories:
1% (T) = set of theories formed by applying sequences of at-most-K x-modifications
Note K = K(|T|) may be a function of the size of the initial theory T
Decision Problem, for any T = TX that maps a theory to a set of theories:
DP(T) = Decision problem defined in Definition 1
DPperf(YT) =DP(T) withp=1
Gen'l: DPop(7Y) allows arbitrary p

DPp,(Y) = DP(TY) with pure theories
Gen'l: DPrp,(7YT) allows impure theories
DPprop(YT) = DP(TY) with propositional theories

Gen'l.: DPpci(YT) allows predicate calculus, seeking only the first answer
Gen'l.: DPpo_an(7Y) allows predicate calculus, seeking all answers
Optimization Problem, for any T = YX that maps a theory to a set of theories:
MAX,(YTX) = maximization problem, with “constraints” p C {Perf, Pur, Prop, ...}
(see above)

Table 1: Definitions and Notation

4 Computational Complexity

Our basic challenge is to produce a theory T,, whose accuracy is as large as possible.
As mentioned above, the first step is to obtain enough labeled samples to guarantee, with
high probability, that the true expected accuracy of the theory whose empirical accuracy is
largest, T, will be within € of this T,p,’s. This section discusses the computational challenge
of determining this T,, given these samples. It considers four different classes of theories:

’I‘Ord—Rules(T) (resp. TOrd—Antes(T) TAdd—Rules(T) and ’I‘Del—Rules(T)) is the
set of theories formed by re-ordering the clauses of a given initial theory T (resp.,
re-ordering the antecedents of T’s clauses, adding new clauses to T, and deleting
existing clauses from T).

Notice each T € { TOrdeules, ’I*Ordentes’ TAddeules, Y Del—Rules } is a function mapping
a theory to a set of theories. These terms, as well as our other notation, is summarized in
Table 1.

To state our task formally: For any theory-to-set-of-theories mapping Y,

Definition 1 (DP (Y) Decision Problem)

The Complexity of Revising Logic Programs 11

INSTANCE:
— Initial theory T,
— Labeled training sample S = {{(q;, O(4q;))} containing a set of labeled queries;
and
— Accuracy value p € [0, 1].

QUESTION: Is there a theory T' € Y(T) such that

AT)=g X aoT a) > p?

(9:,0(qi))€S

Notice we are simplifying our notation by writing A(T’) for the approximation Ag(T")
based on the training sample S.
We will also consider the following special cases:

e DPp., (T) requires that p = 1, i.e., seeking perfect theories;
rather than “optimal” theories DPop(Y);

e DPp,.(T) consider only pure theories, i.e., without “!” and “not(-)”;
rather than impure DPy,,,(YT) and

e DPp,,,(T) deals with propositional logic,
rather than predicate calculus, DPpci(Y). The “1” in the “PC1” subscript is used
to emphasize the fact that we are only seeking the first solution found; notice this cor-
responds to asking an impure query of the form “foo(X, Y), !.”. (As propositional
systems can only return at most one solution, this restriction is not meaningful in the
propositional case.) We will later consider DP po_44(Y), which seeks all answers to
each query.

We will combine subscripts, with the obvious meanings; hence in general we will write
DP4pc(Y") where A € {Perf, Opt}, B € {Pur, Imp}, and C € {Prop, PC1, PC-All}.
Most of our results deal with either the {A, Imp, Prop}, or the {A, Pur, PC1}, context.

When DP, (T') is a special case of DP,(T), finding that DP, (Y) is hard /non-approximatable
immediately implies that DP, (Y) is hard/non-approximatable. Finally, each of the classes
mentioned above allows an arbitrary number of modifications to the initial theory; e.g., the
set YPel-Rules(T) includes the theories formed by deleting any number of clauses, including
the empty theory formed by deleting all of T’s clauses. We let

Y Del=Rules(T) refer to the theories formed by deleting at most K € Z* clauses
from T. We similarly define Y%~ F4¢(T) (resp., YO ¢ Rules(T) and T 4—Antes(T))
as the set of theories formed by adding at most K new clauses (resp., moving at
most K clauses to new positions, and moving each of at most K antecedents to

a new position in the same clause). In a slight abuse of notation, we can let K
be a function K (|T|) of the size of the initial theory T.

N.b., all of our negative results hold for k-Horn theories, where £ is a small constant
(in each case, bounded by 6). Moreover, we only consider “consistent training samples”:
that is, in each case, there is a k-Horn theory that can correctly label all of the training

The Complexity of Revising Logic Programs 12

queries. That theory, however, is not always within the space of theories being considered.
Third, as our YAdd—Rules(T) and Y444-Fules(T) tasks each involve adding new rules, they
clearly resemble the more typical “Inductive Logic Programming” task, which is known to be
hard [10, 11]. Our results, however, apply even if we consider only adding in atomic literals,
rather than more general clauses. Finally, note that computing each a(T’, ¢;) implicitly
requires computing T’(¢;), which can be expensive for expressive theories. However, in the
results that follow, we will assume that there is an efficient way to compute a(T', ¢;). This is
always true when T' is a propositional Horn theory and ¢; is atomic [16], which is our main
focus. Otherwise, we can assume another oracle that in constant time returns this a(T', ¢;)
value.

4.1 Ordering of Rules

This subsection considers the challenge of re-ordering the rules, using the YOrd—Rules tyang
formations. First, this task is intractable even in trivial situations:

Theorem 2
Each of DP perf rmp,prop(YOTC 74) and DP perf pur,por (YOT4 R4S) s NP-complete.

Proof (sketch): The main insight required for the DP pey . rimp, Prop (TOT47 1465) proof is suggested

by the T; and Ts theories, shown in Equations 1 and 2: As exactly one of q or r holds in each
theory, we can view r as not-q (i.e., r = @). Moreover, the assignment to this “literal” (i.e., whether
q or r = @ holds) depends on the order the two g-headed clauses. We can now show NP-hardness
by reducing an arbitrary 3SAT problem with n literals and m clauses to a theory formed with n
such “mini-theories” (each with a copy of the three rules shown in Equation 1, but using ¢; and g;
rather than ¢ and r), as well as m sets of 3 rules, where each rule in the jth set concludes a literal ¢;
given an appropriate assignment for the “base” g; literals. We then define the set of m queries, each
insisting that one of the c; literals must be entailed. See the appendix for the remaining details.

(YOrd—Rules) ig similar, but instead uses Ty from Equation 4.

The proof for DP pe; ¢, pur,pc1
Observe that the first answer returned to the aORb(Z) query depends on the “assignment” to the
variable “a” (resp., “b”) which depends on the order of the a(0) and a(1) clauses (resp., the order
of the b(0) and b(1) clauses). To reduce a 3SAT problem, we need only define or3 (for disjunc-
tion of 3 literals), and add queries that insist that each “clause” c;(X) have, as its first answer,

Yes[X =1]. (Again, the details appear in the appendix.) O

This theorem means that, unless P = NP, no polynomial-time algorithm can find an
ordering of a list of impure proposition Horn clauses (resp., of a list of pure predicate calculus
Horn clauses) that returns the correct answer (resp., returns the correct first answer) to each
of a given set of queries.

We can also restrict the space of possible theories by dealing only with theories formed
by applying a limited number of “individual rule moves”, where each such individual move
will move a single rule to a new location; recall Y974~#u¢s(T) is the set of theories formed
by applying a sequence of at most K = K (|T|) such individual moves. As a simple example,

The Complexity of Revising Logic Programs 13

notice
{b,a,c,d} {b,c,a,d} {b,c,d, a}
Tlo’"d’R“les({a, b,c,d}) =< {a,b,d,c} {a,c,b,d} {a,c,d, b}
{¢,a,b,d} {d,a,b,c} {a,d,b,c}

includes only the singly-modified theories, and so includes 9 of the 4! = 24 possible permu-
tations.

If K is constant, then we can trivially enumerate and test all O(|T|¥) theories in
Y Qrd=Hules[T) and so the obvious decision problem becomes trivial:
Observation 1 For constant K, the DP per £, 1rmp, Prop(Y Qra-Rules)y gnd

DP perf,pur,pci(T%d_R"les) decision problems can each be solved in polynomial time.

However, for larger K (-), the task again become intractable:

Theorem 3

For some K(T) = Q(,/|T|), each of DP perf tmp,Prop(T%’d’R"les) and

TOrd—Rules)
K

DP pers,pur,pci(1s NP-complete.

(These proofs uses the same basic “tricks” shown above, but deal with the NP-hard
decision problem “Exact Cover by 3-Sets”.)

These negative results show the intractability of the obvious proposal of using a breath-
first traversal of the space of all possible rule re-orderings, seeking the minimal set of changes
that produces a perfect theory: First test the initial theory Ty against the labeled queries,
and return T if it is 100% correct. If not, then consider all theories formed by applying
only one single-move transformation, and return any perfect T; € Y4~ Rues[o] If there
are none, next consider all theories in TS~ #4¢5|T(] (formed by applying pairs of moves),
and return any perfect Ty € Y§™@ R4 T]: and so forth.

Approximatability: Many decision problems correspond immediately to optimization
problems; for example, the INDSET decision problem

Given a graph G = (N, E) and a positive integer K, is there an independent set
of size K — i.e., asubset S C N of at least |S| > K nodes that are not connected
to one another (i.e., such that Vs, sy € S, (s1,s2) & F) [24, p194]?

corresponds to the obvious maximization problem:

Definition 2 (MAXINDSET Maximalization Problem)
Given a graph G = (N, E), find the largest independent subset of N.

We can similarly identify the DP (Y974~ Rules) decision problem with the “MAX (Y Ord—Rules y»
maximization problem: “Find the T* € YTOrd-ules(T) whose accuracy is maximal”.

Now consider any algorithm B(-) that, given any MAX (YOrd-Fules) ingtance x = (T, S')
with initial theory T and labeled training sample S, computes a syntactically legal, but not

The Complexity of Revising Logic Programs 14

necessarily optimal, revision B((T, S)) € YOrd-Rules(T) Then B’s “performance ratio for
the instance x” is defined as

A(opt(z))

MazPerf(B, x) = MazPerfrora-rues(B,) = A(B(z))

where opt(x) = optprax(rord- rutesy() is the optimal solution for this instance; i.e., opt((T, S))
is the theory T, € YOmd-Rules(T) with maximal accuracy over S. (This MazPerf(B, x)
value is arbitrarily large if A(B(z)) =0.)

We say a function g(-) “bounds B’s performance ratio” iff

Vinstances z € MAX(YOrd-Rules) MazPerf(B,x) < g(|z|)

where |z| is the size of the instance z = (T, S'), which we define to be the number of symbols
in T plus the number of symbols used in S. Intuitively, this g(-) function indicates how
closely the B algorithm comes to returning the best answer for z, over all MAX (YOrd-Rules)
instances .

Now let Poly(MAX (YOmd-Rules)) he the collection of all polynomial-time algorithms
that return legal answers to MAX (YOrd-Rules) instances. It is natural to ask for the algo-
rithm in Poly(MAX (YOrd-Rules)) with the best performance ratio; this would indicate how
close we can come to the optimal solution, using only a feasible computational time. For
example, if this function was the constant 1(z) = 1 for MAX oyt 1mp, prop(YOS) then
a polynomial-time algorithm could produce the optimal solution to any MAX (YOrd-Rules)
instance; as DP opt rmp prop(YO Fules) is NP-complete, this would mean P = NP, which
is why we do not expect to obtain this result. Or if this bound was some constant function
c(x) = c € R, then we could efficiently obtain a solution within a factor of ¢ of optimal,
which may be good enough for some applications.”

However, not all problems can be approximated. Following [12, 30], we define

Definition 3 A maximization problem MAX is POLYAPPROX iff
Vy € RT, 3B, € Poly(MAX), Vo € MAX, MazPerfypox(By,x) < |z|7 .

Arora et al. [2] prove that

Theorem 4 (from [2]) Unless P = NP, the “MAXINDSET mazimization problem” is not
POLYAPPROX — i.e., there is ay € R such that no polynomial-time algorithm can produce
a solution to arbitrary MAXINDSET problems to within K7, where K is the number of nodes
in the graph.

We use that result to prove:

Theorem 5 Unless P = NP, neither MAX opt rmp, prop(TOTE 4) por
MA X opt, pur,po1 (YOT4-RUES) s POLY APPROX.

"There are such constants for some other NP-hard optimization problems. For example, there is a
polynomial-time algorithm that computes a solution whose cost is within a factor of 11/9 for any MAXBIN-
PACKING maximization problem; see [24, Theorem 6.2].

The Complexity of Revising Logic Programs 15

As |z| can get arbitrary large, this result means that these MAX (YOrd~Rules) ta5ks can-
not be approximated by any constant, nor even by any logarithmic factor nor any sufficiently
small polynomial, etc.

4.2 Ordering of Antecedents

As mentioned above, each theory is an ordered list of rules, whose antecedents are also
ordered. We can form new theories by re-ordering the antecedents of various rules, and note
that these new theories can produce different answers to queries, in the impure contexts.
We therefore let TOrd=Antes(T) be the set of theories obtained by reordering the antecedents
in T’s rules, and ask the same questions asked above: sample complexity, computational
complexity and approximatability. Here, we obtain the same results, mutatis mutandis:

First, note that |YO74=4ntes(T)| = [[.or(#Antes(c))! = O(|T|'T!), where #Antes(c) €
Z20 is the number of antecedents in the clause c¢. Using Theorem 1, this means we need
only a polynomial number of samples.

Addressing the computational complexity of these tasks, we see

Theorem 6
Each Of DPPerf,Imp,Prop(TOrd—Antes)7 DPPeTf,Pur,PCl(TOTd—Antes),

DP per f,1mp,Prop(T?(’"d_A"tes) and DP pey . pur,pei(T%Td_A”tes) is NP-complete.

(Notice this includes both the limited Y9 4= and unlimited YO 4-4ntes transformations.)

Proof (sketch): The prooffor DP pe, 1, 11np, Prop(YOrd—Antes) (pegp., DP per f,1mp, Prop(T%Td_A”tes)
resembles the proof of Theorem 2 (resp., Theorem 3) but uses the observation that reordering
the antecedents of “q :- !, fail.” (within the theory (..., q := !, fail., q., ...)) to form
“q :- fail, !.” has the effect of allowing q to be entailed. To deal with

DP perf.purpo1(YO A) and DP per . pur po1 (Y94 4) replace each “a;(0).” and “a;(1).”
pair with the single clause

a;(Y) :- prefer0(Y), preferi(Y). (5)
and also include the four atomic clauses
prefer0(0). prefer0(1). prefer1(1). prefer1(0). (6)

in this order. If we use Equation 5, we see a;(Y) will first return Yes[Y =0]; but we can get
Yes[Y =1] by simply inverting the order of Equation 5’s antecedents. Thus, by reordering the
antecedents, we can again arbitrarily set the first answer to the various subqueries, and thereby
determine the first answer to the top-level query. O

We can use this same basic “proof-to-proof transformation” to transform the proof of
Theorem 5 to show that:

Theorem 7
Unless P = NP, neither MAX opt, tmp, prop(Yord-dntes) nor MAX o, pur,poi(Y Ord-Antes) is
PoOLYAPPROX.

The Complexity of Revising Logic Programs 16

4.3 Adding or Deleting Clauses

This subsection deals with adding or deleting clauses, in the impure contexts of either finding
all answers from impure programs, or finding the first answers from pure programs. We first
state the results known about the standard pure context:

Theorem 8 (from [28])
In the pure context, for each Y € {YAdd—Rules =y Del—Rules)
® DPperf pur,prop(T) can be solved in polynomial time

e Each of DP oyt pur,prop(L) and DP opt pur, po—au(Y) is NP-hard,
but s trivial to approrimate:
dBy € Poly(MAXopt,purp(Y)),
Vo € MAXopt,purp(Y), MazPerfayraxe,, p,) (Brsz) < 2.
for p=“Prop” or p =“PC-All".

(Notice Theorem 8 considers the pure “PC-All” context, which seeks all answers to each
query, rather than the impure “PC1”, which seeks only the first answer.)

Each of these pure maximization problems is trivially approximated, at worst within a
factor of 2. However, in the impure setting, these tasks are more difficult. To be precise, we
first specify that the YAdd—Rules gperators add rules to the end of the theory. (Otherwise,
the predicate calculus tasks remain trivial.)

Theorem 9
For each Y € { ’I‘Addeules’ TDelfRules }7
(1) Fach Of DPperf’[mp’pmp(T) and DPPerf,Pur,PCl(T) 18 NP—hard, and
(2) unless P = NP, neither MAXopt1mp,prop(Y) nor MAXop purpci(Y) is
PoLYy APPROX.

(Note that DP pe; 1, rimp, po1 (TA4=Eues) js not in NP: Given function symbols, Y/Add—Rules(T)
can contain an unbounded number of possible theories.)

Proof (sketch): All three YP¢—Rules claims follow from some earlier theorem merely by not-
ing that deleting a “a :- !, fail.” clause (resp., “a(0).”) from a theory that later includes
“a.” (resp., “a(1).”) causes a to be entailed (resp., a(1) to be found first). The proofs for the
Y Add—Rules_claimg all require different tricks, which often require queries that specify that some

literal must not be entailed. See the appendix. O

It is worth noting that all four of our Y444—Rules regylts hold even if we consider only
adding atomic clauses; in fact, these added clauses are always ground symbols. This further
distinguishes our results from ILP’s, where the added clauses can be arbitrary.

To address the sample complexity issue, notice that In(|TP¢~#ues|) = | T| which means
a polynomial number of samples is sufficient to make the familiar PAC-style guarantees.
Similarly, In(|Y4d4=Rules|) js polynomial in the size of the theory and the language £, in
the propositional case. In the predicate calculus case, however, Y444—Rules can potentially
be arbitrarily large, meaning the above analysis does not apply. (Note, however, that our

The Complexity of Revising Logic Programs 17
Order Order Add Delete
Rules Antes Rules Rules
, . , op. triviall pp. triviall
Prop’'n Pure (no effect) (no effect) . NP . NP
I DP: NP DP: NP DP: NP DP: NP
_ % % DP: NP DP: NP
PC-All Pure (no effect) (no effect) waxe <2t waxe <2t
DP: NP DP: NP DP: NP DP: NP
PC-l Pure MAX: _‘PA MAX: _‘PA MAX: _‘PA MAX: _‘PA
Legend:
DP = Decision problem of finding perfect theory
MAX = Optimizing problem of finding best theory in general
NP = “NP-hard”
-PA = “Not poly approx”

*: Trivial to find best, as reordering has no effect.

t: Trivial when queries are atomic. If queries are “disjunctions”, task is NP-hard [28] .
t: “<2” means “Can be approximated to within factor of 2”

(Hardness/non-approximatability of “impure PC-All/PC-1 tasks” follows immediately from hardness/non-
approximatability of the simpler impure Propositional tasks.)

Table 2: Summary of Computational Complexity /Approximatability Results

negative results that deal with the computational hardness of these tasks all involve simpler
additions, and hold in “function-free” theories.)

It is easy to show that these same claims also apply to the tasks of adding or deleting
antecedents: In the pure context, it is trivial to determine whether one can form a perfect
theory by adding or deleting antecedent in the propositional case, but these tasks become
NP-hard in the impure case. In terms of finding the optimal theory in space of adding (resp.,
deleting) antecedents: This task is (NP-hard but) easily approximatable in pure contexts,
but is not POLYAPPROX in impure contexts. (These proofs are isomorphic to the ones
appearing in the appendix.)

5 Contributions

Most theory revision systems deal with a particular set of theory-modification techniques
(adding or deleting either a rule or an antecedent) that implicitly assumes the underlying
theory is pure and the user is seeking all answers [44, 38, 40]. Many reasoning contexts,
however, violate these assumptions: theories are often impure, and many users seek only a
subset of the answers. This paper presents two additional types of modifications that are
meaningful for these “impure contexts” — wviz., re-ordering rules and re-ordering antecedents
— and describes the complexities inherent in using them. In particular, it shows first that
a polynomial number of training samples are sufficient to acquire the information needed to
determine which transformation sequence is best. Unfortunately, however, the task of using

The Complexity of Revising Logic Programs 18

this information to produce an optimal, or even near optimal, ordering of the rules (resp.,
ordering of the antecedents) is hopelessly intractable: no efficient algorithm can produce even
a good approximation to the optimum. This resonates with earlier analyses of the theory
revision task, and justifies the standard approach of hill-climbing to a locally-optimal theory.
Finally, we also illustrate the additional complexities inherent in learning “impure” theories
(beyond the problems of learning pure ones), by showing that the task of adding (resp.,
deleting) rules, which is trivially approximated in the pure context, is not approximatable
in this setting. These results are summarized in Table 2.

A Proofs

This appendix explicitly proves that each NP-complete task is NP-hard; in each case, it is
trivial to see that the problem is in NP.

Theorem 2 Each of DP pey £, 1mp, Prop(YOrd—Rules) qpd DP perf,pur,pci(YOrd—Rules) js NP-complete.

Proof: We reduce the canonical NP-complete task 3SAT to our problems:

Definition 4 (3sAT Decision Problem, from [24, p259]:) Given a setU = {uy, ..., u,}
of variables and formula ¢ = {cy,...,cm} (a conjunction of clauses over U) such

that each clause c € ¢ is a disjunction of 3 (positive or negative) literals, is there

a satisfying truth assignment for ¢ ?

We first deal with DP pe; £ rmp. prop(YO 45): Given any 3SAT formula ¢ = {c1, c2, -, ¢ }
over the variables U = {u1, ..., u,}, use the following 3n + 3m-clause theory
u :— !, fail.
u;. for u; € U
Tror) = 4, :- not(u;). (7)
C; T u;. if UiGCj
Cj - ;. if u; € ¢j

and let S&P rP) be the following m query/answer pairs:
S;Pmp) = { (cj; Yes) forc; € }

(Of course, each u; corresponds to the u; positive literal, G; to the @; negative literal, and c;
to the j™ clause ¢;.)

We need only show that there is a theory Ty € YO Rules|T(Prep)] whose accuracy is
A(T,p) =1 iff there is a satisfying assignment of ¢.

This is straightforward: The only re-orderings that matter concern the relative positions
of the “u; :- !, fail.” and “u;.” clauses. In the order shown in Equation 7, the theory
entails 4; but not u; ; if reversed, then it entails u; but not ;. In either case, it entails exactly
one of {u;, 4;}, and so corresponds immediately to a legal assignment. Notice further that

The Complexity of Revising Logic Programs 19

the resulting theory entails each c; iff the associated assignment satisfies c¢;, which means
¢ has a satisfying assignment iff there is an ordering which answers Yes to each c;, which
means the ordering is perfect.

The proof for DP pe, f pur,po1(YOT47545) " in essence, replaces each u; in TEPP rop) with
u; (1), and each u; with u; (0): Here, to simplify the description, we use the MONOTONE3SAT
problem, which is the NP-complete specialization of 3SAT in which each clause includes either
only positive literals, or only negative literals [24, p259]. Let P be the subset of clauses whose
elements are of the form ¢; = {u;1,uj2, u;3} and N be the subset whose elements are of the
form C; = {ﬂjl, ﬂjg,aj?,}. Then let TEOPC) be

[, (0). for u; €U
u; (1) . for u; e U
Cj (X) i 11j1 (Vl) N 11j2(V2) N 11j3 (V3))

or3(Vi, V2, V3, X).
C; x) :- U1 (v1), sz(VQ) > Uj3 (V3),

for Cj = {Ujl,UjQ,Ujg,} e P

for Cj = {’ajl,ﬂjz,ﬂjg,} € N \

) nand3(Vi, V2, V3, X).
0r3(0,0,0,0). or3(0,0,1,1). or3(0,1,0,1). or3(0,1,1,1).
or3(1,0,0,1). or3(1,0,1,1). or3(1,1,0,1). or3(1,1,1,1).

nand3(0,0,0,1). nand3(0,0,1,1). nand3(0,1,0,1). nand3(0,1,1,1).
nand3(1,0,0,1). nand3(1,0,1,1). nand3(1,1,0,1). nand3(1,1,1,0).

\

(where each u; (0) appears before the corresponding u; (1)) and let S(;P ©) be the m query/answer
pairs:
S((ppc) = { (c;j(X); Yes[X=1]) forcjeqp }

The or3 predicate “returns” the disjunction of its first three arguments, viewing 1 as true
and 0 as false, and the nand3 predicate “returns” the disjunction of the negation of its first
three arguments.
Clearly there is a satisfying assignment of ¢ iff there is a theory Ty, € YOrd=Hules[T(PC)],
with a particular ordering of the u; (0) and u; (1) clauses, whose accuracy is A(T,y) = 1.
O (Theorem 2)

Theorem 3 For some K(T) = Q(y/[T|), each of DP per f.rmp, prop(Y45) and

DPperf,pur,pci(T?(rd_RUles) is NP-complete.

Proof: These proofs use the NP-complete problem

Definition 5 (x3c [Exact Cover by 3-Sets|, from [GJ79, p221]) Given a
set X with |X| = 3k elements and a collection C of 3-element subsets of X, does
C contain an exact cover for X; ie., a subcollection C' C C such that every
element of X occurs in exactly one member of C' ?

The Complexity of Revising Logic Programs 20

To deal with DPPerf,Imp,Prop(T%Td_Rules)’ let

X; 1= Cj. when z; € ¢;
milrer) c;, :— ', fail.
XC c] for ¢; € C
j-

let ngg"p) be the 3k query/answer pairs
S&PCCOP) = { (%;; Yes) forx; € X }

and let K = k.

Our task is to re-order at most k clauses, to obtain a perfect theory. By inspection, we
need only consider the relative ordering of the “c; :- !, fail.” and “c;.” clauses. If
there is an exact covering, say {ci, ..., cx}, then we can form a perfect theory by reordering
the clauses for the corresponding c;s; and vice versa.

Notice also that |Te™ | = Y,.ex 3X3+4|C| < 9x3k+4x (|X[2/2) = 2Tk+18k* =
O(k?), which means K(T) = k = Q(y/|T]) is sufficient.

To handle DP pey f,pur, poi (Y4 74¢5) | we use the following theory, Tgfcc).

xgj)(Zj) :- xz(-jfl) (Z;—1), cij(Y;), or2(Y;, Z;_y, Z;). when =; € ¢;; for each j
Cj (0) . .

(). for ¢; € C

or2(0, 0, 0). or2(0, 1, 1). or2(1, 0, 1). or2(1, 1, 1).

and

2

S(‘(OProp) — { <X(Zl)(Y), Yes[Y=1]) for T; € X }

and K = k. To explain the notation: Each x; element is a member of the ¢; < |C] sets
Ci1,Ci2, - -+, Cig; € C'; hence, there are /¢; clauses associated with z;, headed by xgl), ey
x\%)_ (The x{"-headed clause is the degenerate “x\" (Z;) := c;1(Z1).”.) The or2 predicate
“returns” the disjunction of its first two arguments.

Hence, the first answer returned to the XZ(-&) (Y) query will be Y =1 only if, for at least one
of the associated classes, say “c;,”, the “c; (Y,)” subquery returns Y, =1, which happens
only if the “c; (1) .” atomic clause is moved before “c;, (0).”. Hence, once again, we can
find a perfect theory iff we can re-order exactly K = k of the “c;(0).” and “c;(1).” clauses.

O (Theorem 3)

Theorem 5 Unless P = NP, neither MAX opt rmp, prop(YOS) nor
MA X opt, pur,po1 (YO RUES) s POLY APPROX.

Proof: Based on Theorem 4, we reduce the “not-PoLy ArPPROX—hard” MAXINDSET maxi-
malization problem (Definition 2) to these problems: We first deal with MAX oyt rmp, prop(Y OT4~Rules)

Given any graph G = (N, E), let TY ™) be the following 3| N| + | E| propositions (requiring

The Complexity of Revising Logic Programs 21

15|N| + 6|E| symbols)

Ilj.
T(Prop) _ n; :- !, fail. for n;eN
¢ - good; :- not(bad), n
bad :- n;, n;,. for e; = <ni1ani2> €E
and
(Prop) _ . -
Se = {(good;; Yes) forj=1.N}

To derive any good; literal, the bad subquery must fail, which means, for each e; = (n;,, n;,),
at least one of n;, or n;, must not be derivable. This can only happen if we exchange the
order of the (say) “n;,” and “n;, :- !, fail” clauses.

For notation, let R represent the set of n; literals that are not switched; notice here that
good; is entailed. As R can contain at most one node from each edge, it is an independent
set.

Now observe that the good; query can only contribute its % to the program’s accuracy
score if the n; literal is derivable, that is, if it has not been switched; i.e., if it is a member

of R. Hence, the score for this program is ‘| N||

Now suppose, for every e € R, there is a polynomial-time algorithm B,(-) such that, for
any theory T and query-set S, B.(T) returns a theory T, € TOrd—Rules(T) whose accuracy
is within a factor of [{T,S)|¢ of the accuracy of the optimal opt(T) € YOrd—Rules(T); je.
such that % < (T, S)|c. We could then use these algorithms to find approxnnately
optimal solutions to any MAXINDSET problem, as follows:

Given any MAXINDSET problem G = (N, E) (with |N| > 9), use the above transforma-
tion to form the T(") theory and Sg (Prop) queries. Let R* € Z* be the optimal solution to G
(i.e., the maximal number of independent nodes); this corresponds to the optimal solution for

(T&roP) gProp)y “call it T g op, whose accuracy is A(T op) = . Now use the B,3 algo-

rithm to produce a theory T 7 /3 whose accuracy A(Tgys) = 7/ % satisfies the performance
. A(Tg., « /R P
ratio Ada) _ 1 flgp _ B < |7 ST < (15|N] + || + 2LV} Notice this

corresponds to a feasible MAXINDSET solutlon to G with R,/3 nodes. As |E| < [N|? and
IN| > 9, (17|N| + 6|E|)"/® < (|N|?)?/* = |N|?, meaning we have produced a solution (to
G) with a performance ratio of under |N|” in polynomial time. As this 7 can be arbitrarily
small, this contradicts Theorem 4, assuming P # NP.

The proof for MAX oy pur po1(YO Fules) resembles the above proof, but is more cum-

The Complexity of Revising Logic Programs 22

bersome: Here, given any graph G = (N, E), form the 3|N| + | E| + 8-clause theory T& <

(3

nj(l).
n,; (0) . for n; € N
good; (0K, I0) :- badg(OK), n;(I0).
bad; (0K) :- n; (I0,), n,;, (I0,), and2(I0,, I0,, OK;),
4 bad; 1 (OK;_;), or2(0K;, 0K, i, OK). } for (m,m;,) € B
and2(1, 1, 1). or2(1, 1, 1).
and2(0, 1, 0). or2(0, 1, 1).
and2(1, 0, 0). or2(1, 0, 1).
\andQ(O, 0, 0). or2(0, 0, 0).)

where the body of the bad; clause includes only the first 3 literals:
bad; (0K) :- n;,(I0,), n;(I0y), and2(I0,, I0,, OK) .

The 8 clauses defining the or2 and and?2 predicates mean that and2(a,b,c) holdsiff c = a&b,
and or2(a,b,c) holdsiff c =aVvhb.
The K = |N| queries are

{ (good; (0K, I0); Yes[0K=0, I0=1]|) foreach n; € N }

By inspection, the only rule-reordering that can affect accuracy is moving a “n;(0)” clause
relative to the corresponding “n;(1)” clause. Let R include n; for each n;(1) clause that
remains before the corresponding n; (0).

To derive the proper binding for each good; (0K, I0) query, the first answer to the
bad| g (0K) query must be Yes[0K=0]. Using a simple inductive argument, this requires, for
each e; = (n;,, n;,), that either the first binding to I0, returned for n;, (I10,) be Yes[I0,=0],
or the first binding to I0, returned for n;, (I0,) be Yes[I0,=0|. This means that at least one
of n;, (0) or n;, (0) must be ordered before the corresponding n;, (1) (resp., n;, (1)) clause.
Hence, the set R can contain at most one node of each arc, meaning it is an independent
set.

The I0 variable of the good; (0K, I0) query will only be bound correctly to I0=1 if the
corresponding n; (1) literal appears before n;(0); i.e., if n; € R. Hence, a program can have
an accuracy score of % if R corresponds to an independent set in G, and an accuracy score
of 0 otherwise.

(The rest of this proof is essentially identical to the one above.)

O (Theorem 5)

Theorem 6 Each of DP per f.rmp prop(YO A1) DP pey f pur,por (YOT4-AntES)

DP perf.1mp.prop(YA) and DP perf pur.poi(Y94) s NP-complete.

Proof: The proof for DP pe;f,1mp, Prop(TOTd_A”t“) is essentially the same as the proof for

DP perf rmp,prop(YOT4"Fules) (Theorem 2), using the observation that reordering the an-
tecedents of “u :- !, fail.” to form “u :- fail, !'.” has the effect of allowing u to
be entailed. The proof for DP pe; £, rmp, Prop(Y Qrd=Antes) i similarly related to the proof for

The Complexity of Revising Logic Programs 23

DPpeTf,Imp,pmp(Tg’"d_R“les) (Theorem 3), as changing “c; :- !, fail.” to “c; :- fail,
I.” causes c; to be entailed.

For DP per g, pur,pei(TOT74) replace each of (Theorem 2) T(P)’s “u;(0).” and “u; (1) .”
pair of clauses with the single clause “u;(Y) :- prefer0(Y), prefer1(Y).”, and also in-
clude the four atomic “preferi(j)” clauses shown in Equation 6. Notice the first answer
returned to the (sub)query “u;(Y)” is Y =0, when using the initial “u;(Y) :- prefer0(Y),
prefer1(Y).” clause, but if we re-order the clause’s antecedents to “u; (Y) :- prefer1(Y),
prefer0(Y).”, we get Y =1. The rest of the proof is identical to the proof that

DP per pur.por(YOT4"Fules) s NP-hard in Theorem 2.

The proof for DP pe, s, pur,pci(YQrd=Antes) follows from the proof of Theorem 3, using this

same trick of replacing each pair {c;(0) ., ¢, (1) .} with the single clause “c;(Y) :- prefer0(Y),
prefer1(Y).” and by including the four atomic clauses in Equation 6. As above, we can re-
order the “prefer0” and “prefer1” literals of the “c;(Y) :- prefer0(Y), preferi(Y).”
clauses to get different answers to the “c;(Y)” subquery; etc. O (Theorem 6)

Theorem 7 Unless P = NP, neither MAX opt. rmp, Prop(YO74747¢5) nor MA X opt, pur po1 (YOTd—Antes)
is POLYAPPROX.

Proof: To show that “MAXoprmp, prop(TOT¢ 4™) is not POLYAPPROX”, just modify
Theorem 5°s “MAXopt rmp,prop(YO R4) is not POLYAPPROX” proof using the same

S&oP) queries but changing the initial theory to be

n; :- !, fail.
T(Prop)' _ n;. for n; € N
¢ good; :- not(bad), nj.
bad :- n;, n;. for e; = (n;,n;,) € FE
(Notice we have inverted the order of the “n; :- !, fail.” and “n;.” clauses.) Now observe
that the only rules whose antecedent-order matters are the “n; :- !, fail.” rules. Here,

by reordering those antecedents, we obtain the same effect as re-ordering this rule and the
atomic n;. (Le., here we re-use the same “theorem to theorem transformation” applied above
to transform the proof of Theorem 2 to apply to Theorem 6.)

To show that “MAXop pur,pcr(TOT474€) is not POLYAPPROX”, modify the ngc)
from Theorem 5 by replacing each “n;(1).” and “n;(0).” pair of rules with “n;(X)
prefer1(X), prefer0(X).”, and adding the four atomic clauses in Equation 6. Now just
replay the same proof of Theorem 5, replacing the “move n; (1) before n;(0)” with “reorder
the antecedents of “n;(X) :- prefer1(X), prefer0(X).”.

Notice also that, due to the ordering of the and2(...) and or2(...) atomic clauses
in the database, re-arranging the order of the antecedents of the bad; rules can only be
detrimental: The only ordering that can lead to a different answer involve moving either the
and? or or?2 literal to before some other literals. Consider first moving the or2 literal forward,
and notice that the only change this can produce is a binding that includes 0K =1, rather
than 0K =0 (e.g., or2(0K;, 0, OK) returns Yes[{OK;=1, 0K=1}], etc.); this is sufficient
to insure that bad|g (0K) returns OK=1, which again means the resulting theory will have

The Complexity of Revising Logic Programs 24

an accuracy of 0. Similarly moving and2(I10,, I0,, OK;) to the first position will return
Yes[{I0,=1,I0,=1,0K;=1}], which means the resulting theory will have 0 accuracy. If we
move this literal to after the “n; (I0,)” antecedent, there are two cases to consider: If 10,
is bound to 1, then the and2(1, I0,, 0K;) will match and2(1, 1, 1) and so bind 0K; to 1,
leading to the case mentioned above. Alternatively, if 10, is bound to 0, then this will bind
0K; to 0, which is the appropriate answer here (as here we know that one of the antecedents
has the 0 value). O (Theorem 7)

Theorem 9
For each Y € { ‘rAddeules 'rDelfRules }
’)
(1) Each of DP perf,1mp Prop(T) and DP peys pyr,pc1(Y) is NP-hard, and
(2) unless P = NP, neither MAXopt. 1mp,Prop(T) nor MAXopt, pur,pc1(T) is POLYAPPROX.

Proof: We first deal with the YP¢—Rules claims, each of which is a simple extension of an ear-
lier theorem. To show that DPPerf,Imp,Prop(’I‘Del—R’ules) (resp., DPPeTf,Pur,PCl(’I‘Del—Rules))
is NP-hard, just use the T{") (resp., T{"?)) theory from Theorem 2, and note that delet-
ing the “u; :-= !, fail.” clause causes u; to be entailed, and so has the same effect as
moving “w; :- !, fail.” to after “u;.” (resp., deleting u;(0) means u; (1) will be first
answer found, etc.) We can use the same idea to convert the proof of Theorem 5 to show the

non-approximatability of MAXops rmp, prop(TP 4€) " as here deleting “n; :- !, fail.”

from Tg”"””) produces a theory that entails n;. For MAXop pur por (TP Rules)

, use the
T(GPC) theory shown in Theorem 5, and notice that deleting any “n;(1).” has the same

effect as moving this n; (1) to after n;(0).

We use the MONOTONE3SAT problem, mentioned in Theorem 2 above, to prove that
DP per f.1mp,prop(YA~ Hules) js NP-hard. Given any monotone 3CNF formula ¢, with posi-
tive clauses P and with negative clauses N, let

T _ C; I~ not (ujl) , not (11]'2) , hot (11j3) . for C; = {Ujl,UjQ,Ujg} e P
¢ Cj cT U1, U2, Uj;3. for C; = {l_le,’lij,’l_ng} e N
and
Sy = { (cj; Noy forc; e ¢ }

We need only show that there is a set of additions leading to a perfect theory iff ¢ has
a satisfying assignment. Let f: U — {0,1} be an assignment satisfying ¢, and let T’
be a theory formed from T, by adding w; iff f(u;) = 1. Notice T' is perfect: For each
¢j = {uj1, uje,uj3} € P, T includes a uj;, which means the associated not (u;;) fails, and so
T’ will not entail ¢;. Similarly, for each ¢; = {1, Ujo, U3} € N, T' does not entail some u;;,
which again means T' will not entail ¢;. As no other addition is useful (in particular, adding
¢; is counterproductive), finding a perfect T’ in Y444 Rules(T) means there is a satisfying
assignment, formed by setting f(u;) = 1 iff T' includes u;.

To deal with DPpe,f,pm,pm([Add— Rules): Change Theorem 2’s T&PC) theory by replacing
each “u;(0).” atomic clause with “u; (0) :- notU;.”. Now notice the only additions, to the
end of the theory, that can change the first answer returned to any c;(X) query will be
atomic clauses of the form notU;. This will cause u; (0) to be the (first) answer to the u;(Z)
subquery, etc.

The Complexity of Revising Logic Programs 25

For MA X 0pt 1mp, Prop(YA~ Rules) " we again use the reduction from MAXINDSET: Let

ﬂj :— b.

T(Prop) _ for n; € N

AR = ﬂj Tomy.
b :- not(m;), not(my,). for e;=(n;,n;,) €FE

and

S(Pmp = { (m;; No) forn;, € N }

Notice the accuracy of the initial T¢ 7 is A(T{™?) = 0, as T 7" entails b, and

therefore T Pmp)(nj) = Yes. The only way to prevent this is by adding in some m; clauses —
in fact, the revision system needs to add at least one of {m;,, m;,} for each e; = (n;,,n;,) € E.
We can therefore view m; as meaning the node n; € N is not selected in the independent set;
and so not (m;) holds if the node n; is included.

In general, let R be the set of m;s that a revision process does not add in (which means
the corresponding n; is in the proposed independent set). By the arguments above, the
resulting theory will have an accuracy score of £ ‘ if R corresponds to an independent set,
and 0 otherwise. The rest of this proof follows the arguments used in Theorem 5.

(Note that it does not matter where the atomic clauses are added, for either
DPPerf,Imp,Prop(TAdd—Rules) or MAXOPt,[mp,Prop(TAdd—Rules))

To deal with MAX gyt pur, por (YA~ Rules) "yse the theory

(Ilz(l) = m,(O))

ni(Z) i b|E|(Z)
f , €N
m; (0) :- xfer;. or i €
T(PC’) — bi(Z) - my (X)), mi, (X)), and2(X,, Xp, Zi), g4p (ni,,n;,) €E \
b,_1(Z;_1), or2(Z;, Z;_1, Z).

and2(1, 1, 1). or2(1, 1, 1).
and2(0, 1, 0). or2(0, 1, 1).
and2(1, 0, 0). or2(1, 0, 1).

| and2(0, 0, 0). or2(0, 0, 0).)

where the body of the by (Z) clause only includes the first 3 literals:
bl (Z) T My, (Xa) N mlb(Xb) N and2(Xa, Xb: Z) .

The queries here are

SR o) = { (n; (X); Yes[X=0]) forn, € N }

As in the previous proof, the initial theory (here T()) has an accuracy score of 0, as
m; (0) is not entailed and the first answer to each nl(X) is Yes[X=1], as by (Z) returns
Yes[Z=1] as each m; (X) returns Yes[X=1]|. One way to prevent this is to change the theory
so that some m; (X)s instead return Yes[X=0], which we can do by adding the corresponding

The Complexity of Revising Logic Programs 26

xfer; atomic clauses. Moreover, given the structure of the theory, and the fact that we can
only add clauses to the end of the theory, this is actually the only approach. Notice we need
to add at least one of {xfer;, xfer;} for each (n;,;n;) € E (otherwise the first answer to
big|(Z) will be Yes[Z=1], leading to an accuracy of 0). The rest of this proof follows the
proof above. O (Theorem 9)

References

[1] Carlos E. Alchourrén, Peter Gardenfors, and David Makinson. On the logic of theory
change: Partial meet contraction and revision functions. Journal of Symbolic Logic,
50:510-530, 1985.

[2] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and hardness of approximation problems. In FOCS, 1992.

[3] Francesco Bergadano, Daniele Gunetti, and Umberto Trinchero. The difficulties of
learning logic programs with cut. Journal of AI Research, 1:91-107, 1993.

[4] Mark Boddy and Thomas Dean. Solving time dependent planning problems. Technical
report, Brown University, 1988.

[5] C. Boutilier. Revision sequences and nested conditionals. In Proceedings of IJCAI-93,
pages 519-525, 1993.

[6] Gerhard Brewka. Preferred subtheories: An extended logical framework for default
reasoning. In Proceedings of IJCAI-89, pages 1043-48, Detroit, August 1989.

[7] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sums of observations. Annals of Mathematical Statistics, 23:493-507, 1952.

[8] William F. Clocksin and Christopher S. Mellish. Programming in Prolog. Springer-
Verlag, New York, 1981.

[9] William W. Cohen. PAC-learning recursive logic programs: Efficient algorithms. Jour-
nal of Artificial Intelligence Research, 2:500-539, 1995.

[10] William W. Cohen. PAC-learning recursive logic programs: Negative results. Journal
of Artificial Intelligence Research, 2:541-573, 1995.

[11] William W. Cohen. PAC-learning non-recursive prolog clauses. Artificial Intelligence,
79(1):1-38, 1996.

[12] P. Crescenzi and A. Panconesi. Completeness in approximation classes. Information
and Computation, 93(2):241-62, 1991.

[13] Mukesh Dalal. Investigations into a theory of knowledge base revision: Preliminary
report. In Proceedings of AAAI-88, pages 475-479, 1988.

The Complexity of Revising Logic Programs 27

[14] A. Darwiche and J. Pearl. On the logic of iterated belief revision. In TARK-94, pages
523, 1994.

[15] Thomas G. Dietterich. Machine learning. Annual Review of Computer Science, 4:255—
306, 1990.

[16] William F. Dowling and Jean H. Gallier. Linear time algorithms for testing the satisfi-
ability of propositional horn formula. Journal of Logic Programming, 3:267-84, 1984.

[17] Jon Doyle and Ramesh Patil. Two theses of knowledge representation: Language re-
strictions, taxonomic classification, and the utility of representation services. Artificial
Intelligence, 48(3), 1991.

[18] S. Dzeroski, S. Muggleton, and S. Russell. PAC-learnability of determinate logic pro-
grams. In Proceedings of the Fifth Workshop on Computational Learning Theory, Pitts-
burgh, 1992.

[19] T. Eiter and G. Gottlob. On the complexity of propositional knowledge base revison,
updates and counterfactuals. Artificial Intelligence, 57:227-270, 1992.

[20] Rick Evertsz. The automated analysis of rule-based systems, based on their procedural
semantics. In Proceedings of IJCAI-91, pages 22-27, 1991.

[21] M. Freund and D. Lehmann. Belief revision and rational inference. Technical Report
TR-94-16, Hebrew University, 1994.

[22] N. Friedman and J. Halpern. Belief revision: A critique. In KR-96, 1996.

[23] Peter Gardenfors. Knowledge in Fluz: Modeling the Dynamics of the Epistemic States.
Bradford Book, MIT Press, Cambridge, MA, 1988.

[24] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[25] G. Gogic, C. H. Papadimitriou, and M. Sideri. Incremental recompilation of knowledge.
In Proceedings of AAAI-94, pages 922-927, 1994.

[26] Russell Greiner. Finding the optimal derivation strategy in a redundant knowledge base.
Artificial Intelligence, 50(1):95-116, 1991.

[27] Russell Greiner. The complexity of theory revision. In Proceedings of IJCAI-95, 1995.

(28] Russell Greiner. The complexity of theory revision. Artificial Intelligence, 1999. to
appear;

[29] Benjamin Grosof. Generalizing prioritization. In Proceedings of KR-91, pages 289-300,
Boston, April 1991.

[30] Viggo Kann. On the Approzimability of NP-Complete Optimization Problems. PhD
thesis, Royal Institute of Technology, Stockholm, 1992.

The Complexity of Revising Logic Programs 28

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

Hirofumi Katsuno and Alberto Mendelzon. On the difference between updating a knowl-
edge base and revising it. In Proceedings of KR-91, pages 387-94, Boston, April 1991.

M. J. Kearns, R. E. Schapire, and L. M. Sellie. Toward efficient agnostic leaning. In
Proceedings COLT-92, pages 341-352. ACM Press, 1992.

John E. Laird, Paul S. Rosenbloom, and Allan Newell. Universal Subgoaling and Chunk-
ing: The Automatic Generation and Learning of Goal Hierarchies. Kluwer Academic
Press, Hingham, MA, 1986.

Pat Langley, George Drastal, R. Bharat Rao, and Russell Greiner. Theory revision in
fault hierarchies. In Proceedings of The Fifth International Workshop on Principles of
Diagnosis (DX-94), New Paltz, NY, 1994.

Hector J. Levesque. Foundations of a functional approach to knowledge representation.
Artificial Intelligence, 23:155-212, 1984.

Charles X.F. Ling and Marco Valtorta. Some results on the computational complexity of

refining certainty factors. International Journal of Approximate Reasoning, 5:121-148,
1991.

Charles X.F. Ling and Marco Valtorta. Refinement of uncertain rule bases via reduction.
International Journal of Approxrimate Reasoning, 13:95-126, 1995.

S. Muggleton and W. Buntine. Machine invention of first order predicates by inverting
resolution. In Proceedings of IML-88, pages 339-351. Morgan Kaufmann, 1988.

S.H. Muggleton. Inductive Logic Programming. Academic Press, 1992.

Dirk Ourston and Raymond J. Mooney. Theory refinement combining analytical and
empirical methods. Artificial Intelligence, 66(2):273-310, 1994.

A. Carlisle Scott, Jan E. Clayton, and Elizabeth L. Gibson. A Practical guide to knowl-
edge acquisition. Addison-Wesley Pub Co., Reading, MA, 1991.

V.N. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer-Verlag,
New York, 1982.

David C. Wilkins and Yong Ma. The refinement of probabilistic rule sets: sociopathic
interactions. Artificial Intelligence, 70:1-32, 1994.

James Wogulis and Michael J. Pazzani. A methodology for evaluating theory revision
systems: Results with Audrey II. In Proceedings of IJCAI-93, pages 1128-1134, 1993.

