*

The Complexity of Theory Revision

Russell Greiner!
Department of Computing Science
University of Alberta
Edmonton, AB T6G 2H1 Canada

greiner@cs.ualberta.ca http://www.cs.ualberta.ca/~greiner

November 16, 1998

Abstract

A knowledge-based system uses its database (a.k.a. its “theory”) to produce an-
swers to the queries it receives. Unfortunately, these answers may be incorrect if the
underlying theory is faulty. Standard “theory revision” systems use a given set of
“labeled queries” (each a query paired with its correct answer) to transform the given
theory, by adding and/or deleting either rules and/or antecedents, into a related theory
that is as accurate as possible. After formally defining the theory revision task, this
paper provides both sample and computational complexity bounds for this process.
It first specifies the number of labeled queries necessary to identify a revised theory
whose error is close to minimal with high probability. It then considers the compu-
tational complexity of finding this best theory, and proves that, unless P = NP, no
polynomial time algorithm can identify this near-optimal revision, even given the exact
distribution of queries, except in certain simple situation. It also shows that, except
in such simple situations, no polynomial-time algorithm can produce a theory whose
error is even close to (i.e., within a particular polynomial factor of) optimal. The first
(sample-complexity) results suggest reasons why theory revision can be more effective
than learning from scratch, while the second (computational complexity) results ex-
plain many aspects of the standard theory revision systems, including the practice of
hill-climbing to a locally-optimal theory, based on a given set of labeled queries.

Keywords theory revision, computational learning theory,
inductive logic programming, agnostic learning

*This paper extends the short article that appeared in the Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI95), Montreal, August 1995.

tMuch of this work was done while T worked at Siemens Corporate Research, in Princeton, NJ. T gratefully
acknowledge receiving helpful comments from Edoardo Amaldi, Mukesh Dalal, George Drastal, Adam Grove,
Tom Hancock, Sheila Mcllraith, Roni Khardon, Dan Roth and especially the very thorough comments from
the anonymous referees.

The Complexity of Theory Revision 2

1 Introduction

There are many fielded knowledge-based systems, ranging from expert systems and logic
programs to production systems and database management systems [HRJ94]. Each such
system uses its database of general task-related information (a.k.a. its “theory”) to pro-
duce an answer to each given query; this can correspond to retrieving information from a
database or to providing the diagnosis or repair appropriate for a given set of symptoms.
Unfortunately, these responses may be incorrect if the underlying theory includes erroneous
information. If we observe that some answers are incorrect (e.g., if the patient does not get
better, or the proposed repair does not correct the device’s faults), we can then ask a human
expert to supply the correct answer. We would like to use the set of these correctly-answered
queries to produce a new theory that is more accurate; i.e., which will make fewer mistakes,
on these and other queries drawn from the same distribution.

Standard learning algorithms use only these queries to learn a good theory. This is
wasteful in the common situation where the initial theory was already very accurate, as such
learning algorithms would, in effect, have to re-learn most of the initial theory. Instead, it
is often more efficient to correct that initial theory. Theory revision is the process of using
these correctly-answered queries to modify the given initial theory, to produce a new, more
accurate theory.

Most theory revision algorithms use a set of transformations to hill-climb through succes-
sive theories, until reaching a theory whose empirical error is (locally) optimal, based on a
set, of correctly-answered queries; cf., [Pol85, MB88, Coh90, OM94, WP93, CS90, LDRG94].
This report addresses the obvious questions about this approach: When is theory revision
a good idea — and in particular, when should it work more effectively than learning from
scratch? How many correctly-answered training queries are required? And when is it possible
to efficiently compute the globally optimal revised theory?

Section 2 first states the theory revision objective more precisely: as finding the theory
with the lowest expected error from the space of theories formed by applying a sequence
of transformations to a given initial theory, where each transform involves either adding
or deleting either a rule or an antecedent. The next sections address two challenges to
finding this best revised theory. First, as the error of a theory depends on the distribution of
queries addressed, the theory that is best for one distribution may not be best for another.
We therefore need to know information about the distribution to decide which theory is
optimal. While such information is usually not known a priori, relevant information can be
estimated by sampling. Section 3 considers the sample complexity — i.e., given any values
of €,06 > 0, how many samples (each a query/answer pair) are required to find a theory
whose error is within € of the optimum (in the specified space of theories), with probability
at least 1 — . We also argue that this theory revision process will often require many fewer
samples than would be required to learn a good theory from scratch, and further compare
the relative difficulties of deleting arbitrary portions of a theory, versus adding new parts
(either new antecedents or new rules).

The second issue in finding the optimal (or even near-optimal) revised theory is the
computational complexity of this task, once given these samples. Section 4 first observes
that finding a good theory is easy if such a good theory is syntactically very close to the

The Complexity of Theory Revision 3

initial theory — which appears to often be the case, in practice. We then prove that, in
general, the task of computing the optimal theory in many obvious spaces of theories is
intractable, even in very simple contexts — e.g., even when dealing with propositional Horn
theories, or when considering with only atomic queries, or when considering only a bounded
number of transformations, etc.! These results hold both in situations where there is a perfect
Horn theory (i.e., there is a Horn theory that correctly labels all of the instances), as well
as the “agnostic” setting [KSS92], where there need not be any such theory. We then show
that the “agnostic task” cannot even be approximated: i.e., that no efficient algorithm can
find a theory whose error is even close to (i.e., within a particular small polynomial of) the
optimum! We also prove that these negative results apply even when we are only generalizing,
or only specializing, the initial theory. By providing efficient algorithms for other restricted
variants of theory revision, we provide sharp boundaries that describe exactly when this task
is guaranteed to be tractable.

These results provide several insights into the theory revision process: The sample com-
plexity results argue that theory revision can be better than tabula rasa learning, as theory
revision can require many fewer samples. The computational complexity results show first
that theory revision can be performed efficiently if the initial theory is syntactically close
to a highly-accurate theory; but then that no tractable algorithm will be able to find such
a globally optimal theory if it is “syntactically far away” from the initial theory. Such re-
sults may help motivate the standard practice of hill-climbing to a local optimum, within
the space formed using specified transformations — as this will usually find an acceptable
theory, even when it is intractable to find an optimal one.

Our negative results may inspire future researchers and developers to look for other
techniques to modify existing theories, perhaps by changing the underlying representa-
tion [KKS93, KR94b] or by exploiting other information that may be available, such as
the assumption (if true) that each training example includes only the information required
to classify that instance [GGK97).

The appendix supplies the relevant proofs. We close this section by describing related
research.

Related Results: Our underlying task, of producing a theory that is as correct as possible,
is the main objective of most research in inductive learning, including as notable instances
CART [BFOS84|, c4.5 [Qui92] and connectionist learning algorithms [Hin89]. While many
of these systems learn descriptions based on bit vectors or simple hierarchies, our work deals
with logical descriptions. Here too there is a history, dating back (at least) to Plotkin [Plo71]
and Shapiro [Sha83], and including the more contemporary FOIL [Qui90] and the body of
work on inductive logic programming (ILP) [Mug92]. However, while most of these
projects begin with an “empty theory” and attempt to learn a target logic program by adding
new clauses, theory revision processes work by modifying a given initial theory (which can
involve both adding and deleting clauses), attempting to approximate a more general target
function, which here need not even correspond to a logical theory. (See also the comparison
in Section 4.4.)

IThroughout, we will assume that P # N P [GJ79], which implies that any NP-hard problem is intractable.
This also implies certain approximation claims, presented below.

The Complexity of Theory Revision 4

There are several implemented theory revision systems. Most use essentially the
same set of transformations described here — e.g., AUDREY [WP93|, FONTE [MB88|, E1-
THER [OM94] and DELTA [LDRG94]| each consider adding or deleting antecedents or rules.
Our analysis, and results, can easily be applied to many other types of modifications — e.g.,
specializing or generalizing antecedents [OM94], using “n-of-m rules” [BM93], or merging
rules and removing chains of rules that produced incorrect results [Coh90, Coh92].2 While
these projects provide empirical evidence for the effectiveness of their specific algorithms,
and deal with classification (i.e., determining whether a given element or tuple is a mem-
ber of some target class) rather than general derivation, our work formally addresses the
complexities inherent in finding the best theory, for handling arbitrary queries.

There are several related complexity results: First, Cohen [Coh90] observed that the
challenge of computing the smallest modification was intractable in a particular context;
this relates to our Corollary 4.1. Second, Wilkins and Ma [WM94| show the intractability
of determining the best set of rules to delete in the context of “weighted” rules, where a
conclusion is believed if a particular function of the weights of the supporting rules exceeds
a threshold. Our results show that this problem remains intractable (and is in fact, not
even approximatable) even in the propositional case, when all rules have unit weight and a
single rule is sufficient to establish a conclusion. Third, Valtorta and Ling [LV91, LV95] also
considered the computational complexity of modifying a theory. Their analysis, however,
dealt with a different type of modifications: viz., adjusting various numeric weights within a
given network (e.g., altering the certainty factors associated with the rules), but not changing
the structure by adding or deleting rules. Fourth, Mooney [Mo094] addressed the sample
complexity of certain types of theory revision systems. His analysis assumes that a completely
correct theory can be reached by some sequence of K transformations; our sample complexity
bounds extend his by considering various specified sets of possible transformations, and by
not requiring that a perfect theory be within K transformations of the starting theory.
(In fact, our analysis does not even require the eristence of a perfect theory.) We also
consider the computational complexity of such processes. Finally, there are a number of
results on the complexity of “pac-learning” logic programs from scratch (i.e., of inductive
logic programming, ILP); cf., [Coh95b, Coh95a, Coh96, DMR92]. As mentioned above, this
framework is different, as ILP systems can return any Horn theory (rather than just the
theories that are syntactically close to an initial theory), and many ILP systems assume
there is a Horn theory that is perfect.

There are many other frameworks that use new observations to improve a given
description of the world. For example, many Bayesian systems use such observations to
update their representations, often by adjusting the (continuous) parameters in a Dirichlet
distribution within a given belief net structure [Hec95]. We, however, are making discrete
changes to the structure of the Horn theory.

Similarly, belief revision systems [AGMS85, Dal88, Gar88, KM91] take as input an

2(1) However, we make no claims concerning the applicability of our techniques to systems like
KBANN [Tow91], which use a completely different means of modifying a theory. (2) The companion paper
[Gre99] considers yet other ways of modifying a theory, viz., by rearranging the order of its component rules
or antecedents.

The Complexity of Theory Revision 5

initial theory Ty and a new assertion (g,+) (resp., a new retraction (r,—)) and return a
new consistent theory T' that entails g (resp., does not entail r) but otherwise is “close”
to Ty [Dal88]. In general, the resulting revised theory will not depend on the syntactic
structure of the initial theory — i.e., if Ty = Ty, then the theory obtained by revising T,
with the assertion (g, +) is equivalent to the theory obtained by revising Ty with (g, +).

Most belief revision formalisms use only a single labeled query (either assertion or retrac-
tion) to modify an initial theory Ty, seeking a theory semantically close to T that correctly
does/does-not entail that query.®> By contrast, theory revision uses a set of labeled queries
when modifying T, searching within the space of theories that are syntactically close to Ty
for a theory with optimal accuracy, with respect to those queries. Notice a theory revision
system (1) does not require that the revised theory be correct for any specific labeled query,
and (2) may produce semantically different theories from semantically equivalent initial the-
ories (as it may search different spaces of theories). As a final distinction, our results show
that the theory revision task is difficult even if both the initial and final theories, as well
as the queries, are Horn; by contrast, many belief revision frameworks deal with arbitrary
CNF formulae. (Of course, the standard belief revision tasks — e.g., the “counterfactual
problem” — are complete for higher levels in polynomial-time hierarchy [EG92].)

Notice theory revision seeks a theory, from within the syntactically defined class of “all
theories produced by applying certain syntactical modifications to an initial theory”, whose
performance is optimal on the semantically-defined task of “either entailing, or not entail-
ing, certain queries”. Below we present two other research corpora that similarly seek the
“semantically-best” theory from within some “syntactically-defined” class.

First, there may be no class member that exhibits perfect performance on the task; here,
for example, no Horn theory may be able to correctly classify all of the labeled queries. We
still want to find the optimal member of the class. This corresponds exactly to the “agnos-
tic learning” model; Kearns, Schapire and Sellie [KSS92] have shown that this task is often
intractable. Our framework differs by dealing with a different class of “samples” (arbitrary
queries, not bit vectors), and by having a different class of hypotheses (predicate calculus
Horn theories, rather than propositional conjunctions). More significantly, we present situ-
ations where the computational task is not just intractable, but is not even approximatable.

Second, many works on “approximations” [BE89, SK91, DE92, GS92] and “structural
identification” [DP92] seek a theory, of a specified syntactic form, that is semantically close
to an explicitly given theory Tygget (i.€., which entails essentially the same set of propositions
that Tiarger entails). As two representative results: Dechter and Pearl [DP92] agnostically
seek a theory Wy, of a specified syntactic form (e.g., Horn or k-Horn) that is a “strongest
weakening” of a given extension Tyuget;* and Kautz, Kearns and Selman [KKS95] provide

3While the work on “iterated revision” [Bou93, GPS94, FL94, DP94] also considers more than a single
assertion, it usually deals with a sequence of assertions, where each new assertion must be incorporated, as
it arrives. Afterwards, it is no longer distinguished from any other information in the current theory (but
see [FH96]). We, however, consider the assertions as a set, which is seen at once, and whose elements need
not all be incorporated.

4(i) A k-Horn theory is a Horn theory, defined below, whose clauses each contain at most k literals.
(i1) A theory W,p is a “strongest weakening” of the theory Tigrget if Tiarget = Wopt and there are no other
theories W' of this syntactic form strictly between Tigrger and Wops; i€, Tiarger = W' |= Wop implies

The Complexity of Theory Revision 6

an efficient randomized algorithm that, given an extension Ti4.4e, agnostically produces a
Horn theory W that is usually a strong weakening of T4yge+ (i.e., with high probability, W’s
models include all models of the original T4, 4e, and at most a small number of others). Our
results differ as (1) our semantic task involves accommodating a set of both positively- and
negatively- labeled queries, which loosely resembles a conjunction of (Horn) disjunctions,
rather than a complete extension (i.e., a CNF rather than a DNF formula); (2) we seek the
theory that minimizes the two-sided error (i.e., our set of positively-labeled queries does not
necessarily entail our revised theory W); and (3) we consider only (Horn) theories within
a specified space of theories, which is implicitly defined by the syntactic transformations
applied to a given theory. (Hence, our space is typically smaller than the space of all Horn
theories.)

2 Framework

We define a “(Horn) theory” as a conjunction of (propositional or first order) Horn clauses,
where each clause is a disjunction of literals, at most one of which is positive. Borrowing
from [Lev84, DP91], we also view a theory T as a function that maps each query to its
proposed answer; hence, T: Q — A, where Q is a (possibly infinite) set of Horn queries, and
A = { Yes, No } is the set of possible answers.> Hence, given

-

T1 =

-

OO0 H H BT
.I.
® O 0 +H P

@ (1)

d. e. q.

Ti(h) = Yes, Ty(i) =No and Ty(i :- e,j.) = Yes. We will later use Ty, the theory that
differs from T; only by excluding the “g :- e” rule.

While the non-atomic queries may seem unusual at first, they are actually quite common.
For example, a medical expert system typically collects relevant data {£;(p), ..., £,(p) }
about an individual patient p, then determines whether p has some specific disease disease;;
e, if TU{f(p), ..., £,(p) } E disease;(p), where T is the expert system’s initial the-
ory that contains general information about diseases, etc. Notice this entailment condition
holds iff T = —f;(p) V...V —f,(p) V disease;(p); i.e., iff the Horn query “disease;(p)
= £1(p), ..., £,(p)” follows from the initial theory. Such queries also clearly connect
to the standard classification task used within Machine Learning: given a complete as-
signment of the attributes, determine whether class membership is entailed. Here, how-

W' = Wype. (497) An “extension” is a DNF formula, whose conjuncts are each a complete assignment to the
variables.

5(1) The “No” answer actually means the theory did not find an answer. (2) To simplify our presentation,
the main body of this paper will deal only with propositional logic; the end of this section discusses the
extensions needed to deal with predicate calculus.

The Complexity of Theory Revision 7

ever, we do not necessary deal with a single complete assignment — e.g., a theory en-
tails fi&f, = d onmly if all 2*~2 instances (1,1, 0,...,0) through (1,1, 1,...,1) are all
positive instances of d (i.e., if each of (fi =1, fo=1, f3=0,..., f, =0, d=1) through
(fi=1,fo=1,f3=1,..., fu=1, d=1) is a model). Moreover, our model can allow
many different classes (e.g., both fi1& fo = d specifying positive instances of d, and fr& fi9 =
e specifying positive instances of e, etc.). Finally, these “classes” can be interrelated (via
“chaining”); e.g., we can have fi&f, = d, and also f;&d = e, etc. See also “entailment
queries” [FP93, KR94a].

For now, we will assume there is a single correct answer to each question, and represent it
using the “target function” (or “real-world oracle”) O: Q — A. Here, perhaps, O(h) = No,
meaning that “h” should not hold. We will consider two classes of target functions: each
member of Oy, corresponds to a Horn theory, and each member of Op,; corresponds to a
deterministic mapping of queries to answers (e.g., perhaps O(a) = Yes, O(b :- a) = Yes,
and O(b) = No). While the first class of target function is more standard in the Inductive
Logic Programming literature (as it guarantees there is a Horn theory capable of correctly
classifying all of the training data), it is not as realistic for the real-world task of finding the
best possible theory to explain some observed data, as real-world data may in fact be noisy,
or correspond to a situation where there is no perfect theory. This is the same motivation
that gave rise to the study of “agnostic learning” [KSS92].

In general, our goal is to find a theory that is as close to the target function O(-) as
possible. To quantify this, we first define the “error function” err(-, -) where err(T, ¢) is the
error of the answer the theory T returned for the query g¢:

;[0 ifT(g)=0(q)
err(T, q) = {1 otherwise

(Notice err(T, -) implicitly depends on the target function O(-).) Hence, as O(h) = No,
err(Ty, “h”) = 0 as Ty provides the correct answer while err(T;, “h”) =1 as T returns the
wrong answer.

This err(T, -) function measures T’s error for a single query. In general, our theories must
deal with a range of queries. We model this using a stationary, but unknown, probability
function Pr: Q +— [0,1], where Pr(g) is the probability that the query ¢ will be posed.
Given this distribution, we can compute the “expected error” of a theory, T:

ERR(T) = Elerr(T,q)] = Y Pr(q) xerr(T,q).

qeQ

We will consider various sets of possible theories, 7 = {T,}, where each such 7 contains
the set of theories formed by applying various sequences of transformations to a given initial
theory; see Section 2.1 below. Our challenge is to identify the theory T,, € 7 whose
expected error is minimal; i.e.,

VT € T: ERR(T,y) < ERr(T). (2)

The next two sections address two challenges in finding such optimal theories: First, the

The Complexity of Theory Revision 8

optimal theory depends on the distribution of queries. While this is not known initially,
relevant information can be estimated by observing a set of samples (each a query/answer
pair), drawn from that distribution. Section 3 quantifies how the number of samples required
to obtain the information needed to identify a good T* € T (with high probability) depends
on the space of theories 7 being searched; it then provides the sample complexity for various
spaces.

We are then left with the challenge of computing the best theory, once given these
samples. Section 4 addresses the computational complexity of this process, showing that the
task is not just intractable,® but it is also not approximatable — i.e., no efficient algorithm
can even find a theory whose expected error is even close (in a sense defined below) to the
optimal value.

The rest of this section describes the transformations used to define the various spaces
of theories, and then discusses the extensions needed to handle stochastic oracles, predicate
calculus theories and queries, and non-categorical responses.

2.1 Standard Transformations

Standard theory revision algorithms modify the given initial theory by applying a sequence
of zero or more transformations. We consider four classes of transformations:

Ypr = {7PR: T+ T | 7PE(T) deletes an existing rule from T }

Yar = {72 T — T |74%(T) adds a new rule to T }

Tpa = {7P4 T~ T |7PA4(T) deletes an existing antecedent from an existing rule in
Yaa = {77 — T | 744(T) adds a new antecedent to an existing rule in T }

Welet T = TprUYarUYTpaUTas be the set of all transformations, and let T[Ty] =
{Y(Ty) | v € T} be the theories formed by applying some sequence of theory-to-theory
transformations v = 11 0 0... 07 € T to the given initial theory Ty. (Table 1 provides
a concise reference for the notation used in this paper.)

The cost function ¢: T — N maps each transformation to the number of symbols it
adds to, or deletes from, T to form 7(T); we further let c(v) = ¢(r1) + ¢(m2) + ... + c(72)
be the cost of the sequence of transformations v = 73 0o 75 0 ... 0 75. In the propositional
case, ¢(Ta4) = ¢(1pa) = 1 for each transformation that either adds or deletes an antecedent;
and ¢(r'®) = ¢(7P®) = |p| for each add-rule (resp., delete-rule) transformation that adds
(resp., deletes) the rule p, which has 1 conclusion and |p| — 1 antecedent literals. In predicate
calculus, these costs are more complicated, as they depend on the number of symbols used
in all of the affected literals.

6A naive way of evaluating err(T, ¢) would require computing T(g). As this could require proving
an arbitrary theorem, this computation alone can be computationally intractable, if not undecidable. Our
results show that the task of finding the optimal theory is intractable even given a polynomial-time oracle that
performs these arbitrary derivations. Of course, as we are considering only Horn theories, these computations
are guaranteed to be polynomial-time in the propositional case [BCH90].

T}

The Complexity of Theory Revision 9

T = a theory; i.e., a set of Horn clauses
L = the language used
Set of transformations Y, that map a theory T to a set of new theories T, (T)
YT 4r(T) = {748 | 748 3dds a new clause to a theory T }
YTpr(T) = {7PE| 7PE (eletes an existing clauses from a theory T }
T 44(T) = {744 | 744 adds a new antecedent to an existing rule in T }
YTpa(T) = {7P4| 7PA deletes an existing antecedent from an existing rule in T }

Sequences of transformations:

YtA=k1, +R=ky, —A=ks, —R=ka(T) = theories formed by

adding < k1 new antecedents to existing rules in T
adding < kg new rules to T

deleting < k3 existing antecedents from existing rules in T
deleting < k4 existing rules from T

Notes * each k; = k;(|T|) may be a function of (the size of) the theory considered T
x T® = T—I—A:oo, +R=00, —A=00, —R=00

% TR = YHA=0, +R=00, —A=0, —R=0 ot
Decision Problem, for any YT = YtA=ki, +R=ks, —A=ks, —R=ka tpqt maps a theory to a set of theories:
THREV[YT] = Decision problem defined in Definition 1

THREVpe;[YT] = THREV[Y] with p =1
Genl. THREVou[YT] allows arbitrary p
THREVprop[T1T] = THREV[Y] with propositional theories
Gen’l: THREVpc[YT] allows predicate calculus
THREV gtom[Y1] = THREV g40,,[YT] with atomic queries
Gen'li: THREV.,[YT] allows Horn queries
Gen'ly: THREVp;; [TT] allows arbitrary disjunctive queries
Optimization Problem, for any YT that maps a theory to a set of theories:
MINTHREV,[Y!] = minimization problem,
with “constraints” p C {Perf, Prop, Atom, ...} (see above)

MinPerfAIMINTHREV,[Y!]](B,z) = error score of algorithm B on instance z
(see Equation 5)

Table 1: Definitions and Notation

The Complexity of Theory Revision 10

We use this cost function to define “K-bounded sequences”
T = {v=mono...on|neY&cw)<K}

whose members v = 1,0 0...07, € YTX are sequences of transformations whose total
cost ¢(v) is at most K. In some situations, we will allow the number of transformations to
grow with the size of the theory; here, we will abuse notation by viewing K as a function
K : T — N, which returns an integer value as a function of the input (size of the) initial
theory.

To illustrate these transformations, consider the T theory from Equation 1. The 72%
delete-rule transformation will remove the “g :- e.” rule, reducing T; to a new theory
with only 8 clauses (4 rules and 4 atomic literals), called Ty above. Another delete-rule, 7P%
removes the atomic “d.” clause. The T;E’_L‘f,g; _4 delete-antecedent transformation removes
the “g” antecedent from the “h :- £, g.” rule; an alternative delete-antecedent transfor-
mation, T,f‘_“f,g; _s, removes the “f” from that rule. Of course, yet other delete-antecedent
transformations modify other rules. The add-antecedent transformation 724 adds the

=€
literal “q” to the “g :- e.” rule, forming “g :- e, q.”, at cost c(Tﬁ’_“e; +q)q: 1J.r7q A second
add-antecedent transformation T;}fe,q; +q could then add the literal “d” to this rule, forming
the “g :- e, q, d.”; yet another T{‘_“‘g,j; 4o adds the literal “a” to “i :- g, j.” to form
“i :- g, j, a.”, etc. Finally, the add-rule transformations add in new clauses: T,;f‘ff adds
“p :- £.”, leading to the 10-element theory T3 =T1 U{ b :- £.}. Its cost is ¢(75) = 2.
A different add-rule 7/** adds the atomic clause “j.” (at cost 1), etc.

As expected, a “transformation sequence” is a sequence of transformations; so applying

7

the 3-element sequence v = 7% o 74, | o 74 . with total cost c(v) = c(mi) +
c(tAA .) + c(fr[:’fc,d;) = 2+1+1 =4, will transform T, into T, = v(T;) =

¢ +g
Tgf‘é(Tgf}fe; vo(TRA 4 <(T1))) which is a theory with 10 clauses that differs from T, by

including the clause “f:-d” rather than “f:-c,d”, including the clause “g:-e,q” rather
than “g:-e”, and by including an extra clause “b:-c”:

h :-a, b.
h:-f, g.
i:-g, 3.
T4 = f - d.
- e, Q.-
bimo
c. d. e. q.

Of course, one transformation in a sequence can modify the clause affected by an earlier

transformation in the same sequence; e.g., vo = TbP_Rf o Tb’?ff is a no-op, in that ve(T) = T,

(provided “b :- £” ¢ T), albeit at a cost of ¢(r2f o 7,) = 6.

"As we are dealing with a pure version of logic programs, and seeking all answers to each query, the
order of these antecedents will not matter. Similarly, the order of rules is also irrelevant in this model. The
companion paper [Gre99] considers alternative models in which these orders can matter.

The Complexity of Theory Revision 11

Finally, we will also consider various other spaces of transformations, of the form

YHA=ky, +R=ky, —A=ks, —R=ks _ v=Tiomo...oy| €T &

where each integer k; € N or k; = oo is a bound on the sum of the costs of the transformations
of type T;. We will also abbreviate the superscripts by omitting each term of the form
“+ A =07, and replacing each “+R = 0o” by simply “+R”; hence Y+4=0, TR=00, —A=T7, —R=oc0
can be written Y+ —A4=" —E_ Ag above, we will sometimes let these k; values be functions
of (the size of) the given theory.

2.2 Extensions

All of the following theorems will hold even if we use a stochastic real-world oracle, encoded
as O': @ x A [0,1], where the correct answer to the query ¢ is a with probability O'(q, a).
This allows us to model the situation where, for a particular set of observations, different
repairs are appropriate at different times; this could happen, for example, if the correct
repair depends on some unobserved variables as well as the observations; see [KS90]. Notice
here that err(T, g) = 1—0'(q, T(gq)); and that our deterministic oracle is a special case of
this, where O'(¢, a,) = 1 for a single a, € A and O'(q,a) = 0 for all a # a,.

To handle predicate calculus expressions, we may have to consider answers of the form
{Yes| X;/v; |}, where the expression within each Yes|-] is a binding list of the free variables,
corresponds to a single answer to the query. For example, given the theory®

tall(john). short(fred).
Tpe = rich(john). rich(fred).
eligible(X) :- tall(X), rich(X).

the query short (Y) willreturn T, (short(Y)) = { Yes[Y/fred] }, the query rich(Z) will re-
turn the pair of answers T,.(rich(Z)) = {Yes[Z/john], Yes[Z/fred]}, and T,.(eligible(A)) =
{ Yes[A/john] }. As O(-) and T(-) may each return a set of answers to each query, we there-
fore define T’s accuracy score (which is 1 — ERR(T)) as the ratio of the number of correct
answers, to all answers from both O(¢) and T(q): err(T,q) =1 — % e [0,1].
We will use Yes[X /7] to indicate that there is an instantiation that is satisfied, but the
particular value of that instantiation is not important. (This corresponds to an “existential
question” [RBK88].) All of the results in this paper hold even when considering only non-
recursive theories; and all computational results hold even for Datalog (i.e., “function-free”)
theories.

As a related extension, we can also allow our theories to return T (¢) = IDK, which stands
for the non-categorical answer “I Don’t Know”; here perhaps err(T, ¢) = 1/2. Finally, there
are obvious ways of extending our analysis to allow a more comprehensive error function

8TFollowing PROLOG’s conventions, we will capitalize each variable, as in the “X” above.

The Complexity of Theory Revision 12

err(T, -) that could apply different rewards and penalties for different queries (e.g., to per-
mit different penalties for incorrectly identifying the location of a salt-shaker, versus the
location of a stalking tiger). As these extensions lead to strictly more general situations,
our underlying task (of identifying the optimal theory) remains as difficult; e.g., it remains
computationally intractable in general.

3 Sample Complexity

As mentioned above, a theory revision process seeks a revision of the initial theory (from
the allowed set of revisions) with the minimum possible expected error, over the distribution
of queries. While this distribution is unknown, we can use a set of labeled samples S =
{{(gi,O(¢;))} to (implicitly) obtain the “empirical error” of each of the theories T; € T,

written
1

Errg(T;) = 5 > (T, q) (3)
(2:,0(qi))€S
and then select the theory whose empirical error is smallest; i.e., the T* in 7 such that
\V/Tz € T, ERRs(T) < ERRs(T;)

While this theory T does have the least error on the training samples S, it may not be
the one which has the least error over the entire distribution of queries; i.e., we do not know
that T* = Ty, or even that ERR(T") ~ ERR(T,), using the T, defined in Equation 2.
Basically, this is because we do not know that ERRg(T*) will be close to ERR(T"), nor
that ERRg(Tpp) will be close to ERR(Tyt).

We can however use statistical methods to quantify our confidence in the closeness of
these estimates, as a function of the number of samples used |S| and the size of the space
of possible theories, |T|. The following theorem provides an upper bound on the number
of samples required to be at least 1 — § confident that the true error of empirically-optimal
theory T* will be within € of the truly best theory of 7, T

Theorem 1 (from [Vap82, Theorem 6.2]) Given a class of theories T, and €,§ > 0, let
T* € T be the theory with the smallest empirical error after

2 T
Muypper(T,€,0) = L—zln (%ﬂ

labeled queries, drawn independently from a stationary distribution. Then, with probability
at least 1 — 9, the expected error of T* will be within € of the optimal theory in T, i.e.,
Pr[ERR(T") < ERR(T,p) +€] > 1—6, using the T,y from Equation 2.

Notice this means a polynomial number of samples is sufficient to identify an e-good
theory from 7 with probability at least 1 —d, whenever In(|7|) is polynomial in the relevant
parameters.” Of course, this bound will also depend on |£|, the number of symbols in the

9Note that even fewer samples are required to reliably determine whether there is a theory in the given
space of theories 7 whose error is within € of a given quantity, say 0%; see [Vap82, Theorem 6.1].

The Complexity of Theory Revision 13

language of the theories, £. (We are not considering new symbols; i.e., this set £ is fixed.)
This boundedness property is true for 7 = Y[T]:

Observation 1 In(|TX[Ty]|) < K x[In(|£|)+21In(|Ty|+ K)], where L is the set of symbols
in the language of the theories.

This observation gives some insights into why theory revision may be useful. An ILP
(or tabula rasa) learning system, which starts with no “approximation” of the target theory,
may require a great many samples to collect the information required to identify the optimal
theory T,,; even in the propositional case, (M) labeled queries are required to reliably
build a M-clause theory from scratch (see Theorem 2 below). A theory revision system,
however, can exploit the initial theory T. In many situations, this T will be syntactically
close to the optimal T, (or at least to a theory T, whose error is nearly optimal), in the sense
that T, (or T,) will be in YX[Ty] for some small K. In particular, when K < M = [T/,
the number of samples required to “transform” Ty to T, will be much less than would be
required to learn T, from scratch.

(As another way to look at this: A small number of samples is usually sufficient to
identify the best theory within a small set of theories. In the theory revision framework,
this set corresponds to the theories that are syntactically close to the initial theory, which
(in practice) tends to be fairly accurate. As syntactically similar theories often tend to have
similar accuracies,'’ this space may include many very accurate theories, and so perhaps
the optimal theory. By contrast, an ILP system is biased to find the best small theory, as
it prefers theories that are syntactically close to the empty theory. Unfortunately, even the
best such theory may not be very accurate.)

We close this section by describing alternative spaces of transformations, and then provid-
ing lower bounds on the required number of samples. These comments provide a theoretical
justification for the intuition that it takes more evidence to justify adding a new part to a
theory, than is required to delete an existing part. Note that several theory revision systems,
including KrusT [CS90], incorporate this bias.

Alternative Spaces: The set YTA=K +R=K —4, K gtrictly extends T by including trans-
formation-sequences that can delete an unrestricted number of symbols, as well as add up
to K + K symbols. Observe that In(|Y+A=5 +8=K, —4, —R[T}) ig still polynomial is |£| and
|T|, meaning it can potentially be learned using a polynomial number of samples.

By contrast, consider Y+4 +8 —A=K, —R=K hoge transformation-sequences can delete
only a bounded number (2K) of symbols, but can add an unrestricted number. Here, if £ is
non-trivial (i.e., includes at least one constant ¢, one function f and one relation symbol),
then Y+4 +8 —A=K, “R=KIT] (and hence In(|Y+4 +& —4=K ~R=K[T1|)) i5 infinite. (To see
this: Let Ty = {} be the empty theory and observe Y4 T8 —A=K, —R=K[1 - T+E[T]
and so includes all 2¢ subsets of the countably infinite w = { r(c), 7(f(c)), r(f(f(c))), ... }.)

The following comment provides a stronger claim, showing that we cannot supply an a

priori bound on the number of samples required to learn the best theory in the TT2[T] set,
much less T4 T8 —A=K, —R=K[T 1 op T[Ty].

100f course, this is just a heuristic that does not always hold.

The Complexity of Theory Revision 14

Lower Bounds: To obtain a lower bound on the number of samples required to be at least
1 — ¢ confident of finding a theory within € of optimal, we can use

Theorem 2 (Sample Complexity [BEHWS89, EH89|) Given a class of theories T and
values €,0 > 0, let T* € T be any theory with empirical error of ERRg(T*) = 0 based on m
samples drawn independently from a stationary distribution over the query class Q. To be
at least 1 — & confident that ERR(T™) is at most € (ie., that PrlERR(T") < €] > 1-,
where this distribution is the product distribution over sets of samples drawn by any revision
algorithm), we need at least

1—c¢

1
log 5 (4)

m = mlower(T, €, 5) > max{ VCdzm;e('T) -1 }
€

samples, where VCdimg(T) is the Vapnik-Chervonenkis Dimension of the set T, with respect
to the query set Q (defined below).

(Notice this lower bound assumes there is a theory in 7 whose error is 0; if not, then we
will require yet more samples to find 7’s optimal theory.)

Here, VCdimg(7) is the largest number of queries from Q that can “shatter” a subset
of T — i.e., the largest number of queries {¢i,...,¢,} € Q such that, for each of the 2"
possible answer-lists (a1, ..., a,) € {Yes,No}", there is a theory in 7 that produces exactly
the answers, T(¢;) = a;. That is, 7 must include a theory Ty n that returns No to each
query (i.e., Ty, n(gi) = No for ¢ = 1..n), another Ty _ny € T that returns No to all but
the final ¢, a third Ty_yn € T that returns No to all but g,_;, a fourth that ..., and a
2"th Ty y € T that returns Yes to all n queries. If there is no largest such n, we say that
VCdimg(7) is infinite.!!

Clearly the set of theories Y*%[{}] has infinite VC-dimension (provided |£| is non-trivial)
as it can shatter a set of queries of size n, for any n: Consider the n propositions

Qn={r(c), r(f(0)), r(f(f(c), .., r(f(--(f(c)..) },

and note that Y*£[{}] includes a theory that contains, and hence entails exactly, each subset
of .. This means, for each of the 2" possible answer-lists (a1, ..., a,) € {Yes,No}", TTE[{}]
includes a theory that is perfect for

{ (r(c),a1), (r(f(c), a), (r(f(f(c)),az), ..., (r(f(..(f(c))...)),an) } .

We can also produce a set of theories with an exponentially large VC-dimension by simply
adding new antecedents:

Observation 2 There is a class of theories { T, } where each |T,| = O(n), such that the VC-
dimension of the theory set Y+4[T,], formed by applying add-antecedent transformations, is

" Readers wishing to learn yet more about “Vapnik-Chervonenkis Dimension” are referred to [Hau88].

The Complexity of Theory Revision 15

exponential in n; i.e., where VOdimg(Y+4[T,]) > 2". This holds even if all of the queries
are atomic, they all correspond to simple instantiations of the same relation, and there is a
Horn theory that labels this set perfectly.

By contrast, using the observations that |Y~#[T]| < 2/7' and VCdimg(7) < In(|7]),
we see that VCdimg(Y~#[T]) < |T|. Similarly, |[Y=#[T]| < 2/7! holds, which immediately
implies VCdimg(Y~4[T]) < |T|. Hence, for these types of transformations y C {—R, —A},

2 1
e ([T, 6,6) < 5 [T/ +10 5]

which shows the sample size is (at worst) linear in the size of the initial theory.

The earlier worst-case results for Yt# and Y4 cases each require predicate calculus, as
they rely on using function symbols. In the context of a propositional logic system with
2n + 1 variables {y, x{, x;, ..., %, x, }, we can easily get VCdimg(TTR[{}]) > 2": Here,

PR)

use the 2" queries “y :- x¥, ..., xI” where each xi" is either x;” or x; , and observe that

n

there is a theory in TTE[{}], of size O(2"), which corresponds to each of the 22" possible
deterministic oracles, where each such oracle maps some subset of these 2" queries to Yes,
and the rest to No. To see that each of these oracles leads to a distinct theory, note that each
corresponds to a distinct Boolean formula — i.e., here y holds iff the disjunction of the rules’
respective antecedents holds, which corresponds to an arbitrary DNF formula (identifying
each x; with x; and x; with ¥;) and there are 22" such formulae.

However, if we are only allowed to ask atomic queries, then there are only n queries we
can pose (n is number of variables), and so only 2" possible responses, meaning the VCdim

of any set of propositional theories can be at most n when considering only atomic queries.

4 Computational Complexity

Our basic challenge is to identify which theory T,y (from a set of revisions) has the smallest
possible error. The previous section supplied the number of samples needed to guarantee,
with high probability, that the expected error of the theory whose empirical error is smallest,
T*, will be within € of the expected error of this T,,. This section discusses the computa-
tional challenge of determining this T*, given these samples. We show first that this task
is tractable in some simple situations: when considering (1) only atomic queries posed to a
(2) propositional theory and being allowed (3) an arbitrarily large number of modifications
to the initial theory, to produce (4) a perfect theory (i.e., one that returns the correct answer
to every query). This task becomes intractable, however, if we remove (essentially) any of
these restrictions: e.g., if we seek optimal (rather than only seeking “perfect”) propositional
theories and are allowed to pose Horn queries, or if we consider predicate calculus theories,
etc. (In fact, it is NP-hard for 21 of the 3 x 2 x 2 x 2 = 24 theory revision situations
shown on the left-side of Figure 1.) We see, in particular, that revising a theory using a
bounded number of modifications is always difficult (i.e., in all 3 x 2 x 2 situations; e.g., even
if considering only atomic queries and seeking a perfect propositional theory). This implies
that the task of determining the smallest number of modifications required to find a perfect

The Complexity of Theory Revision 16

Bounded (All NP-Hard @) (All NP-Hard ®) (All NP-Hard ®)

Disj
Horn

Unbounded At@m

Dis;j
Horn

P
rop P‘redCal Atom

Prop PredCal Prop PredCal
L L

Perf Perf Perf
Opt
Arbitrary (YH ~4-f +4) Specialization (S ~ Y~/ +4)
Generalization (G ~ YT —4)
Legend:
O = Easy to solve @ = NP-hard
Bounded = K <ooc Unbounded = K=
Arbitrary TE = 7T+8 -4 -k +4 (K)

Generalization G = any of { Y1t/ —A (K) y+R(K) -4 (K)}
Specialization S = any of { T~/ +A (K) y-R(K) y+A(K)}

Any task that “projects” down to an NP-hard task, along any axis, is NP-hard. Here, this means
all of the “cross terms” are NP-hard. (For example ThRevp,edcai,Horn,Perg[Y™°] is NP-hard, as its
projection to the “Prop—PredCal x Perf-Opt” plane, ThRevpreqcal, atom,Perf[Y°], is NP-hard.) The
ThRevprop, Horn,0pt| Y] case is shown explicitly as each of its projections is easy; the figures omit all
other cross-terms.

Figure 1: Tractability of Theory Revision Tasks

theory is intractable. We also show that many of these tasks are not just intractable but
worse, they are not even approximatable, except in very simple situations.

We also consider two restricted subtasks, which allow only transformation that special-
ize (respectively, only generalize) the initial theory. We show that these tasks, also, are
intractable and non-approximatable in essentially all situations; i.e., except when all four of
the above conditions hold.'? Figures 1 and 2 summarize the various cases.

12 Actually, there is one other tractable case in the generalization situation; see Figure 1. Note that the
hardness of these restricted situations (say when we are only generalizing the theory) does not follow from
the hardness of the earlier general case (when we consider both generalization and specializing the theory)
in the “agnostic case”.

The Complexity of Theory Revision 17

4.1 Basic Complexity Results

To formally state the problem: Let YT'[] be a function that maps a theory to a set of
candidate revised theories; here, it refers to some Y*aekarkarkda transformation set.

Definition 1 (THREV[Y!] Decision Problem)
INSTANCE:
— Initial theory T;
— Labeled training sample S = {{q;, O(¢;)) } containing a set of Horn queries
and the correct answers; and
— Error value p € [0,1].

QUESTION: Is there a theory T' € YT[T] such that
ERrrg(T') = ﬁ 24,0 4i))€S err(T', ¢;) < p?

To simplify our notation, we will henceforth write ERR(T) for ERRg(T).

We will also consider the following special cases:

e THREVp,,f[YT] requires that p = 0 (i.e., seeking perfect theories), rather than “opti-
mal” theories THREV o[YT];

e THREVp,.,|T1] deals with propositional logic, rather than predicate calculus THREV peqca[Y1];
and

e THREV 410 [Y] deals with only atomic queries, as opposed to Horn queries THREV gopp [Y]
We will also use THREV p;;[Y] to refer to the task when the queries can be arbitrary
disjunctions, which need not be Horn. (While the other subscripts are restrictions on
THREV[Y], this Disj case is more permissive.)

We will also combine subscripts, with the obvious meanings; hence in general we will
write THREV 4 5 ¢[Y] where A € {Prop, PredCal}, B € {Atom, Horn, Disj} and C €
{Perf, Opt}. Our default is THREV preacat,zrorn,0pt| T1]-

When THREV,[T] is a special case of THREV[Y'], finding that THREV,[Y] is hard
(and later, non-approximatable) immediately implies that THREV,[Y] is hard /nonapproximatable.
Similarly, seeing that THRva[TT] is easy immediately implies that each special case of
THRva[TT] is easy. As a final note: all of the hardness results presented in this paper hold
even if we only consider “3-Horn theories” — i.e., rules whose antecedents contain at most
2 literals.

It is easy to find the optimal theory in certain degenerate cases, where either the in-
dividual queries can be decoupled (e.g., when using atomic propositional queries) or when
our actions are forced (e.g., when seeking perfect propositional theories): just throw away
the original theory, then add in propositions corresponding to the “Yes-labeled queries”. In
every other case, however, the task is intractable:

Theorem 3 (a) The THREV prop, atom,0pt| Y] and THREV prop orn,perf[L] decision prob-

lems (and hence THREV prop, atom,perf[Y™°]) are easy; each other problem — in particular,
(b) THREVPTop,Horn,Opt[TOO]i

The Complexity of Theory Revision 18

(C) THREVPredCal,Atom,Perf[TOO] and
(d) THREVPTO]J,DiSj,PETf[TOO])
and each of their generalizations — is NP-hard.

This information is summarized in lower left “Unbounded, Arbitrary” graph of Figure 1.

Each of these negative results (parts (b), (¢) and (d) above) requires that the training
data is produced by a Ope oracle, which supplies a (deterministic) mapping from queries
to answers, but does not guarantee that implied target theory is necessarily consistent. In
the following theorems, we will explicitly state whether the results hold even if the reviser
knows that the oracle is in Oy gpp,.

The above theorem describes the complexity of computing the best theory when we are
allowed to use an arbitrarily erpensive sequence of transformations. (N.b., this permits the
theory revision system to throw away the entire initial theory, and generate an arbitrary
new theory!) In many cases, however, we may want to consider only short sequences of
transformations — i.e., only consider members of TX[T] for small K. If K is constant, then
TX[T] contains only a polynomial number of theories, which means we can efficiently simply
enumerate and test all of these theories. Hence, the associated decision problem is easy:

Observation 3 For constant K, the THREmep,Atom,perf[TK] decision problem can be solved
in polynomial time.

This small-K assumption seems implicit to many theory revision systems. Notice, in
particular, that this renders theory revision solvable, as this means we will need to see only
a small number of samples (see Observation 1), and then perform a simple computation.

However, for some non-constant values of K, the task again becomes intractable:

Theorem 4 For K = Q(1/|Tol), the THREV pyop, atom,per [T decision problem is NP-hard.
This is true even if we consider only labeled queries produced by an Oyor oracle (i.e., even
when we know there is a Horn theory that correctly labels all of the queries).

The observation that determining such “K-step perfect theories” is NP-hard leads im-
mediately to:

Corollary 4.1 It is NP-hard to compute the minimal-cost transformation sequence required
to produce a perfect theory (i.e., to compute the smallest K for which there is a Tpeyfect €
YX[T] such that ERR(Tperpect) = 0), even in the propositional case when considering only
atomic queries, and when the labeled queries are produced by an Ogem, oracle. Here, it
1s also NP-hard to compute the “minimal-length” transformation, where the length of the
transformation sequence Ty 0 Ty ©...0 T is simply k — i.e., when each transformation has
“unit cost”.

(This is the obvious minimization problem corresponding to Theorem 4’s decision problem.)

This negative result shows the intractability of the obvious proposal of using a breath-
first transversal of the space of all possible theory revisions: First test the initial theory T
against the labeled queries, and return Ty if it has 0% error. If not, then consider all theories

The Complexity of Theory Revision 19

Bounded (All NotrPoLYApPrOX @) (All NoTPOLYAPPROX ®) (All NOTPOLYAPPROX @)

Dis;j PY Dis;j PY Dis;j P
Unbounded Horn ® Horn Y Horn Y
Atom Atom Atom
ropPredCal PropPredCal PropPredCal
Arbitrary (TX) Generalization (G) Specialization (S)

(® = NOTPOLYAPPROX; O = Easy (as poly-time decision); 7 = Approximatability class is not known)
Figure 2: Approximatability of Theory Revision Tasks

formed by applying a single (unit-cost) transformation, and return any perfect Ty € T*[Ty];
and if not, consider all theories in T?[Ty] (formed by applying sequences of transformations
with cost at most two), and return any perfect Ty € T?[Ty]; and so forth. (Notice this may
involve using successively more samples on each iteration, d¢ (o [LMRS8].)

4.2 Approximatability

Many decision problems correspond immediately to optimization problems; for example, the
MINGRAPHCOLOR. decision problem

Given a graph G = (N, E) and a positive integer K, can each node be labeled
by one of K colors in such a way that no edge connects two nodes of the same
color; see [GJ79, p191(CHROMATIC NUMBER)]

corresponds to the minimization problem: Find the minimal coloring of the given graph
G. We can similarly view the THREV,[Y'] decision problem as either the minimization
problem: “Find the T' € Y![T] whose error is minimal”, or the maximization problem:
“Find the T' € YT[T] whose accuracy is maximal”, where a theory’s accuracy is 1 —ERR(T).
(While the maximally accurate theory also has minimal error, these two formulations can
lead to different approximatability results.) For notation, let “MINTHREV,[YT]” (resp.,
“MAXTHREV,[YT]”) refer to the minimization (resp., maximization) problem.

Now consider any algorithm B that, given any MINTHREV,[YT] instance = = (T, S)
with initial theory 7" and labeled training sample S, computes a syntactically legal, but not
necessarily optimal, revision B(x) € YT[T]. Then B’s “performance ratio for the instance

2" is defined as

ERR(B(z)) .
MinPerf(MINTHREV, [YT)](B,z) = ERR(opt(x)) if ERR(opt(z)) # 0 (5)
0 otherwise

where opt(z) = 0pt yrinrhren, (v1) () is the optimal solution for this instance; i.e., opt({T, S))
is the theory T,y € YT[T] with minimal error over S.

The Complexity of Theory Revision 20

We say a function g(-) “bounds B’s performance ratio (over MINTHREV, [T1])” iff
Vinstances z € MINTHREV, [YT], MinPerfAMNTHREV,[Y!](B,z) < g(|z|)

where |z| is the size of the instance x = (T, S), which we define to be the number of
symbols in T plus the number of symbols used in S. Intuitively, this g(-) function indicates
how closely the B algorithm comes to returning the best answer for z, in the worst case over
all MINTHREV, [Y1] instances z.

Now let Poly(MINTHREV,[YT]) be the collection of all polytime algorithms that return
legal (but not necessarily optimal) answers to MINTHREV, [Y] instances. It is natural to
ask for the algorithm in Poly(MINTHREV,[Y]) with the best performance ratio; this would
indicate how close we can come to the optimal solution, using only a feasible computational
time. For example, if this function was the constant 1(z) = 1 for MINTHREV p;,,[Y], then
a polynomial-time algorithm could produce the optimal solution to any MINTHREV pyq,[1]
instance; as THREV pyp[T™] is NP-complete,'® this would mean P = NP, which is why we
do not expect to obtain this result. Or if this bound was some constant ¢(z) = ¢ € RT,
then we could efficiently obtain a solution within a factor of ¢ of optimal, which may be good
enough for some applications.!*

However, not all problems can be so approximated. Following [CP91, Kan92|, we define

Definition 2 A minimization problem MINP is POLYAPPROX if
Vy € R*, 3B, € Poly(MINP), Vz € MINP, MinPerfiIMINP](B,) < |z|7 .

Lund and Yannakakis [LY93] prove that (unless P = NP) the “MINGRAPHCOLOR
minimization problem” is not POLYAPPROX — i.e., there is some v € RT such that no
polynomial-time algorithm can always find a solution within |z|” of optimal. We use that
result to prove:

Theorem 5 Unless P = NP, none of
MINTHREV prop, pisj[Y], MINTHREV predcal, Horn[L] and MINTHREV p,p, Atom| TE]
1s POLYAPPROX.

While these results may at first seem immediate, given that it is NP-hard to determine if
a perfect theory exists, notice from Equation 5 that MinPerfAMINTHREV[YT>]](-) essentially
ignores such perfect theories. Note also that this result holds in the context based on an
“inconsistent” Ope; oracle; in such situations, no theory can be perfect.

As |z| can get arbitrary large, this result means that these MINTHREV, [Y1] tasks cannot
be approximated by any constant, nor even by any logarithmic factor nor any sufficiently
small polynomial, etc.

13While Theorem 3 only proves THREV pyop[Y] to be NP-hard, this problem is clearly in NP.

4There are such constants for some other NP-hard minimization problems. For example, there is
a polynomial-time algorithm that computes a solution whose cost is within a factor of 1.5 for any
TRAVELINGSALESMAN-WITH-TRIANGLE-INEQUALITY problem; see [GJ79, Theorem 6.5].

The Complexity of Theory Revision 21

4.3 Special Cases

If the theory is too general (i.e., returns Yes too often), then we may want to consider “spe-
cializing” it by applying only the “delete rule” and “add antecedent” transformations. In
particular, recall that Y+4~E[T] is the set of theories obtained using an arbitrary number of
such transformations, and Y~%[T] (resp., Y+4[T]), is the set of theories obtained by applying
an arbitrary number of “delete rule” (respectively, “add antecedent”) transformations. Sim-
ilarly, if the theory is too specific (i.e., returns No too often), then we may want to consider
“generalizing” it by applying only the “add rule” and “delete antecedent” transformations;
here, we consider Y*®~4[T], YTE[T] and Y=4[T], which are the set of theories obtained by
applying an arbitrary number of such transformations.
Even using only these transformations, almost all of these tasks remain intractable:

Theorem 6 ForeachS € { Y B+A TR T+4} GK ¢ [Y- R=K, +A=K y-R=K y+A=K 1
g c { T+R’_A, T+R, T_A }; gK c { T+R:K’ —A:K’ T+R:K, T_A:K }

1. It is easy to solve
(a) THREVProp,Atom,Perf[S]; and (b) THREVProp,Horn,Perf[g]7

2. Each of the following is NP-hard:
(a*) THREVProp,Atom,Opt[8]7 (b) THREVPTUp,Horn,PeTf[S]7
(C*) THREVPT@dcalaAtom,PeTf[8]7 (d*) THREVPTOP,Atam,PeTf[SK]

3. FEach of the following is NP-hard:
(a*) THREVP'rop,Atom,Opt[g]; (b) THREvProp,Disj,Perf[g];
(C) THREVP'redCal,Atom,Perf[g]y (d*) THREVProp,Atom,Perf[gK]-

(The “*”s above indicate that the problem is hard even if the target function is constrained
to be in Oporn-) O

Worse,

Theorem 7 Unless P = NP, none of the following is POLYAPPROX:
1. MINTHREVP,,-edCal,Atom[S] and MINTHREVPTOP,HM”[S]
for S e {x-RAA YR T+A}
2. MINTHREV predcai, atom|G] and MINTHREV prop pisj|G]
for G e {YtR=A THR T-4 1}
8. MINTHREV pyop atom| Y]
for Tt G{ T—I—A:K,—R:K)’ Y-R=K Y+A=K Y-A=K,+R=K Y+R=K y-A=K }

In each of these cases, however, there is a straight-forward polynomial-time algorithm
that can produce a theory whose accuracy (n.b., not inaccuracy) is within a factor of 2 of
optimal. Here, we use the ratio of an algorithm’s accuracy to the optimal value

1—Err(opt(z))

MamperﬂMAXTHREVX [TT]](B, X) = T(B(.’L‘))

Theorem 8 For each Yt € { Y-RB+A Y-RB Y+A Y+E-A Y+E -4 1
3B; € Poly(MAXTHREV[YT]), MazPerf/MaxTuRev[Y!])(By, z) < 2

The Complexity of Theory Revision 22

The companion paper [Gre99] considers other related cases, including the above special
cases in the context where our underlying theories can use the not(-) operator to return
Yes if the specified goal cannot be proven; i.e., using Negation-as-Failure [Cla78]. It also
considers the effect of re-ordering the rules and the antecedents, in the context where such
shufflings can affect the answers returned. In most of these cases, we show that the corre-
sponding maximization problem is not in POLYAPPROX — i.e., is not approximatable within
a particular polynomial.

4.4 Comments

Asymmetry: There is an interesting asymmetry between the complexities of addressing
THREV prop, Horn,perf| T T5] versus THREV pyop, Horn, perf[T %], as the first is easy to com-
pute, while the second is intractable. Towards explaining this, notice the actions of an
“Add-rule” revision system Rev ' are forced: on encountering each positively-labeled query
(p := ¢; Yes), it should simply add p :- ¢ if the initial theory does not already entail
“p 1= ¢"; and on encountering a negatively-labeled query (p := ¢1,..., p,; No), it should
add each unentailed ¢;. Clearly there is a perfect theory in YT%[T] iff the resulting theory
is perfect.

The actions of a “Delete-rule” revision system Rev f are not as obvious: Given the
pair of labeled queries (p :- ©1,...,0,; Yes) and (p; No), Rev % must now make A; ¢; un-
entailed, which happens if at least one of the ¢; is deleted; here, however, Rev % can select
which one. As shown in the proof for Theorem 6, it can be NP-hard to find the appropriate
such ¢;, given the other labeled queries.

Notice, by contrast, that the sample complexity of deleting rules is easily bounded,
whereas the sample complezity of adding rules, in the predicate calculus case, has no such
bound. This suggests the opposite conclusion: that adding rules should be harder.

Need only Positive Non-Horn Queries: While several of the proofs do use non-atomic
queries, these queries are always positive; i.e., of the form (p:-¢; Yes). Hence, all of theorems
that deal with MINTHREV _ gorn,..[-] continue to hold even if the Horn queries are restricted
to be labeled positively. The proofs do, however, require both atomic queries that are labeled
positively, and other atomic queries that are labeled negatively.

Relation to Inductive Logic Programming (ILP): While several of our proofs involve
adding new clauses to an initially empty theory (see Theorems 3(b,c,d), 5(a,b), 6(3b,3c) and
7(2b)), notice the target function O(-) being approximated does not necessarily correspond
to a Horn theory (i.e., O(-) is not always in Og,,); hence, these results deal with a situation
that differs from the standard ILP task. In fact, many of these tasks become easy if we
consider only target functions that correspond to Horn theories. Frazier and Pitt [FP93],
however, prove that learning a perfect Horn theory from Horn queries (which corresponds to
THREV prop, Horn,per | T°°] when the target oracle is in Opepp) is as hard as learning arbitrary
CNFs from examples in this “PAC” framework; n.b., the latter is an open problem in the
Computational Learning Theory community.

As a final comment on this theme: It is tempting to view theory revision as simply ILP,
where the initial theory is non-empty. If this were so, we could then “lift” the ILP results to

The Complexity of Theory Revision 23

this theory revision context, after simply “dividing through” by the initial theory. However,
typical ILP results deal only with adding in new facts and rules. As our theory revision
systems must also consider removing parts of the given theory (e.g., deleting existing rules
and antecedents of rules), we cannot directly apply those ILP results.

5 Conclusion

A knowledge-based system can produce incorrect answers to queries if its underlying theory
is faulty. A “theory revision” system transforms a given theory into a related one that is
as accurate as possible, based on a given set of correctly-answered “training queries”. This
paper analyses this task in an attempt to obtain a better understanding of the underlying
process. The positive results (especially Observations 1 and 3) show that a theory revision
system can work effectively if the initial theory Ty is “close to” a theory T* with low error
(i.e., if such a T* is in YX(Ty) for some small K), as this guarantees that (1) the required
number of samples will be small (and often considerably less than are required to learn an
effective theory from scratch) and more importantly, (2) even a naive exhaustive algorithm
will be able to identify this good theory efficiently. Notice this condition is true in the typical
situation, when the initial theory T corresponds to a deployed system, and hence itself has
low error. (Of course, the revision process will usually find a yet better theory.)

Our negative results, however, show that this is essentially the only situation where
theory revision is guaranteed to be computationally feasible: We prove that finding a theory
whose error is even close to optimal cannot be done efficiently if we are forced to consider
more expensive revisions, which involve extensive modifications. Moreover, these negative
results hold even if we consider the obvious restricted sets of possible modifications: e.g.,
“only generalization transformations” or “only specification transformations”.

We view these results as partially explaining several standard theory-revision practices.
First, the standard justification for theory revision, in general, is the intuition that a relatively
small number of samples should be sufficient to transform a nearly-perfect theory into an
even better theory; note this intuition has been borne out empirically [LDRG94]. Our
sample complexity results prove this in general: showing that it can take fewer samples
to produce a very good theory T* by revising an already good theory, than are required
to learn this T* from scratch. Moreover, the further observation that fewer samples are
required to justify deleting parts of a theory, rather than adding new parts, motivates theory
revision algorithms that focus on the first task [CS90]. We next examined the computational
challenge of producing such T* theories, and saw this is intractable if T is syntactically far
from the initial theory Ty. As we do not a priori know that T will be close to a theory with
minimal error, seeking the globally optimal theory is problematic. It therefore makes sense
to instead accept a locally optimal revised theory; this in turn resonates with the standard
theory-revision practice of hill-climbing.

Finally, as noted in the Introduction, we hope these results will help push researchers
and developers to consider other approaches to revising a sub-optimal theory — perhaps
by finding useful special cases, employing alternative approaches (possibly stochastic, or
like KBANN [Tow91]), changing representations, or exploiting other types of information

The Complexity of Theory Revision 24

present, in either the labeled queries, or the reviser’s prior knowledge.

A Proofs

Theorem 1 (from [Vap82, Theorem 6.2]) Given a class of theories T, and €,0 > 0, let T* €
T be the theory with the smallest empirical error after

2 T
mupper (T, €, (5) = ’76_2 In (%)W

labeled queries, drawn independently from a stationary distribution. Then, with probability at least
1 — 4, the expected error of T* will be within € of the optimal theory in T; i.e., Pr[ERR(T*) >
ERR(Top) —€] >1—4.

Proof: As the queries are generated by a stationary distribution, we can view the values of
{err(T, g;)}; as independent, identically-distributed random values with common population
mean ERR(T). Let ERRg(T) be the sample mean after taking m = myppe- (7T, €, 0) samples,
S. Hoeffding-Chernoff bounds [Che52, Bol85] bound the confidence that ERRg(T) will be
close to ERR(T):

Pr[|ERRs(T) — ERR(T)| > A] < 2™
Using the above value for m, this means Pr[|ERRg(T;) — ERR(T;)| > 5] < % holds for
each T, € T; which implies that the probability that |[ERRs(T;) — ERR(T;)| > § holds for
any 1 is at most Pr[3i |ERRg(T;) —ERR(T;)| > £] < |T|%. In particular, this means that
the empirical accuracy of both the T* and T,,; theories mentioned above with be within ¢/2

of their respective expected accuracy, with probability at least 1 —J. Hence, with probability
at least 1 — ¢,

ERrR(T*) — ERR(Top)
= (ERr(T*)—-ERRg(T")) + (ERRs(T*)—ERRs(Topt)) + (ERRg(Topt)— ERR(Topt))
< €/2 + 0 + €/2
= €
as desired. O (Theorem 1)

Observation 1 In(|YX[Ty]|) < K x [In(|£]) + 2In(|To| + K)], where L is the set of symbols in
the language of the theories.

Proof: To get a quick upper bound: Given d = |L£| possible symbols, we can add in only d¥
possible symbols scattered among the existing n = |Tg| symbols of Ty, leading to at most
n+K
dx ("%
from the (at most) n+K symbols, which leads to a total of (at most) |TE[T,]| < (d¥ (”}K)) X

("+K)) < d¥(n+ K)¥(n+ K)¥, whose logarithm is given above. O (Observation 1)

) new theories. For each of these theories, we can then remove at most K symbols

K

The Complexity of Theory Revision 25

Observation 2 There is a class of theories {T,}, where each |T,| = O(n), such that the VC-
dimension of the theory set T+A[Tn], formed by applying add-antecedent transformations, is expo-
nential in n; i.e., where VCdimg(YTA[T,]) > 2". This holds even if all of the queries are atomic,
they all correspond to simple instantiations of the same relation, and there is a Horn theory that
labels this set perfectly.

Proof: For each n, use the theory

c(Xi,...,%) = lye-
gtrue-
T, = index([1, 1).

index([0 | Rest], [Ayg, A;] :- index(Rest, Ay).
index([1 | Rest], [Ag, A;] :- index(Rest, A;).

of size O(n). Notice the index relation basically uses the first argument as an index into the
n-dimensional second argument, and then succeeds only if the indexed value (of the second
argument) is 1. Hence, the query index([1,0,1], [[[1,0],[0,1]1], [[1,1],[0,011])
will subgoal to index([0,1], [[1,1], [0,0]]) then to index([1], [1, 1]) and fi-
nally to index([1, 1), which succeeds. However, index([1,1,0], [[[1,0],[0,1]],
[[1,1]1,[0,0]111) will reach the subgoal index([1, 0) and so will fail. Now consider
the 2™ possible literals of the form p, = index([X;, ..., X,1, (r)), each formed by
storing either 0 or 1 in each of (r)’s 2" “locations”, and note that one 7';1’4 € Y44 could
add each such literal to the “c(Xi,...,X,;) := fyue.” rule, forming c(X;,...,%X,) :-
liye, index([X;, ..., X,1, (r)). (Notice this requires (r) to be exponentially large.)
The Y+4[T,] space therefore includes theories that can return Yes to any subset of the 27
{c(x1,...,%,) | % € {0,1} } queries, meaning VCdimg(Y*4[T,]) > 2». O (Observation 2)

Theorem 3 (a) The THREVprop Atom,0pt| Y] and THREVprop morn,per f[Y] decision problems
(and hence THREV pyop, atom,perf[Y°]) are easy; each other problem — in particular,

(b) THREvProp,Horn,Opt[Too]:

(C) THREVPredCal,Atom,Pe'rf[TOO] and

(d) THREVProp,Disj,Perf[Too]’
and each of their generalizations — is NP-hard.

Proof: (a) The obvious algorithm for both THREV pyop,atom,0pt| Y] and THREV prop, srorn,per [1]
takes (T, S, p) as its argument and first removes all of the initial theory T, then adds in each
“yes-labeled” queries (or in the stochastic case, adds in ¢ whenever S includes more instances

of (¢; Yes) than (p; No)) and finally returns Yes iff the resulting new theory is sufficiently
accurate.

(b): We show THREV prop, rrorn,0pt] Y°°] is NP-hard by reducing to it the NP-complete deci-
sion problem:

Definition 3 (MAXINDSET Decision Problem, from ([GJ79, p194]):) Given any
graph G = (N, E), with nodes N = {n;} and edges E C N x N, and a positive
integer k € Z%, is there an independent set of size k; i.e., a subset S C N such
that |S| =k and Vs1,s0 € S, (s1,82) ¢ E.

The Complexity of Theory Revision 26

Given any graph G = (N, E) and specified size of the independent set &, let T = {} be
the empty theory, and let S be the following (|N| x 1) + (|E| x |[N|) + (1 x |N|) queries

(n; Yes) forne N (Ask each of these |N| queries 1 time)
Sg = (b := n, m; Yes) for (n,m) € E (Ask each of these |E| queries |N| times)
(b; No) (Ask this query |N| times)

Now observe that G has an independent set of size k iff there is a theory T,,, € T*°[T¢]

formed by adding new rules to T = {},!® whose error is p = ‘Nhgﬁ:

=: Suppose G has an independent set of size k; call this independent set U = {n;}*_, C N.
Let Ty be the theory obtained by adding to T = {} the corresponding n; atomic clauses,
i = 1..k, as well as the |E| rules “b :- n, m”, for each (n,m) € E. Hence Ty is correct for
all |N| copies of the |E| different (b :- n, m; Yes) queries. As U is independent, it contains
at most one of any (n, m) € E pair, which means Ty can contain at most one of any such
{n,m} pair, which means T will not entail the b literal. Hence Ty is correct for all |N|
copies of the (b; No) query. As Ty also entails k£ of the n; literals, as well as all |E| of the

« ._ 9 : . |E|—k .
b :- n, m” rules, its error is NIGHE 29 desired.

<—: Suppose we can add a set of clauses to T to form a theory T’ whose error is p =
‘Nhgﬁ. Notice first that the obvious clauses to add are of the form “b :- n, m” and “n;”;
adding in any other clause can only increase our error. We can assume that T' includes all
|E| of the “b :- n, m” clauses, as otherwise its error will be strictly over p. Let U = {n;}
be the set of n;s added. If this U includes both the literals n and m corresponding to any
“p :- n, m” rule, then T would entail b, which alone prevents T's error from equaling p.
We can therefore assume that U includes at most one of any {n,m} pair, which means that U
corresponds to an independent set. As ERR('T') = p, this set must contain k elements, as
desired.

(c): We show that THREV predcai, Atom, perf| L °°] is NP-hard by reducing to it the (canonical)
NP-complete problem:

Definition 4 (3sAT Decision Problem, from [GJ79, p259]:) Given a set U =
{u1,...,u,} of variables and formula ¢ = {ci1,...,cn} (a conjunction of clauses
over U) such that each clause ¢ € C is a disjunction of 3 (positive or negative)
literals, is there a satisfying truth assignment for ¢ %

Given any 3sAT formula ¢, let T\, = {} be the empty theory. To define the query/answer
pairs, for each ¢ = {i;1,Ujo, Uj3} clause, let vllcl]l = v(Xy, ..., X,)[{ X;1/sgn(@;1),
Xjo/sgn(djo), X;3/sgn(a;s) } 1, where sgn(u;) = 0 and sgn(u;) = 1. As an example,

vl {us,us,us} 11 = v(X;, Xo, 0, X4, O, X, X7, 1, Xg), when there are 9 variables.

15Given that Tg is empty, there is no reason to consider any other type of transformation. Also, while
this proof considers adding atomic clauses (a.k.a. “literals”), it is trivial to consider a variant that adds
“non-degenerate” clauses by replacing each n; literal with the rule “n; :- firy.”, and assuming the initial
theory T¢' includes the literal £i,ye.

The Complexity of Theory Revision 27

Now for any 3SAT formula ¢ = {c1, o, - ¢} let

S (v(Xy, Xo,..., X,); Yes[{X1/?, Xo/7, ..., X,/7])
v (vllc;11; No) for each i =1..m

For now, assume also require that the language for this theory include only the two constant
symbols 0 and 1, and no function symbols, as well as the relation symbol v.

We now show that there is a theory T,y € YT*°[{}] whose error is ERR(Tpp) = 0 iff
there is a satisfying assignment of ¢.

<=: Let f: U+ {1,0} be an assignment that satisfies o, and let T' € T[{}] be the theory
formed by adding to T, = {} the unit clause v(f(u1), f(u2), ..., f(u,)). (E.g., if
= {(u,1), (ug, 0, (us, 0, (ug, 1)}, then T = {v(1, 0, 0, 1)}.) Observe immediately
that, as T' entails an instance of v(X;, Xo,..., X,), it satisfies the first query, and that
v(f(u1), f(uz), ..., f(u,)) will not match any of the v[lc;|] literals: E.g., consider
c; = {us, us,ug}. As f satisfies @, it must satisfy this ¢;, which means f(uz) =1 or f(us) =1
or f(ug) = 0, which means v(f(u1), f(u2), ..., f(un)) will not match v(X;, X3, O,
X4, 0, X6, X7, 1, Xo). Hence, T' will produce the correct answers to all of the S,, queries,
and so its error is 0.

=: Suppose we can form a perfect theory T,y by adding some clauses to {}. To satisfy
the first query, T,,; must include some instance of v(...). Let v(a;, ..., a,) be any such
literal. We need only show that the mapping f(u;) = a; is a satisfying assignment. First,
recall the only constant symbols are {0, 1}, which means f’s range is appropriate. Second,
towards a contradiction, assume f does not satisfy some clause, say ¢; = {us, us, g}, which
means f(us) = 0, f(us) = 0 and f(ug) = 1. This means a literal in T,y will match the
vllc;] literal, which means T, is not perfect; contradiction.

To remove the restriction on the language: If the language includes other constant sym-
bols, say {s1,...,8m}, just include m x n additional labeled queries, each of the form
(v(X1, ..., X-1, Si, Xjy1, --., X,); No). We can similarly deal with any function
symbols, say {fi,...,fx}, by including the k& x n additional labeled queries of the form
(v(Xy, ooy Xion, £, oo, Yu), Xip1, -.., X,)5 No). (Of course, each f; is of
arity m;.)

(d): We also use 3SAT to show that THREV p,p pisjperf| Y] is NP-hard: Once again let
the initial theory be empty {}, and let

<fli1 Vv ﬁig Vv '|.~113, Yes) fOI' C;, = {ail,ﬂig, ﬂi3}, 7 =1..m
S, = (b := u;, U;; Yes) fori=1.n
(b; No) fori=1.n

To explain the notation: the query corresponding to ¢; = {us, us, g} is “ug V us V g”, and
the correct answer to this query is Yes.

We now show that there is a theory T,, € YT*°[{}] whose error is ERR(Tpp) = 0 iff
there is a satisfying assignment for ¢.

<=: Let f: U — {1,0} be an assignment that satisfies ¢, and let T' € T°°[{}] be the theory

The Complexity of Theory Revision 28

formed by adding to {} the unit clause u; if f(u;) =1, and @; if f(u;) = 0, as well as the n
rules “b :- u;, §;” for 4 = 1..n. To see that ERR(T') = 0, observe first that T' answers
all m “b :- w;, §;” queries correctly. Secondly, as T’ includes exactly one of each {u;,T;}
pair, its answer to the b query is T'(b) = No. As f is a satisfying assignment, for each 7,
either f(u;) = 1 for some u; € ¢;, or f(uy) = 0 for some %y € ¢;. This means T' includes
some @;; corresponding to an element in ¢;, which means T'(c;) = Yes.

=: Suppose we can form a perfect theory T,, by adding some set of rules to {}. First,
T,p: must entail each “b :- u;, @;” rule. If T, also entails both of {u;, 4;} for any 4, then
it will return the wrong answer to the b query. We can therefore assume that T,, entails
at most one from any pair {u;, u;}. We can further assume that T, includes (at least)
one of the literals from each ¢; = {@;1, Ujo, Uj3} clause, as otherwise T,y would return the
incorrect answer to the @;; V @2 V U3 query. Now define the assignment f: U — {0,1} by
f(u;) = 1iff Tpp =u;, and f(u;) = 0 otherwise; and observe (immediately) that f satisfies
®. O (Theorem 3)

Theorem 4 For K = Q(+/|Tol), the THREmep,Atom,pe,«f[TK] decision problem is NP-hard. This
is true even if we consider only labeled queries produced by an Ogyry oracle.

Proof: We reduce 3SAT (Definition 4) to this problem: Given any 3SAT formula ¢ =

{c1,¢9, -+ -, cpm} over the variables U = {uy, ..., u,}, use the following (n+ 1)(n + 3m)-clause
theory
bf -u, u. fori=1.n,fork=0.n
T, = ch i u. whenever u; € ¢;, for k =0..n
GERE TR whenever 4; € ¢;, for k = 0..n

and let S, be the following (n +m)(n + 1) query/answer pairs:

¢ _ [No) fori=1l.n, k=0.n
e (cf; Yes) forj=1.m, k=0.n

Finally, let K = K(T,) =n = Q(4/|Ty|).

We need only show that there is a theory T, € TX[T,] whose error is ERR(Typ) = 0
iff there is a satisfying assignment of ¢.

This proof differs from the proof of Theorem 3(c) only by using the fact that there are
n+1 “copies” of each query to eliminate degenerate solutions: As we can modify at most n
rules (using any of the transformations), we cannot simply delete the n +1 “b¥ :- wu;, 4;”
rules for any 7; nor can we avoid the effect of these rules by simply adding a new antecedent
to each. We must therefore assume that some “b¥ :- u;, @;” rule will appear in the final
Topt, for each i, which means (as T,y (b¥) = No) that T,y will not contain both u; and ;.
By a similar counting argument, we cannot simply add n + 1 new c? atomic clauses to T'.
For each j, therefore, the only way to insure Topt(c;?) = Yes for all £ is if T,,; includes a
literal corresponds to some element of ¢; (e.g., some 4j;).

To show that these labeled queries are from some function in Og,.,, notice they are
satisfied by the theory that contains exactly the m x (n+1) singleton clauses cf, forj =1..m,

k =0..n. O (Theorem 4)

The Complexity of Theory Revision 29

Theorem 5 Unless P = NP, none of
MINTHREVProp,DiSj[TOO]; MINTHREVPredCal,Horn[TOO] and MINTHREvProp,Atom[TK]
is POLYAPPROX.

Proof: All three proofs use the following result:

Definition 5 (MINCOLOR Minimization Problem, from[GJ79, p191]:) Find
the minimal k such that G is k-colorable, where a graph G = (N, E) is k-colorable
if there is a function c: N — {1,...,k} such that ¥Y{ni,n9) € E, c(ny) # c(ng).

Theorem 9 ([LY93]) Unless P = NP, there is a 6 € RT such that no poly-
nomial time algorithm can find a coloring for arbitrary MINCOLOR graphs G =
(N, E) within a factor of |N|° of optimal.

(That is, MINCOLOR is not POLYAPPROX.)

(a): We use the following reduction to show that MINTHREV pyop pisi[Y] is not POLYAP-
PROX: Given any graph G = (N, E), let Tg = {} be the empty theory, and let Sg be the
following M = |N| + |N|*> 4+ |E| X |N|*> + |N| query/answer pairs (requiring |N|? + |N|* +
|E| x | N2 4+ |N|? symbols):

<Cn1’jVan,j\/...VCnlNl,j; NO) fOI“j = 1|N|
(cniVenaV...Vennp; Yes) forne N (Ask each query |N| times)
(viol :- cpn,, cm,; Yes) for (n,m) € E, j =1..|[N| (Ask each query |N| times)
(viol; No) (Ask this query |N| times)

To understand the connection between these propositions and the MINCOLOR. problem,
think of cp ; as meaning that the node n should be colored with the color j; i.e., c(n) = j for
the coloring ¢: N — {1,...,|N|}. The first set of queries seeks to minimize the number of
distinct colors in c’s range; the second set of queries attempts to insure that c is complete: if
they are all satisfied, then each node has at least one color; the third and fourth sets attempt
to insure that c is a legal coloring: if they are all satisfied, then no pair of nodes connected
by an edge will have the same color.

We now show that there is a theory T¢ € T°°[T] whose error is ERR(T¢) = C/M, iff
there is a solution to the MINCOLOR problem G using C colors.'6

<=: Given any legal coloring function c¢: N — {1,...,|N|} whose range has C values, form
a new T¢ theory by adding to T the singleton literal cp) for each n € N, as well as
the clause viol :- cp;, cm; for each (n,m) € E and each j = 1..[N|. Notice this T¢ will
satisfy each of the final three sets of queries, and fail to satisfy exactly C' of the first set;

hence ERr(T¢) = £.

=>: Suppose there is a theory T¢ € T*°[T| whose error is ERR(T¢) = C/M. Observe
first that T cannot violate any of final 3 sets of queries, as that alone would produce an error
of |[N|/M, which is more than C/M. We can therefore assume that T entails the second

16To simplify the presentation, we will assume that C' < |N|.

The Complexity of Theory Revision 30

set of queries which means, for each n € N, there is (at least) one j such that T entails
cn,j. We can therefore define c: N — {1,...,|N|} by ¢(n) = min;{j|Tc(cn;) =1} As
T¢ entails each “viol :- cpj, cm;” rule but does not entail viol, it cannot entail both
cnj and cp; for any (n,m) € E and any j, which means c defines a legal coloring. As T¢’s
error, C'/M, is all due to violations of the first set of queries, the ¢ function can use at most

C colors.

Now suppose, for every 6 € Rt there is a poly-time algorithm Bj such that, for any
theory + labeled-query-set © = (T,S), Bs;({T, S)) returns a theory Ts; € YT[T] whose er-
ror is within a factor of |z|° of the error of the optimal T,, € Y*[T]; i.e., such that
ERR(Bs(z))/ERR(T,y) < |z|°. We could then use these algorithms to find approximately
optimal solutions to any MINCOLOR problem:

Given any MINCOLOR problem G = (N, E) (with |N| > 2), use the above transformation
to form zg = (T, Sg). Let C* € ZT be the optimal solution to G (i.e., the minimal number
of colors); this corresponds to the optimal solution for z¢, call it Tg e, Whose error is
ERR(TG opt) = CM Now use the Bs/g algorithm to produce a theory T s/6 with performance
ratio ERR(TG,J/(‘,)/ERR(TG,opt) = %/% = CC(ZG S |<TG75G)|6/6 S (|N|6)5/6 = ‘N|6
(recall that | T¢| = 0 and |S¢| = [N[*+|N|*+|E| x |[N]*+|N|? < |N|® symbols for |[N| > 1).
Notice this corresponds to a feasible MINCOLOR solution to G using Cj/¢ colors, meaning we
would have produced a solution to G with a performance ratio of under |N|° in polynomial
time. As this d is arbitrary, this contradicts Theorem 9, assuming P # NP.

(b): To prove that MINTHREV predcar, Horn| Y] is not POLYAPPROX: Given any graph
G = (N, E), let Tg = {} and Sg be

c(X, j); No) for j = 1..|N| (Ask each of these |N| queries 1 time)
c(n, Y); Yes) forne N (Ask each of these |N| queries |N| times)
viol(X, Y) :- c(X, Z), c(Y, Z); Yes) (Ask this single query |N| times)
viol(n, m); No) for (n,m) € E (Ask each of these |E| queries |N| times)

o~~~

Here c(n, j) means the node n should be colored with the color j.

We can use essentially the same arguments used above to show that there is a theory
Te € T°[Tg] whose error is ERR(T) = C/M, iff there is a solution to the MINCOLOR
problem G using C colors; and then show that this correspondence is sufficient to show that
MINTHREV predcat, morn[Y] is not POLYAPPROX, unless P = NP.

(c): To show that MINTHREVprop atom|[TX] is not POLYAPPROX, we identify the graph
G = (N, E), with

use_color; :- c¢p;. forne N, j=1.|N|
Te = viol® :- cpj, cmy;. for (n,m) € E, j=1.|N|, and k =0..|N|
coloredf :- cnj. forne N, j=1..|N|, and £k = 0..|N|

The Complexity of Theory Revision 31

and Sg with the M = |N| + |N|(IN|+1) + |N|*(|N|+ 1) query/answer pairs:

(use_colorj; No) for j =1..|N|
<violk; No) for £ = 0..|N| (Ask each of these |N| + 1 queries |N| times)
(coloredf; Yes) forn € N and k= 0.|N| (Ask each of these |[N| x (|N| + 1) queries |N| times)

and finally, let K = K(T¢g) = |N|. The trick here is use the multiple copies of the literals
to avoid degenerate solutions (see proof of Theorem 4).

To show there is a theory T € TX[T¢] whose error is ERR(T¢) = C/M, iff there is a
solution to the MINCOLOR problem G using C' colors:

<=: Given any legal coloring function ¢: N — {1,...,|N|} whose range has C values,
form a new T¢ theory by adding, for each n, the single literal cp). Notice this T¢ will
satisfy each of the final two sets of queries, and fail to satisfy exactly C' of the first set; hence
ErRr(Tc) = £.
=>: Suppose there is a theory T¢ € TE[Tg| whose error is ERR(T¢) = C/M. As TE
transformations can modify at most K of the rules, notice T¢ € T (Tg) must include at
least one of the “viol® :- cpj,cm;.” rules (for each (n,m) € E). Hence, if T¢ included
both {cn, cm;} for any arc (n,m) € E, it would answer the corresponding “viol*” query
incorrectly, producing an error of at least (|/V| + 1)/M, which strictly exceeds the assumed
error of C/M. We can therefore assume T includes at most one of each {cp j, cm ;} pair. By
a similar argument, T'¢ must include at least one cp ; for each n; otherwise some coloredf
query would be answered incorrectly, which would force ERR(T¢) > (|N| +1)/M.

Our quota of |N| symbols is just the number needed to add exactly one {c,;}; for
each node n € N, as required to satisfy the coloreds queries. We can, therefore, define a
coloring ¢: N — {1,...,|N|} by letting c¢(n) = A(j){cn,; € Tc} be the single j for which T¢
includes the literal cn ;. Now observe that c is a feasible solution to MINCOLOR, as every
node has a color, and no arc connects two nodes of the same color. Notice finally that T¢
satisfies the final two sets of queries, meaning it is only inaccurate on some set of exactly
C' (use_color;; No) labeled queries, meaning the associated coloring c requires exactly C
colors.

(The rest of this proof is isomorphic to final piece of part (a), shown above.) O (Theorem 5)

Theorem 6 ForeachS e { Y BFA YR y+tA1l GK ¢ (Y- R=K, +A=K ~y-R=K ~y+A=K1
Ge{THR—A YR Y-A) GK ¢ [T+R=K, —A=K y+R=K y-A=K Y.

The Complexity of Theory Revision 32

~

. It is easy to solve
(a) THREVP'rop,Atom,Pe'rf[S]; and (b) THREVProp,Horn,Perf[g];

IS

. Each of the following is NP-hard:
(a*) THREVProp,Atom,Opt[S]; (b) THREvProp,Horn,Perf[S]7
(C*) THREvPredCal,Atom,Perf[8]; (d*) THREVP'rop,Atom,Pe'rf[SK]

Co

. Each of the following is NP-hard:
(a*) THREVProp,Atom,Opt[g]’ (b) THREVProp,Disj,Perf[g]:
(C) THREvPredC’al,Atom,Perf[G]y (d*) THREVPTOp,Atom,Perf[gK]-

(The “*”s above indicate that the problem is hard even if the target function is constrained to be in
OHO’I’TL')

Proof: (1a): To deal with THREVpyop atom,perf[Y 4] and THREV prop atom,per /[T~ E):
For each labeled query (v,No), use the 2% transformation to delete each rule whose head
matches v; then check if the resulting theory T’ is perfect. To handle THREV prop atom, per [Y T4]:
For each labeled query (p, No) where T (¢) = Yes, note that T must include at least one rule
of the form “p :- a;, ..., a;” (where k > 0). To each such rule, add in a new unsatisfied
literal £fq5.. In all cases, after performing the appropriate transformations, return Yes iff
the resulting theory is perfect.

(1b): To deal with THREV prop morn,perf[L TE] and THREV prop morn, perf[L% 4]: For each
positively-labeled query (¢, Yes), use the T; R transformation to add in the (possibly new)
clause ¢; then return Yes iff the resulting theory is perfect. We can use a similar approach
to handle THREmep,Hom,perf[T_A].

(2a*): We reduce the following NP-complete problem to THREV prop Atom,opt[L7
Definition: MINHITSET Decision Problem, from [GJ79, p222]: Given set
of elements X = {z1,...,xx}, collection C' = {¢;} of subsets of X where each

¢; € X, and integer k € Z*, is there a subset of X of size k that intersects each
subset ¢;; i.e., a set S C X such that |S| =k and SN¢; # {} forall ¢; € C.

Given an arbitrary instance of MINHITSET (X, C, k), let

T _ X; forz; € X
br = Ci i~ Xj. whenever z; € ¢
and
g _ <Xj; No) for zj € X (Ask each of these | X| queries 1 time)
DR (ci; Yes) for ¢; € C' (Ask each of these |C| queries |X| time)

Now observe that there is a hitting set of size k iff there is a theory T' € T E[Tpg]

formed by deleting clause from T pg, whose error is p = m:

=: Suppose (X,C) has an hitting set of size k; call this set S = {z:}F., € X. Let
S=X-8={z;}? ., be the complement of this set, and let Tg € Y~#[Tpg| be the theory

The Complexity of Theory Revision 33

obtained by deleting the corresponding x; literals, i = k + 1..|X|; hence the only x;s in Tg’s
theory correspond to elements of S. As S is a hitting set, Ts will contain at least one x; for
each c;, and so it will still be able to derive each c;. As it is also able to derive each of the

. . ~ . . k
k literals in S, its expected error is BSACESE

<—: Suppose we can delete a set of rules from Tpg to form a theory T' € T~E[T pg] whose
error is p. As deleting any “c; :- x;” rule can only be detrimental, we will only consider
deleting some of the x; atomic clauses; let S = {x;} be the set removed, leaving only the
set S. Now observe that this S corresponds to a hitting set S C X of size k: First, if S was
not a hitting set, then T’ would be unable to derive some c;, which would prevent it from
obtaining the needed accuracy. Second, if S had more than & elements, then T's error would

again be over p.

The proof for THREV pp, atom,0pt| T 4] is identical to the one shown above, given the
observation that adding antecedents to any “c; :- x;” rule is detrimental, and adding any
antecedents to a “x;” clause has the same effect as deleting it. This second observation is
used to handle THREVp;qp, Atom,Opt[T_A]: Simply repeat the above proof, just substituting
the operation of “adding the fj4s antecedent to the ‘x;.” atomic clause (forming x; :-
Liase)” for the “deleting the x; clause” used above. (Notice that both operations have the
same effect: of preventing x; from being entailed.)

(2b): We use 3sAT (Definition 4) to show that THREV prop, riorn, perf[L %] is NP-hard. Given
any 3-CNF formula ¢, let

u. ;. fort=1..n
T, = b :-u, u;. fori=1.n
Cj - u. whenever u; € ¢;
c; :— U;. whenever ; € ¢;
and
(c;; Yes) fori=1..m
S, = (b := w;, U;; Yes) fori=1.n
(b; No)
Notice deleting any “c; :- u;” or “c; :- @,;” rule can only be detrimental for the c; queries,
and deleting any “b :- u;, 1;” rule can only hurt the corresponding non-atomic queries.

Hence, the only way we can form a perfect Tp.,; € T[T, is by deleting some subset of the
u; or U; atomic clauses. Now just re-use the same arguments used to prove Theorem 3: We
must remove (at least) one of each {u;, 4;} pair to satisfy the first set of queries, suggesting
an assignment f: U — {0,1} by f(w;) =1 iff u; € T, r; and then observe that f satisfies ¢
as it satisfies each clause c;, as Tperf(c;) = Yes.

To show that THREV prop, morn, per f| Y 74] and THREV prop, wrorn, perf[Y 7] are also NP-
hard, just observe that adding any antecedents to any of the non-atomic clauses is counter-
productive; and adding an unsatisfied £f4s. to any u; has the same effect as deleting this
atomic clause.

The Complexity of Theory Revision 34

(2c*): To handle THREV pyedcat, tom,perf| T 7], use

uZ(O) . u; (O) . ui(l) . 'l_l,'(l) . fore=1..n

T! — b; (X) - u;,(X), wX). fore=1..n
L c; (X) = u(X). whenever u; € ¢;
c;(X) - u;(X). whenever u; € ¢;

and
(b;(1); No) fori=1..n

S, = (c;j(1); Yes) fori=1.m
(b;(0); Yes) fori=1..n

Here, we identify u; (1) (resp., §; (1)) with the literal u; (resp., @;); the u;(0) and @, (0) values
are used to prevent the “b; (X) :- u;(X), ©;(X)” rules from being deleted, as deleting such
rules would prevent the remaining theory from answering the final set of queries correctly.
Hence, we can only consider deleting the atomic u; (1) and u; (1) clauses, which leads to the
same basic proof shown above.

There are two situations to consider when dealing with THREV preacai, atom,perf[X %]
and THREV predcai, atom, Per f[T+A], depending on whether with underlying languages includes
equality. If it does not, then the above proof also holds for THREV predcar, atom, perf[L™,
as there is no advantage to adding an antecedent. Here, we can deal with THREV pyedcal, Atom, Per f[T+A]
by replaying this proof, but replacing the operation of deleting a u; (1) atomic clause with
the operation of adding an unsatisfied antecedent, to form “u; (1) := £yge.”.

The situation is slightly trickier if we allow equality. Here, there is a perfect theory
in TH4[T,'], formed by simply adding a “X = 0” to each “b;(X) :- w;(X), ,;(X)” rule,
forming “b; (X) :- w;(X), @ (X), X=0". To get around this problem, we can use T,", which
differs from T’ by including a new set of 2n literals, u; (2) and ;(2) for each 7 = 1..n; and Sy
which includes all of S/, as well as the n additional (b;(2); Yes) query/answer pairs. Here,
the simple trick of adding the “X=0" antecedents is not sufficient; this forces the revision
system to use the changes shown above.

(2d*): To show that THREV prop atom, perf| Y~ %%] is NP-hard (where K > n), use

u. ;. fori=1..n
T _ b* - w, 4. fori=1.nk=1.K
ks cj - ou. whenever u; € ¢;
c; - . whenever u; € c;
- (b*; No) for k=1.K
e (cj; Yes) fori=1.m
As we can only “spend” K on delete-rule transformations, we cannot delete all 3K symbols
of the “b* :- u;, w” clauses for any 4, meaning we cannot afford to leave both {u;, 1;} in

the final theory; the proof then reduces to the solution shown above.
Similar proofs deal with THREV pyop. atom, Per f[T+A:K | and THREV prop, atom, per | T 5

(3a*): To show that THREV prop, atom,0pt| T] is NP-hard, we reduce to it the NP-complete

K, —I—A:K].

The Complexity of Theory Revision 35

MAXINDSET decision problem (Definition 3). Given any graph G = (N, E) with nodes N
and edges F, and specified size of the independent set k, use

Te = {b:— n, m. for(n,m)GE}
and
Sy = (n;; Yes) fornj € N (Ask each of these |[N| queries 1 time)
(b; No) (Ask this query |N| times)
Now observe that G has an independent set of size k iff there is a theory T, € TT[T¢]
formed by adding new rules to T, whose error is p = |]2V‘|1;|k:

=: Suppose G has an independent set of size k; call this independent set U = {n;}¥_, C N.
Let Ty be the theory obtained by adding to T the corresponding n; atomic clauses, ¢ = 1..k.
As U is independent, it contains at most one of any (n, m) € F pair, which means Ty can
contain at most one of any {n,m} pair, which means Ty will not entail the b literal. As Ty
also entails only & of the |N| n; literals, its error is |[N| — k.

<—: Suppose we can add a set of clauses to T, to form a theory T’ whose error is p.
Notice first that the obvious clauses to add are of the form n;; adding in any other clause
can only hurt. Let U= {n;} be the set added. If this U includes both the literals n and m
corresponding to any “b :- n, m.” rule, then T’ would entail b, which alone would prevent
T's error from equaling p. We can therefore assume that U includes at most one of any pair
{n,m}, which means that U corresponds to an independent set. As ERR(T') = p, this set
must contain £ elements, as desired.

The above proof for THREV pyop. atom,0pt[Y TF] deals only with transformations that add
clauses; an isomorphic proof holds for THREV pep, atom,0pt| T %] based on the observation
that deleting antecedents can only be detrimental. We can also use an virtually isomorphic
proof to deal with THREV pyop, atom,0pt| T “]: Here, use the theory

T B b :- n, m. for (n,m) € F
@ = n; = rase- for nj € N

(notice £fqse is not in T), and the same Si shown above. We can then simply repeat
the above proof, just substituting the operation of “deleting a ffq;. literal from a ‘n; :-
Liqise .’ clause, for the “adding in a n; literal” used above. Notice immediately that both
operations have the same effect: of causing n; to be entailed. (Notice also that deleting any
other antecedent, in particular, from any “b :- n, m” rule, can only be detrimental.)

(3b): The proof for THREV pyop, pisj,perf| T] is the same as the proof of Theorem 3(d)).
Similar proofs apply to THREVProp,Disj,Perf[T_A] and THREVProp,Disj,Perf[T+R’_A]-

(3c): These proofs are identical to the proof of Theorem 3(c).
(3d*): To show that THREV prop, atom,perf| L TH] is NP-hard (when K > n), use

b :-w, u. fori=1.n
T, = c? - ou;. whenever u; € ¢;, k =0.K
ch - . whenever ; € ¢;, k = 0..K

The Complexity of Theory Revision 36

o _ [(o)
e (ck; Yes) fori=1.m, k=0.K

As we can only “spend” K on add-rule transformations, we cannot add all K + 1 symbols of
the ’“” atomic clauses for any j query, meaning we must add at least one u; or 4; atomic
clause for each associated c; clause. The proof then reduces to the solution shown above.
Similar proofs deal with THREV prop, atom, per [T =K] and THREV prop,. atom, per [L TR ~A=K],
O Theorem 6

Theorem 7 Unless P = NP, none of the following is POLYAPPROX:
1. MINTHREV pyedcal, Atom[S) and MINTHREV pop Horn[S]
for S € {Y-BAA Y-R y+A]
2. MINTHREvPredC’al,Atom[g] and MINTHREVProp,Disj[g]
for G € {YtR=A Y+R -4
8. MINTHREV pyop, atom[L]
for Tt e{ T+A:K,—R:K), T-R=K_ T+A:K’ T—A:K,—}—R:K, THR=K T—-A=K }

Proof: Each of these proofs is a modification of Theorem 5, based on a reduction from
MINCOLOR (Definition 5).

(1b): Given any graph G = (N, E), let Tpr be

Cn,;j- forne N and j =1..|N|
T B coloredn :- Cn,;. forne N and j = 1..|N|
bR — viol :- cnj,Cm;- for (n,m) € E, and j = 1..|N|
use_color; :- cp;. forne N, j=1.|N|

and let Spgr be the following M = |[N|+ |N|*+ |N|+ |E| X |N|> + |N|® query/answer pairs:

(use_colorj; No) for j = 1..|N|
(colored,; Yes) forne N (Ask each of these queries |N| times)
(viol; No) (Ask this query |N| times)
(viol :- cpj,cm,; Yes) for (n,m) € £, j = 1..|N| (Ask each of these queries |N| times)
(use_color; :- cp,; Yes) forne N, j=1.|N| (Ask each of these queries |N| times)
As in Theorem 5 above, we show that there is a theory T € T_R[TDR] whose error is
ERr(T¢) = C/M, iff there is a solution to the MINCOLOR problem G using C col-
ors. This proof involves first observing T¢(viol) must be No, as otherwise ERR(T¢)
will be at least |N|/M, which exceeds the allowed C'/M. Similarly T must include each
“viol :- cnj,cm,;” rule, as otherwise its error will be at least |N|/M, due to the fourth set
of queries. A similar argument prevents T¢ from excluding any of the “use_color; :- cn;”
rules. As removing any “coloredn :- cp;” ruleis detrimental, we can assume that T¢ is
formed by deleting only atomic cp ; clauses, until only one such literal remains for each n.
The rest of the proof is isomorphic to (the end of) Theorem 5(a).

The same arguments show that adding antecedents to any non-atomic clause is problem-
atic, leading to a proof that involves simply adding unsatisfied ¢4, antecedents to various

The Complexity of Theory Revision 37

cn,; clauses — all but one, for each n — which shows that MINTHREV p,p, Horn| Y "B +4] and
MINTHREV prop, morn[Y T4] are not-approximatable.

(1a): To deal with MINTHREV predcar atom[Y], use the theory

Cn,j (0). Cn,j(l) . forn € N and j = 1|N|
T coloredp (X) :- cp,;(X). forne N and j = 1..|N|
bR viol(X) :- cp;(X), cm;(X). for (n,m) € F, and j = 1..|N|
use_color;(X) :- cp;(X). forne N, j=1.|N|

and labeled queries

(use_color;(0); No) for j =1.|N|

(colored, (0); Yes) forne N (Ask each of these queries |N| times)
Spr = (viol(0); No) (Ask this query |N| times)

(viol(1); Yes) (Ask this query |N| times)

(use_color;(1); Yes) for j =1.|N| (Ask each of these queries |N| times)

Here, the role of the (viol(1); Yes) and (use_color;(1); Yes) queries are to prevent
us from deleting either the “viol(X) :- cpn;(X), cpm;(X).” or the “use_color;(X) :-
cn,; (X).” rules.

We can now re-use the same proofs presented above to show that we cannot approximate
any of MINTHREV preacal,atom|Y %], MINTHREV predcaratom| Y 4] or
MINTHREVPredCal,Atom[T+A]-

(2a): To deal with MINTHREV pedcar atom| L 5], use

Tar = {viol(X, Y) :- c(X, Z2), c(¥, 2).}
and
(c(j, X); Yes[X/?]) for j =1..|N| (Ask each of these queries [N| times)
Sar = (viol(i,j); No) for (n;,n;) € E (Ask each of these queries |[N| times)
(c(Y, j); No) for j =1..|N|
Here, if there is a coloring f: N — {1,...,C} that uses C colors, we can form a theory

T' € YTE[T og] by adding the n atomic clauses, c(j, f(n;)); and vice versa.
We can re-use this to address MINTHREV preacar, atom| Y 57" and MINTHREV preacar atom| Y]

(2b): We use a propositional variant of the above proof to handle MINTHREV pyo, pis;[T]:
Here, T, = {} and S5 is

(cie Vo V- Veng No)y fork=1.|N|

(cjuVejaV---Vcjn; Yes) forj=1.|N| (Ask each of these queries |N| times)
(viol;;; No) for (n;,n;) € E (Ask each of these queries |N| times)
(viol;; := Cix, Cjx; Yes) for (n;,n;) € E, k=1.|N| (Ask each of these queries |[N| times)

Again, if there is an coloring f: N +— {1,...,C} that uses C colors, we can form a the-

The Complexity of Theory Revision 38

ory T' € T*R[T 4] by adding the n atomic clauses ¢ ;) (together with the [E| x |N]|
viol;; :- Cik, Cjx clauses) and vice versa; and again, we can re-use the proof to deal with
MINTHREV pop,pis; [T T 74] and MINTHREV pyop, pisi[L]

(3): The proof for MINTHREV pgp, atom|Y T#7X] is identical to the proof of Theorem 5(c).
The proofs for MINTHREV prop. atom[Y ~47%] and MINTHREV pyp, atom| T TF=5~47K] are sim-
ilar.

To handle MINTHREV prop, atom| Y~ #=%]: Use as initial theory T¢' = TeU{cn; - tnen, j=1.|n];
which includes all |[N|? cp; literals, and let K = |N|?> — |N|. Here, each plausible solu-
tion involves deleting all but |N| of cn; literals, leaving one for each n. The proofs for
MINTHREV prop atom[L T4=5] and MINTHREV pyop, atom | T =5 T4=K] are similar.

O Theorem 7

Theorem 8 For each YT ¢ {Y—RAA y—R y+A y+R-A ~y+R -4
3B; € Poly(MAXTHREV[YT]), MazPerfAMAXTHREV[Y!]](B},z) < 2

Proof: " Consider first the MAXTHREV[S] situation, for any S € {Y~% T+4 T-R+471
The following 2 x 2 grid partitions the set of queries

T(q) =
Yes No

O(q):YeSW
O(q)=No |Qny Qnn

Let p; = Pr[Q;] be the probably of encountering a query in the class @;. (In the predicate
calculus case, we actually require that T (¢) = O(q) for each ¢ € Qyy — i.e., the binding
lists must match. The Qyy set contains the other queries ¢, for which either T (¢) = No or
T(q) = Yes[:] but T(q) # O(q).) The accuracy of the initial T is A(T) = pyy + pnn-
The optimal possible accuracy, for any T; € S(T') is A(Top) = optyaxThRevs (D> S)] <
PNN + Pyy + Pny, as any T, being weaker than T, can only entail fewer conclusions; i.e.,
if T(q) = No, then T;(q) = No for any weaker T.

If we remove all of T’s propositions (or equivalently, add a new unsatisfied literal as a
new antecedent to each clause), the resulting degenerate T, = {} would have an accuracy
score of pyy + pyny (as it would no longer be able to derive any of the conclusions in
@y, which is desired). Now let B(-) be the best possible polynomial time algorithm; i.e.,
the algorithm that, given any (T,S) can produce the revised B((T,S)) = T* € S(T)
with the best score over all polynomial time algorithms. Notice trivially that A(B(T)) >
max{pyy + PnN, PNy + PnN} = Dyn + max{pyy, pny }, as B(-) could simply leave T as it

. t(T
was, or delete all of its clauses. Hence, A’&((T))) < pNiNﬁLf{?;;fgxy} < mai’iﬁffﬁy} < 2, as
claimed.

For the MAXTHREV|G] situation, for any G € {YT+%, T4, T+B=41 just use the obser-
vation that adding a new rule (or deleting an existing antecedent) can only cause previously

17T am indebted to Tom Hancock for this construction.

The Complexity of Theory Revision 39

underivable queries to be derivable, while those that could already be derived remain deriv-
able. Hence, we need only reverse the roles of the T(¢) = Yes and T(¢) = No columns.

O (Theorem 8)

References

[AGMSS5]

[BCHY0]

[BE8Y]

[BEHWS9)

[BFOS84]

[BM93]

[Bol85]
[Bou93]

[Che52]

[Cla78]

[Coh90]

[Coh92]

[Coh95a)]

Carlos E. Alchourrén, Peter Gardenfors, and David Makinson. On the logic
of theory change: Partial meet contraction and revision functions. Journal of
Symbolic Logic, 50:510-530, 1985.

E. Boros, Y. Crama, and P.L. Hammer. Polynomial-time inference of all valid
implications for horn and related formulae. Annals of Mathematics and Artificial
Intelligence, 1:21-32, 1990.

Alex Borgida and David Etherington. Hierarchical knowledge bases and efficient
disjunctive reasoning. In Proceedings of KR-89, pages 33-43, Toronto, May 1989.

Anselm Blumer, Andrzei Ehrenfeucht, David Haussler, and Manfred Warmuth.
Learnability and the Vapnik-Chervonenkis dimension. Journal of the Association
for Computing Machinery, 36(4):929-965, October 1989.

L. Breiman, J. Friedman, J. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth and Brooks, Monterey, CA, 1984.

Paul T. Baffes and Raymond J. Mooney. Symbolic revision of theories with
M-of-N rules. In Proceedings of IJCAI-93, August 1993.

B. Bollobas. Random Graphs. Academic Press, 1985.

C. Boutilier. Revision sequences and nested conditionals. In Proceedings of
IJCAI-93, pages 519-525, 1993.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on the sums of observations. Annals of Mathematical Statistics, 23:493—
507, 1952.

K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293-322. Plenum Press, New York, 1978.

William W. Cohen. Learning from textbook knowledge: A case study. In Pro-
ceeding of AAAI-90, 1990.

William W. Cohen. Abductive explanation-based learning: A solution to the
multiple inconsistent explanation problems. Machine Learning, 8(2):167-219,
March 1992.

William W. Cohen. PAC-learning recursive logic programs: Efficient algorithms.
Journal of Artificial Intelligence Research, 2:500-539, 1995.

The Complexity of Theory Revision 40

[Coh95b]

[Coh96]

[CPY1]

[CS90]

[Dal88]

[DE92]

[DMR92]

[DPY1]

[DP92]

[DPY4]

[EG92]

[EHS9)

[FH96)

[FLY4]

[FP93]

William W. Cohen. PAC-learning recursive logic programs: Negative results.
Journal of Artificial Intelligence Research, 2:541-573, 1995.

William W. Cohen. PAC-learning non-recursive prolog clauses. Artificial Intel-
ligence, 79(1):1-38, 1996.

P. Crescenzi and A. Panconesi. Completeness in approximation classes. Infor-
mation and Computation, 93(2):241-62, 1991.

Susan Craw and Derek Sleeman. Automating the refinement of knowledge-based
systems. In L.C. Aiello, editor, Proceedings of ECAI 90. Pitman, 1990.

Mukesh Dalal. Investigations into a theory of knowledge base revision: Prelimi-
nary report. In Proceedings of AAAI-88, pages 475-479, 1988.

Mukesh Dalal and David Etherington. Tractable approximate deduction using
limited vocabulary. In Proceedings of the Ninth Canadian Conference on Artifi-
cial Intelligence, Vancouver, May 1992.

S. Dzeroski, S. Muggleton, and S. Russell. PAC-learnability of determinate logic
programs. In Proceedings of the Fifth Workshop on Computational Learning
Theory, Pittsburgh, 1992.

Jon Doyle and Ramesh Patil. Two theses of knowledge representation: Language
restrictions, taxonomic classification, and the utility of representation services.
Artificial Intelligence, 48(3), 1991.

Rina Dechter and Judea Pearl. Structure identification in relational data. Arti-
ficial Intelligence, 58(1-3):237-270, 1992.

A. Darwiche and J. Pearl. On the logic of iterated belief revision. In TARK-94,
pages 5—23, 1994.

T. Eiter and G. Gottlob. On the complexity of propositional knowledge base
revison, updates and counterfactuals. Artificial Intelligence, 57:227-270, 1992.

Andrzei Ehrenfeucht and David Haussler. A general lower bound on the number
of examples needed for learning. Inform. Comput., 82(3):247-251, September
19809.

N. Friedman and J. Halpern. Belief revision: A critique. In KR-96, 1996.

M. Freund and D. Lehmann. Belief revision and rational inference. Technical
Report TR-94-16, Hebrew University, 1994.

Michael Frazier and Leonard Pitt. Learning from entailment: An application to
propositional horn sentences. In Proceedings of IML-93, pages 120-27. Morgan
Kaufmann, 1993.

The Complexity of Theory Revision 41

[Gar88|

[GGKO7]

[GI79]

[GPS94]

[Gre99]

[GS92]

[Hau88]

[Hec95]

[Hin89]

[HRJ94]

[Kan92]

[KKS93]

[KKS95]

[KM91]

Peter Gardenfors. Knowledge in Flux: Modeling the Dynamics of the Epistemic
States. Bradford Book, MIT Press, Cambridge, MA, 1988.

Russell Greiner, Adam Grove, and Alex Kogan. Knowing what doesn’t matter:
Exploiting the omission of irrelevant data. Artificial Intelligence, December 1997.
http://www.cs.ualberta.ca/~greiner/PAPERS /superfluous-journal.ps.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, New York,
1979.

G. Gogic, C. H. Papadimitriou, and M. Sideri. Incremental recompilation of
knowledge. In Proceedings of AAAI-9/, pages 922-927, 1994.

Russell Greiner. The
complexity of revising logic programs. Journal of Logic Programming, 1999,
to appear. http://www.cs.ualberta.ca/~greiner/PAPERS /impure.ps.

Russell Greiner and Dale Schuurmans. Learning useful horn approx-
imations. In B. Nebel, C. Rich, and W. Swartout, editors, Pro-
ceedings of KR-92, San Mateo, CA, October 1992. Morgan Kaufmann.
http://www.cs.ualberta.ca/~greiner/PAPERS /horn.ps.

David Haussler. Quantifying inductive bias: Al learning algorithms and Valiant’s
learning framework. Artificial Intelligence, pages 177-221, 1988.

David E. Heckerman. A tutorial on learning with bayesian networks. Technical
Report MSR-TR-95-06, Microsoft Research, 1995.

Geoff Hinton. Connectionist learning procedures. Artificial Intelligence, 40(1—
3):185-234, September 1989.

Frederick Hayes-Roth and Neil Jacobstein. Knowledge engineering systems.
Communication of the ACM, pages 27-39, March 1994.

Viggo Kann. On the Approzimability of NP-Complete Optimization Problems.
PhD thesis, Royal Institute of Technology, Stockholm, 1992.

Henry Kautz, Michael Kearns, and Bart Selman. Reasoning with characteristic
models. In AAAI-93, pages 34-39, 1993.

Henry Kautz, Michael Kearns, and Bart Selman. Horn approximations of em-
pirical data. Artificial Intelligence, 74:129-145, 1995.

Hirofumi Katsuno and Alberto Mendelzon. On the difference between updating
a knowledge base and revising it. In Proceedings of KR-91, pages 387-94, Boston,
April 1991.

The Complexity of Theory Revision 42

[KR94a]

[KR94b]

[KS90]

[KSS92]

[LDRGY4]

[Lev84]

[LMRSS]

[LVO1]

[LV95]

[LY93]

[MBSS]

[Mo094]

[Mug92]
[OM94]

Roni Khardon and Dan Roth. Learning to reason. In AAAI-9/, pages 682-687,
1994.

Roni Khardon and Dan Roth. Reasoning with models. In AAAI-94, pages
1148-1153, 1994.

Michael Kearns and Robert E. Shapire. Efficient distribution-free learning of
probabilistic concepts. In Proceedings of the 31st Symposium on Foundation of
Computer Science, October 1990.

M. J. Kearns, R. E. Schapire, and L.. M. Sellie. Toward efficient agnostic leaning.
In Proceedings COLT-92, pages 341-352. ACM Press, 1992.

Pat Langley, George Drastal, R. Bharat Rao, and Russell Greiner. The-
ory revision in fault hierarchies. In Proceedings of The Fifth Interna-
tional Workshop on Principles of Diagnosis (DX-94), New Paltz, NY, 1994.
http://www.cs.ualberta.ca/~greiner/PAPERS /th-rev.ps.

Hector J. Levesque. Foundations of a functional approach to knowledge repre-
sentation. Artificial Intelligence, 23:155—-212, 1984.

Nathan Linial, Yishay Mansour, and Ronald Rivest. Results on learnability and
the Vapnik-Chervonenkis dimension. In Proceedings of COLT-88, 1988.

Charles X.F. Ling and Marco Valtorta. Some results on the computational
complexity of refining certainty factors. International Journal of Approrimate
Reasoning, 5:121-148, 1991.

Charles X.F. Ling and Marco Valtorta. Refinement of uncertain rule bases via
reduction. International Journal of Approrimate Reasoning, 13:95-126, 1995.

Carsten Lund and Mihalis Yannakakis. On the hardness of approximating min-
imization problems. In Proceeding of Twenty-fifth Annual ACM Symposium on
Theory of Computation (STOC-93), pages 286-93, 1993.

S. Muggleton and W. Buntine. Machine invention of first order predicates by in-
verting resolution. In Proceedings of IML-88, pages 339-351. Morgan Kaufmann,
1988.

Raymond Mooney. A preliminary PAC analysis of theory revision. In T. Petsche
and S. Hanson, editors, Third Annual Workshop on Computational Learning
Theory and Natural Learning Systems (CLNL-92). MIT Press, 1994.

S.H. Muggleton. Inductive Logic Programming. Academic Press, 1992.

Dirk Ourston and Raymond J. Mooney. Theory refinement combining analytical
and empirical methods. Artificial Intelligence, 66(2):273-310, 1994.

The Complexity of Theory Revision 43

[Plo71]

[Pol85]

[Qui90]

[Qui92]

[RBKSS]

[Sha83|

[SK91]

[Tow91]

[Vap82]

[WMO4]

[WP93]

G. D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, University
of Edinburgh, 1971.

P.G. Politakis. Empirical Analysis for Ezpert Systems. Pitman Research Notes
in Artificial Intelligence, 1985.

J. Ross Quinlan. Learning logical definitions from relations. Machine Learning
Journal, 5(3):239-66, August 1990.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, San Mateo, 1992.

R. Ramakrishman, C. Beeri, and R. Krishnamurthy. Optimizing existential
datalog queries. In Proc. of 7th Symposium on Principles of Database Systems,
pages 89-102, Austin, TX, March 1988.

Ehud Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

Bart Selman and Henry Kautz. Knowledge compilation using horn approxima-
tions. In Proceedings of AAAI-91, pages 904-09, Anaheim, August 1991.

Geoff Towell. Symbolic Knowledge and Neural Networks: Insertion, Refinement
and Extraction. PhD thesis, University of Wisconsin, Madison, 1991.

V.N. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer-
Verlag, New York, 1982.

David C. Wilkins and Yong Ma. The refinement of probabilistic rule sets: so-
ciopathic interactions. Artificial Intelligence, 70:1-32, 1994.

James Wogulis and Michael J. Pazzani. A methodology for evaluating theory
revision systems: Results with Audrey II. In Proceedings of IJCAI-93, pages
1128-1134, 1993.

