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Abstract

We introduce and motivate the task of learning
under a budget. We focus on a basic problem in
this space: selecting the optimal bandit after a pe-
riod of experimentation in a multi-armed bandit
setting, where each experiment is costly, our to-
tal costs cannot exceed a fixed pre-specified bud-
get, and there is no reward collection during the
learning period. We address the computational
complexity of the problem, propose a number of
algorithms, and report on the performance of the
algorithms, including their (worst-case) approxi-
mation properties, as well as their empirical per-
formance on various different problem instances.
Our results show that several obvious algorithms,
such as round robin and random, can perform
poorly; we also propose new types of algorithms
that often work significantly better.

1 Introduction

Learning tasks typically begin with a data sample — e.g.,
symptoms and test results for a set of patients, together with
their clinical outcomes. By contrast, many real-world stud-
ies begin with no actual data, but instead with a budget —
funds that can be used to collect the relevant information.
For example, one study has allocated $2 million to develop
a system to diagnose cancer, based on a battery of patient
tests, each with its own (known) costs and (unknown) dis-
criminative powers. Given our goal of identifying the most
accurate classifier, what is the best way to spend the $2
million? Should we indiscriminately run every test on ev-
ery patient, until exhausting the budget? . . . or selectively,
and dynamically, determining which tests to run on which
patients? We call this problem budgeted learning.

An initial step in any learning task is identifying the most
discriminative features. Our present work studies the bud-
geted learning problem in the following “coins problems” ,
closely related to feature selection: We are given � (distin-

guishable) coins with unknown head probabilities. We are
allowed to sequentially specify a coin to toss, then observe
the outcome of this toss, but only for a known, fixed num-
ber of tosses. After this trial period, we have to declare a
winner coin. Our goal is to pick the coin with the highest
head probability from among the coins. However, consid-
ering the limits on our trial period, we seek a strategy for
coin tossing that, on average, leads to picking a coin that is
as close to the best coin as possible.

There is a tight relation between identifying the best coin
and the most discriminative feature: the head probability
of a coin is a measure of quality, and corresponds to the
discrimination power in the feature selection problem. Our
companion paper [LMG03] develops the theory and prob-
lem definitions for the more general learning problems;
here we remark that the hardness results and the algorith-
mic issues that we identify in this work also apply to these
more general budgeted learning problems, while the latter
introduce extra challenges as well.

The first challenge in defining the budgeted problem is to
formulate the objective to obtain a well-defined and satis-
factory notion of optimality for the complete range of bud-
gets. We do this by assigning priors over coin quality, and
by defining a measure of regret for choosing a coin as a
winner. We describe strategies (for determining which coin
to toss in each situation), and extend the definition of re-
gret to strategies. The computational task is then reduced
to identifying a strategy with minimum regret, among all
strategies that respect the budget.

We address the computational complexity of the problem,
showing that it is in PSPACE, but also NP-hard under dif-
ferent coin costs. We establish a few properties of optimal
strategies, and also explore where some of the difficulties
may lie in computing optimal strategies, e.g., the need for
contingency in the strategy, even when all coins have the
same cost (the unit-cost case). We investigate the perfor-
mance of a number of algorithms empirically and theoreti-
cally, by defining and motivating constant-ratio approxima-
bility. The algorithms include the obvious ones, such as
round-robin and random, as well as novel ones that we pro-



pose based on our knowledge of problem structure. One
such algorithm, “biased-robin”, works well, especially for
the special case of identical priors and unit costs. The paper
also raises a number of intriguing open problems.

The main contributions of this paper are:
� Introducing the budgeted learning task and precisely

defining a basic problem instance in this space (the
“coins problem”) as a problem of sequential decision
making under uncertainty.

� Addressing the computational complexity of the prob-
lem, highlighting important issues both for optimality
and approximability. Empirically comparing a num-
ber of obvious, and not so obvious, algorithms, to-
wards determining which work most effectively.

� Providing in closed-form the expected regret of using
one of the most obvious algorithms: round-robin.

The paper is organized as follows. A discussion of re-
lated work and notational overview ends this section. Sec-
tion 2 describes and precisely defines the coins problem,
and Section 3 presents its computational complexity. Sec-
tion 4 begins by showing that the objective function has an
equivalent and simplified form. This simplification allows
us to explore aspects of the problem that are significant
in designing optimal and approximation algorithms. This
section also defines the constant-ratio approximation prop-
erty, and describes the algorithms we study, and addresses
whether they are approximation algorithms. Section 5 em-
pirically investigate the performance of the algorithms over
a range of inputs. For a complete listing of the data, to-
gether with additional empirical and analytic results, please
see [Gre].

1.1 Related work

There is a vast literature on sequential decision making,
sample complexity of learning, active learning, and exper-
iment design, all somewhat related to our work; of which
we can only cite a few here. Our “coins problem” is an
instance of the general class of multi-armed bandit prob-
lems [BF85], which typically involve a trade-off between
exploration (learning) and exploitation. In our budgeted
problem, there is a pure learning phase (determined by a
fixed budget) followed by a pure exploitation phase; This
difference in the objective changes the nature of the task
significantly, and sets it apart from typical finite or infinite-
horizon bandit problems and their analyses (e.g., [KL00]).
To the best of our knowledge (and to our surprise) our bud-
geted problem has not been studied in the bandit literature
before1. Our coins problem is also a special Markov de-
cision problem (MDP) [Put94], but the state space in the
direct formulation is too large to allow us to use stan-
dard MDP solution techniques. While the research on

1Personal communication with D. Berry of [BF85].

techniques for solving large MDPs with various forms of
structures show promise (e.g., [Duf02]), we believe that
our problem has special structure that allows for simpler,
more efficient, and more effective algorithms for our spe-
cial case.

Many on-line learners try to minimize the number of train-
ing examples; cf., [MCR93, SG95, EDMM02]. These ap-
proaches, however, allow the learner to acquire as many
examples as are required to match some requirements —
e.g. for some statistical test, or some specified � and

�
val-

ues in the case of PAC-learners [Val84]. We, however, have
a firm total budget, specified before the learning begins.

Budgeted learning falls under the framework of bounded
rationality (e.g., [RS95]), and is an instance of active
learning and cost-sensitive learning (e.g., [Ang92, CAL94,
Tur00, GGR02]). Feature costs in [Tur00, GGR02] refer
to costs occuring at classification time, while we are con-
cerned with cost during the learning phase. In typical pool-
based active learning, the learner knows the feature values
but not the label of the instances in the pool. Our prob-
lem is closer to unknown feature values. Similar to active
learning results [LMRar, TK00, RM01], we show that se-
lective querying can be much more efficient than standard
method such as round-robin. These previous results sug-
gest that greedy methods are effective; deeper look-aheads
are not used due to a combination of inefficiency and no
significant gains [LMRar]. However, we observe here that
the greedy method has poor performance both in theory and
in experiments, while looking deeper pays significant divi-
dends.

This paper considers a relatively simple framework to al-
low us to obtain crisp theoretical results and many useful
technical insights. These results set the stage for our com-
panion paper [LMG03], which extends many of the ideas,
algorithms and analyses to handle learning a Naive Bayes
model under a budget. In particular, it shows that the ba-
sic algorithmic ideas presented here extend to yield effec-
tive selective querying algorithms in that context as well,
and that similar observations, such as poor performance of
greedy algorithms, also hold there.

1.2 Notation

Random variables are denoted by capital letters, such as � ,
and �����	� denotes the expectation of � . The probability of
an event 
 is denoted by ���

�� . We use the conditioning bar
for conditional probabilities, probability density functions
and expectations, e.g., �����	� � ���
� . Probability distributions
may replace probability density functions and summations
may replace integrations, or vice versa, whenever appropri-
ate in the exposition.



2 The Coins Problem

Perhaps the simplest budgeted learning problem is the fol-
lowing “coins” problem: You are given a collection of �
coins with different and unknown head probabilities. As-
sume the tail and the head outcomes correspond to receiv-
ing no reward and a fixed reward (1 unit) respectively. You
are given a trial/learning period for experimenting with the
coins only, i.e., you cannot collect rewards in this period.
At the end of the period, you are allowed to pick only a sin-
gle coin for all your future tosses (reward collection). The
trial period is defined as follows: Each toss incurs a cost
(e.g., monetary or time cost), and your total experimental
costs may not exceed a budget � . Therefore the problem
is to find the best coin possible subject to the budget

�
. Let

us now define the problem precisely. The input is:

� A collection of � coins, indexed by the set � , where
each coin is specified by a query (toss) cost and a prob-
ability density function over its head probability. We
assume that the priors of the different coins are inde-
pendent. (Note that these distributions can be different
for different coins.)

� A budget
�

on the total cost of querying.

We let the random variable � � . denote the head probabil-
ity of a coin � � , and let � � ��� � � be the density over � � .
Both discrete and continuous densities are useful in our
exposition and for our results; Figure 1 illustrates exam-
ples with both types of priors. The family of Beta densities
are particularly convenient for representing and updating
priors [Dev95]. A Beta density is a two-parameter func-
tion, Beta �����
	��
� � , whose pdf has the form � ������� � �����
�	� ����� � , where ��� and ��� are positive integers in this pa-
per, and � is a normalizing constant, so that the density in-
tegrates to � . Beta ��� � 	�� � � has expectation � ��� ��� �! � � � .
Note that the expectation is also the probability that the
outcome of tossing such a coin is heads. If the outcome
is heads (resp. tails), the density is updated (using Bayes
rule) to Beta �����  ��	"�
� � (resp. Beta �����#	!�$�  � � ). Thus
a coin with the uniform prior Beta �"��	%� � , that was tossed
5 times, and gave 4 heads and 1 tail, now has the den-
sity Beta ��&'	!( � , and the probability that its next toss gives
heads is & ��) .
Let us first address the question of which coin to pick at
the end of the learning period, i.e., when the budget allows
no more tosses. The expected head probability of coin * ,
aka the mean of coin * , is: ����� � �,+.- �/ � � � � ��� � ��0 � � .
The coin to pick is the one with the highest mean 1$243�56+768
9 �;:#< � ��� ��� , which we denote by *>= . Note that coin *�=
may be different from the coin whose density has the high-
est mode or the coin whose density has the highest prob-
ability of having head probability that is no less than any
other(e.g., see Figure 1a). The motivation for picking coin
*�= is that tossing such a coin gives an expected reward no
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Figure 1: (a) Coins with discrete distributions. Coin ?�@ , with 0.3
probability has head probability of 0.2, and otherwise (with prob-
ability 0.7) has head probability 0.9. The mean (expected head
probability) of coin ? @ is A�B C�DFE.A�B GIHJA�B KMLNA�B OPH6A�B D , while
for coin ?�Q it is A�B C , thus coin ? @ is the coin to pick with 0 budget.RPS;TVU
W�X�Y EZA�B C[H]\�LIA�B ^ S A�B O
H_B D�LIA�B G[H4A�B K Y EZA�B `aC�C . There-
fore the regret from picking coin ? @ is A�B `�OaC�bcA�B CaD,EdA�Be\�`aC .
(b) Coins with Beta priors. Coin ?�f has the higher mean at gah�O .
Here RPS;T U
W�X Y%i A�B O�O (computed by numerical integration).

less than the expected reward obtained from tossing any
other coin.

We will now define a measure of error which we aim to
minimize. Let * 243�5 be the actual coin with the high-
est head probability, and let � 243�5 + 768
9 �;:#< � � , the
max random variable, be the random variable correspond-
ing to the head probability of * 2V3j5 . (Note ����� 243�5 �k+
-mln � 768
9 �;:#<	� �
��o � � � ��� ���p04q� .) The (expected) regret
from picking coin * , � �sr �s* � � , is then ���;r �;* � �t+ �����P243�5u�
� �
�N+ �����]243�5 �_� ����� �
� , i.e., the average amount by
which we would have done better had we chosen coin
* 243�5 instead of coin * . Observe that to minimize regret,2
we also should pick coin *>= . Thus the (expected) mini-
mum regret is ����� 243�5 �P�F1 243�5 . Note that the (mini-
mum) regret is the difference between two quantities that
differ in the order of taking maximum and expectation:
����� 2V3j5 �v+ ��� 768
9 �;:#< � � � , and 1 243�5 + 768
9 �s:#< ����� � � .

2.1 Strategies

Assume now that we are allowed to experiment with the
coins before having to choose. Informally, a strategy is a
prescription of which coin to query at a given time point. In
general, such a prescription depends on the objective (min-
imizing regret in our case), the outcomes of the previous
tosses or equivalently the current densities over head prob-
abilities (i.e., the current belief state), and the remaining
budget. Note that after each toss of a coin * , the density
over its head probability is updated using Bayes formula
based on the toss outcome. In the most general form, a
strategy may be viewed as a finite rooted-directed tree, (or
actually, DAG) where each leaf node is a special leaf (stop)
node, and each internal node corresponds to tossing a par-

2We could define alternative measures of error: For example
the 0/1 error may be defined as the probability that the chosen coin
is not the best coin w U
W�X . However, a strategy minimizing such
error in general leads to choosing a coin with mean lower than the
best possible.
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Figure 2: Example strategy trees for the coins of Figure 1a and
1b respectively. Upper edges correspond to the head outcome of
the coin tossed, and the leaf nodes box the coin to pick. (a) The
regret from tossing coin ? Q (resp. coin ?a@ ) is 0 under either node
(resp. � 0.95 and � 0.143), and therefore the expected regret is 0
(resp. A�B CaDIH A�B AaD#gVLNA�B G�\ H Be\ ^#G i A�B \a\ ). Tossing coin ?�Q is
optimal. (b) The highest mean � U
W�X is shown by each leaf (by
Proposition 4.1, minimizing regret is equivalent to maximizing
expected highest mean). In this case, tossing either coin once
does not change the (expected) regret. Hence the optimal strategy
when two tosses are allowed is to toss coin ?�� twice.

ticular coin, whose two children are also strategy trees, one
for each outcome of the toss (see Figure 2). We will only
consider strategies respecting the budget, i.e., the total cost
of coin tosses along any branch may not exceed the budget.
Thus the set � of strategies to consider is finite though huge
(e.g., � ��� � � assuming unit costs). Associated with each
leaf node � of a strategy is the regret r�� , computed using
the belief state at that node, and the probability of reaching
that leaf �	� , where �
� is the product of the transition prob-
abilities along the path from root to that leaf. We therefore
define the regret of a strategy to be the expected regret over
the different outcomes, or equivalently the expectation of
regret conditioned on execution of � , or ���;r � � � :

��
�� r 
�� ��� � + � �sr � � � + ��j: Tree Leafs
� � r �

An optimal strategy ��= is then one with minimum regret:�
=6+ 8����v7������ :�� ��
 � r 
�� �!� � . Figure 3 shows the optimal
strategy for the case of �#"%$ coins with uniform priors,
and a budget of

� +'& . We have observed that optimal
strategies for identical priors enjoy a similar pattern (with
some exceptions): their top branch (i.e., as long as the out-
comes are all heads) consists of tossing the same coin, and
the bottom branch (i.e., as long as the outcomes are all tails)
consists of tossing the coins in a round-robin fashion; see
biased-robin (Section 4.2.3 below).

2.2 The Computational Problem

Our overall goal is to execute tosses according to some op-
timal strategy �
= . Three relevant computational problems
are outputting (1) an optimal strategy, (2) the best coin to
toss now (the first action of the optimal strategy), or (3) the
minimum regret. As the optimal strategy may be expo-
nential in the input size, whenever we talk about the coins
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 1/2

Figure 3: The optimal strategy tree for budget of G where all the
coins have uniform priors, and there are at least 4 coins. Note that
some branches terminal after only 2 tosses; here the outcome is
already determined.

problem in a formal sense (e.g., Theorem 3.1), we shall
mean the problem of computing the first action of an opti-
mal strategy.

3 Computational Complexity

The coins problem is a problem of sequential decision mak-
ing under uncertainty, and similar to many other such prob-
lems [Pap85], one can verify that it is in PSPACE, as long
as we make the assumption that the budget is bounded by a
polynomial function of the number of coins3. The problem
is also NP-hard:

Theorem 3.1 The coins problem is in PSPACE and NP-
hard.

Proof (sketch). In PSPACE: It takes space polynomial in the
budget to compute the value of an optimal policy or the first ac-
tion of such a policy: fix an action and compute the regret given
the outcome is positive (recursively), and reuse the space to do the
same for the negative outcome. Fix another action and reuse the
space. The space used is no more than a constant multiple of the
budget.
NP-Hardness: Assume the priors have non-zero probability at
head probability values of 0 or 1 only: ( S A*) T,+ ) \ Y E A .
In this case, strategies are different only with respect to the col-
lection of coins they query, and not the order: as soon as a coin
returns heads, the regret is 0, and otherwise the coin is discarded.
We reduce the KNAPSACK problem to this coins problem. In
the KNAPSACK problem [GJ79], given a knapsack with capac-
ity - , and a collection of objects . + with cost ? + and reward / + ,
the problem is to choose a subsets 0 of the objects that fit in
the knapsack and maximize the total reward among all subsets:132�4�57698;:=<?> 5 / + subject to 8 + > 5 ? +A@ -�B
Object . + will be coin w with cost ? + and probability ( + EC( S;T + E\ Y E \4bEDGFH( S bI/ +sY , so that bKJML�N S \4bO( S;TP+ E \ Y Y EQ/ + , andb�JML NSR + S \]b*( + Y E 8 + / + , i.e., maximizing the total reward
would be equivalent to minimizing the failure probability. There-
fore success probability of such a coin collection is maximized
iff the total reward of the corresponding object set is maximized.
Maximizing the success probability is in turn equivalent to mini-
mizing the (expected) regret. T
Our reduction reveals the packing aspect of the budgeted
problem. It remains open whether the problem is NP-hard
when coins have unit costs and/or uni-modal distributions.
The next section discusses the related issue of approxima-

3We assume that the various base-level expectations used in
the computations, such as RPS;T,+sY , can be computed or approxi-
mated in PSPACE as well.



bility.

4 Problem Structure and Algorithm Design

It is fairly intuitive that the expectation over the mean of a
coin given the coin is tossed should not be different from
the current mean of the coin, as we are taking a sum over
the possible outcomes. Here, we observe that the expec-
tation � ���]243�5 � enjoys the same property: � ��� 243�5 � � ��+
�����]2V3j5 � . This allows us to observe the following simpli-
fying and perhaps intuitive properties:

Proposition 4.1 We have,

1. ����������� � � � + ����������� � , therefore, the regret of a
strategy � is:

r 
 � r 
 � �!� � + � ��� ����� �k� � �s1 243�5 � � � (1)

where � �s1%243�5 � � � denotes the conditional expectation
of maximum mean 1 2V3j5 , conditioned on the execution
of strategy � (i.e., the expectation of the highest mean
over all the outcomes of executing strategy � ).

2. Strategies are harmless: For any strategy � ,
���;1%243�5 � � � " ���s1%243�5 � , therefore regret from using
any strategy � is not greater than the current regret.

3. (no need to query useless coins) Assume that under
any outcome (i.e., the execution of any strategy re-
specting the budget), there is some coin whose mean is
at least as high as coin * . Then there exists an optimal
strategy tree that never queries coin * .

Proof (sketch). Part 1: We consider tossing a single coin � (event� ), and we can establish the identity for RPS;T	��

��� � Y by summing
over the different outcomes. The result generalizes to strategies
by induction on tree height.

Parts 2 and 3 are also established by induction on strategy tree
height, by first showing that querying a single coin can only in-
crease the highest mean, using the fact that the expectation over
the mean of a coin if the coin is queried remains the same. Fur-
thermore, tossing a coin is useless if the coin cannot affect the
highest mean within a single toss. For the induction step for part 3,
we observe that no optimal strategy of smaller height may query
the coin (by induction), and no leaf reports the coin (by the stated
assumption). Therefore the relative merit of strategies RPS � U
W�X � �jY
remains the same whether or not the coin is queried at first. Con-
sequently, the optimal strategy is identical whether or not the coin
is queried, implying that the regret also remains the same whether
or not the coin is queried. T
We conclude that the optimization problem boils down to
computing a strategy that maximizes the expectation over
the highest mean; �
= + 8 �=��768
9 � :�� � ���s1%243�5 � � � � . In se-
lecting the coin to query, it is fairly intuitive that two sig-
nificant properties of a coin are the magnitude of its current
mean, and the spread of its density, that is how changeable
its density is if it is queried: if a coin’s mean is too low, it
can be ignored by the above result, and if its density is too

peaked (imagine no uncertainty), then querying may yield
little or no information (the expectation � �s1 243�5 � � � may
not be significantly higher than ���s1$243�5 � ). However, it is
fairly surprising that, for the purpose of computing an opti-
mal policy, we cannot make further immediate use of these
properties. For example, assume coin � � has Beta �"��	�( �
prior, and coin � � has Beta �'��		& � , thus � � has a higher
mean and a lower spread than �a� . But the optimal strategy
for a budget of one (and two) starts by querying ��� . The
main reason in this case remains that querying �
� does not
change our decision under either of its two outcomes ( �
�
will be the winner), and thus the ���s1 2V3j5 � equals the cur-
rent highest mean value of � � & , while querying �a� affects
the decision, and the expectation of the 1 243�5 given � � is
queried is slightly higher ( � � $��Z( � &  & � $�� � � & ). The
optimal strategy may also be contingent. For example, in
Figure 2b, the policy may simply toss coin � twice. How-
ever, if we add a third coin with Beta ��("��	u����� , then if the
outcome of the first toss is tails, the next optimal action is
to toss coin ( . These observations suggest that optimization
may be hard even in the unit-cost case.

4.1 Approximability

Consider an algorithm � that given the input, outputs the
next action to execute. We call algorithm � a constant-
ratio approximation algorithm if there is a constant � (inde-
pendent of problem size), such that given any problem in-
stance, if r�= is the optimal regret for the problem, the regret
r ��� � , from executing actions prescribed by � , is bounded
by �ur�= . Of course we seek an approximation algorithm
(preferably with low � ) that is also efficient (polynomial
time in input size). A constant-ratio approximation is es-
pecially desirable, as the quality of the approximation does
not degrade with problem size.

4.2 Algorithms

We describe a number of plausible strategies and algo-
rithms, and explore whether or not they are approximation
algorithms for the unit-cost case. In the process, we also
gain insight into the types of considerations that are signif-
icant for designing approximation algorithms.

4.2.1 Round-Robin, Random, and Greedy Algorithms

The round-robin algorithm simply tosses coins in a round-
robin fashion, and the random algorithm simply queries the
coins uniformly at random. These algorithms are plausible
algorithms, at least initially in the trial period, and they are
typically used in practice. The third algorithm we consider
is the constant-budget algorithm: For a small constant �
(independent of � and

�
), it computes the optimal strategy

for that smaller budget � , and tosses the first coin of such a
strategy. (Given the outcome, it then computes the optimal
strategy from this new state, etc.) We shall refer to the
algorithm as simply greedy in the case of �6+ � . Perhaps it



is not hard to see these algorithms are suboptimal, but we
can say more:

Proposition 4.2 For each algorithm � that is round-robin,
random-strategy, or constant-budget: For any constant
� , there is a problem with minimum regret r�= , on which
r ��� ��� � r�= .
Proof (sketch). On problems with uniform priors, large � , and
relatively smaller budget � , round-robin and random strategies
are unlikely to query a coin more than once, and are therefore
expected to get a highest mean of not much more than K�h G , from
a coin with Beta

S K���\ Y . On the other hand, RPS;T4U
W�X�Yvi \ with
large � , and more targeted algorithms (such as envision-single,
defined below) find a coin with mean close to this RPS;T U
W�X Y .
For the case of the constant-budget algorithm, assume � E \
without loss of generality. Assume all coins have uniform pri-
ors except for two that have almost completely peaked priors and
that their mean is high enough that even if querying either one
gives all tails, the rest of the coins cannot catch them within one
toss. Then the greedy algorithm may waste tosses on these two
coins to identify a winner, but the optimal would explore the rest
of the coins, given enough budget, and would have a good chance
of discovering a significantly better coin. T
4.2.2 Look-ahead and Allocational Strategies

The single-coin look-ahead, or simply the look-ahead al-
gorithm, takes the budget into account: at each time point,
for each coin * , it considers allocating all of the remaining
tosses to coin * , computes the expected regret from such al-
location, and tosses a coin that gives the lowest such regret.
As there are �  � distinguishable outcomes for tossing a
single coin � times (where � is the number of remaining
tosses), this computation can be done in polynomial time
( � � � � � at every time point). The algorithm tosses a coin
that is expected to reduce the regret more than others. As
this algorithm considers each coin alone, it fails in query-
ing the right coins, at least initially, in the following type of
scenarios: there are two kindes of coins (i.e., two different
priors are used): Type 1 coins have probability � � � of hav-
ing head probability at �	� 
 (e.g., �Z+ � � ( ) and otherwise
their head probability is 
 . With a budget of � , the optimal
algorithm would toss � such coins and would obtain a re-
gret close to 
 . Coins of type 2 are used to “distract” the
look-ahead: in each step the increase in maximum mean
from tossing any one of them is higher than tossing type 1
coins, but their highest mean is bounded away from � . We
have seen empirically that in such scenarios the regret ra-
tio of look-ahead to optimal can exceed a factor of 6 for
example, but the priors are carefully designed. In the next
section, we will see that look-ahead is one of the top two
algorithms, in the case of identical priors.

The argument suggesting that the look-ahead algorithm is
not an approximation algorithm, sheds another insight into
problem structure. It tells us that in designing an approx-
imation (or an optimal) algorithm, it is important to know
not only the current budget and the characteristics of the in-

dividual coin * , but also whether we have sufficiently many
other coins similar to * : while the (expected) reduction in
regret from tossing a single coin may be low, there may be
sufficiently many such coins and the budget may be large
enough, that spending and spreading tosses over such coins
is justified. This observation motivates the following gen-
eralization of the look-ahead algorithm: compute the (ap-
proximately) optimal allocational strategy: An allocational
strategy is specified by the number of tosses assigned to
each coin. For example, given a budget of & , an alloca-
tion may specify that coin 1 should be tossed twice, coin 2
tossed once, and coin 3 twice (and all other coins 0 times).
Notice this allocation does not specify which coin to query
first (any coin with positive allocation may be queried), and
it is not contingent, i.e., it does not change the allocation
given the previous outcomes, and therefore it is subopti-
mal. However, two interesting questions are: whether the
expected regret of an optimal allocational strategy is a con-
stant approximation to the minimum regret (of the unre-
stricted optimal strategy), and whether an (approximately)
optimal allocational strategy can be computed efficiently.
Section 5 addresses the first question. The attraction of al-
locational strategies is that they are compactly represented
and efficiently evaluated: the expected highest mean of an
allocational strategy can be computed in time polynomial
in the number of coins and the budget. In the special case
of round-robin, with � coins, and an equal allocation of �
tosses to every coin (when the budget is a multiple of � ),
the expression for the expected highest mean, ���;1 ����� � ,
further simplifies to:

3 � ����
 / � ����� �
� ��� � ����� �
� � � ����� �  �
���  � �  ��� � �  � �

+
3 � ����
 / � �
�  � � � � � �� � � �  �

���  � �  ��� � �  � �
where

����� ��� � is  �"!$#%� � , and � is the number of heads;
by convention,

����� ���'&(
 �,+)
 . The next section will
use this closed form when reporting on the performance of
(static) allocational policies.

4.2.3 Biased-Robin

We have observed on small problem instances that the
structure of the optimal strategy for the case of identical
priors, unit-costs and when � " �

, has a simple overall
pattern (with some exceptions): It first chooses coin 1 and
tosses it. While the chosen coin produces heads, the op-
timal strategy continues to toss that coin, until the budget
is exhausted, or the coin gives a tail. In the latter case, it
moves to the next (untouched) coin (see Figure 3). As long
as � " �

, there always exists an untouched coin. Note
that similar algorithmic ideas arise when we are searching
for a perfect coin (or model, e.g., [SG95]). An excep-
tion to this pattern is that if the remaining budget is too



low; the optimal action may be to toss a previous coin:
Suppose after a few tosses, three coins have the distribu-
tions Beta ��&'	�( �j	 Beta � $�	�( �j	 Beta �'��	u� � , and we have
one more toss. The optimal action is to toss the coin with
Beta ��&"	!( � rather than the untouched Beta �'��	%� � . We have
implemented this basic algorithm, and for the cases when

� & �
, the algorithm simply wraps around when there are

no more untouched coins. We call it biased-robin as it can
be viewed as a variant of round-robin, and similar to round-
robin, it is budget independent and any-time.

5 Empirical Performance

We report on the performance of the algorithms on the im-
portant special case of identical priors and unit costs. Fig-
ure 4 shows the performance of round-robin, random strat-
egy, (single-coin) look-ahead, allocational, and the biased-
robin algorithms, when � + ��
 , � + $�
 , and the priors
are respectively uniform, skewed to the right, Beta �'��
"	u� � ,
and skewed to the left Beta �'��	%��
 � . Each time point is the
average of 1000 trials, where at the beginning of each trial
every coin’s head probability is drawn from the prior. We
computed the regrets at every intermediate time point to il-
lustrate the performance of the algorithms as the budget is
reached. The expectation of the actual maximum valued
coin, �����]243�5 � , is about 
 � � in the case of uniform priors,
and as a randomly picked coin has expected head probabil-
ity of 
 � & , the initial regret for each algorithm is around 
 � $
in this case, as expected.

The biased-robin and envision-single strategies consis-
tently outperform the rest of the strategies tested, while the
envision-single is the most costly algorithm. The biased-
robin algorithm has performed the best over the many other
parameter settings that we have tested. The reason for the
poor performance of greedy is simple: it leads to startva-
tion, i.e., due to its myopic property, as soon as some coin
gets ahead, a single toss of any coin does not change the
leader, and yields to equal expected regret. In this case,
ties are broken by tossing the first coin in the list, which
may not change the status. If we add a randomization com-
ponent to greedy, its performance improves, and becomes
slightly better than random (not shown), and still inferior
to biased-robin. As observed, looking ahead improves the
performance significantly.

The allocational strategy computes the optimal allocation
at the outset, and sticks to that allocation. For example, for
a budget of 40, uniform priors and 10 coins, 8 of the 10
coins are allocated 5 tosses each. The allocational strategy
tosses them in a round-robin fashion. Here, as the priors
are identical, we need only search the space of equal allo-
cations (

�
many) to find the optimal (initial) allocation.

The relative performance of the round-robin (and random)
strategy compared to biased-robin, i.e., the ratio of the re-
gret of round-robin to the regret of biased-robin, gets worse
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Figure 5: The performance of the algorithms versus optimal with� E \�A ��A @ - @ \�A , and unifrom priors, over 4000 trials. The
regret of biased-robin appears lower than that of optimal at several
time points due to inaccuracies of averaging.

initially with increasing budget and fixed � , but eventually
begins to improve (not shown). The worst ratio is a func-
tion of � however, and the relative performance of round-
robin gets worse with increasing � (as suggested by the
proof of Proposition 4.1). For example, with � + ��
 , the
worst ratio is below 3, while with � + (�
 , it surpasses 4.
With fixed � and

�
, the relative performance worsens as we

increase the first Beta parameter, skewing the prior to the
right; and improves by increasing the second Beta param-
eter (Figure 4). The behavior of the allocational strategy
approaches the round-robin strategy with increasing bud-
get (and with identical priors), eventually allocating equal
tosses to all the coins. We have observed empirically that
the ratio of the allocational regret to that of biased-robin
also degrades with increasing � , e.g., at � + � + ( 
 , the
ratio is about � � & , at �d+ � + ��
	
 , it is over ( , and at

� + � + (�
 
 , it is over & . Therefore, periodic realloca-
tion, i.e., dynamic versus static allocation, appears to be
necessary if such a technique is to yield an approximation
algorithm.

We computed the optimal regret for � # ��
 and
� # ��
 ,

on different types of identical priors. Figure 5 shows the
performance of the optimal strategy against the other al-
gorithms on uniform priors. On these problems, the perfor-
mances of look-ahead and biased-robin algorithms are very
close to that of optimal, suggesting that these algorithms
may be approximation algorithms for the special case of
identical priors.

Due to its performance, efficiency, and simplicity, the
biased-robin algorithm is the algorithm of choice among
the algorithms we have tested, for the case of identical pri-
ors and costs.

6 Summary and Future Work

There are a number of directions for future work, in addi-
tion to the open problems we have raised. An immediate
extension of the problem is to selecting classifiers, which
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Figure 4: The performance of the algorithms with \�A coins, budget - of ^#A tosses, and (a) uniform (Beta
S \��!\ Y ) priors, (b) skewed

Beta
S \�A ��\ Y , and (c) Beta

S \���\�A Y .
may be defined in a similar way: we are presented with
� candidate classifiers (imagine decision trees) with pri-
ors over a measure of their performance, and our task is
to declare a winner, one that minimizing the regret of not
selecting the actual best. A significant additional dimen-
sion in this case is that querying a single feature affects not
one but multiple classifiers in general. There are however
“flatter” versions of the classifier problem, such as learning
a Naive Bayes classifier, in which these dependencies are
limited. Our solution techniques more readily extend to the
latter problems [LMG03].

Contributions: We introduced and motivated the budgeted
multi-armed bandit task and precisely defined a basic prob-
lem in this space, the coins problem, as a problem of se-
quential decision making under uncertainty. We investi-
gated the computational complexity of the coins problem,
and the performance of a number of algorithms on the
problem, both from a worst-case perspective and empiri-
cally. Our analyses demonstrate significant problems with
the standard algorithms, round-robin and random, as well
as greedy. We presented two different selective querying
techniques that significantly outperform the standard algo-
rithms.
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