
Budgeted Learning of Bounded Active Classifiers

Aloak Kapoor and Russell Greiner?

Department of Computing Science
University of Alberta
Edmonton T6J 2E8

{aloak|greiner}@cs.ualberta.ca

Abstract. Since resources for data acquisition are seldom infinite, the
need exists for learners and classifiers that act intelligently under hard
budgets. In this paper, we consider problems in which feature values are
unknown to the learner and classifier, but can be acquired at a cost. The
goal is a learner that spends its learning budget bL acquiring training
data so as to produce the most accurate active classifier that spends at
most bC per instance. From the learner’s perspective, purchasing every
feature of every instance is sure to approach the underlying distribution
asymptotically, but will this yield the best distribution when only bL

dollars worth of data can be collected? In this work, we show empirically
that the answer is no (especially for small bL) and present alternate
learning strategies that achieve superior performance on a variety of real-
world datasets.

1 Introduction

While a doctor may have the option of using a wide variety of medical tests
(including MRIs, blood work, etc.) to diagnose a patient, many medical plans
involve capitation payments that restrict the per-patient cost of medical diag-
nosis and treatment. These physicians can only consider diagnostic strategies
that spend at most a specified amount; they would clearly want to use the
most accurate such strategy. In general, these strategies can operate sequen-
tially: e.g. first performing test Blood7 (at cost C(Blood7)), then using this
information to decide on the next action; perhaps performing Liver3 if Blood7

was positive, but performing Urine2 if Blood7 was negative, and so forth. Once
the total cost of the tests performed reaches the capitation amount bC (i.e. if
C(Blood7) + C(Urine2) + · · · = bC), the strategy must stop collecting informa-
tion and render a decision — e.g. “Cancer = true”. We call such a strategy a
“bounded active classifier” [1].

Earlier results [1] have shown that one can PAC-learn this optimal “bounded
active classifier” BAC∗ = arg minb{error(b)|b ∈ cost-bC-active classifiers}, as-
suming the learner has no a priori resource bound — i.e. it can purchase every
feature of as many instances as necessary. Of course, if we are charging the

? Both authors wish to thank NSERC and iCORE for their generous support. Russell
Greiner also thanks the Alberta Ingenuity Centre for Machine Learning.

classifier (read “physician”) for each feature, it seems strange to provide this
information for free to the learner (think “experimental designer”). This paper
extends those earlier results by investigating the challenge of learning this BAC∗

when the learner has a fixed budget to spend to acquire the relevant training
data — i.e., when the learner can spend only a total of bL to produce the best
classifier that can spend only bC per instance. Thus, we investigate the problem
of budgeted learning of a bounded active classifier.

Although the task is NP-hard in general [1], we demonstrate how to improve
the running time of the optimal algorithm, propose a variety of tractable learning
strategies, and run tests on datasets with strong, weak, and irrelevant features.
Our learning strategies are able to beat the obvious round-robin approach (which
spends equally on all features) by significant margins.

The rest of this paper is organized as follows. Section 2 formally introduces
the framework for budgeted learning a bounded active classifier, highlights the
simplifying assumptions we make, and derives complexity results. Section 3 dis-
cusses a variety of algorithms to find good approximate solutions to the prob-
lem, including the obvious round-robin purchasing as well as novel approaches.
Section 4 gives empirical results that compares the proposed algorithms and
discusses their effectiveness. Section 5 reviews related literature from machine
learning and statistics, and Section 6 summarizes contributions and considers
future work.

2 Formal Description

The “budgeted bounded-active-classifier learner”, bBACl, is given the (non-
negative) cost C(Xi) ∈ <+ of acquiring each individual feature Xi of any single
specified instance1 and the loss matrix L = [`i,j] whose (i, j) element specifies
the penalty for returning the class ci when the true class is cj ; by convention we
assume `i,i = 0 and `i,j > 0 for i 6= j. bBACl also knows how much the learner
can spend bL ∈ <+, and how much the resulting active classifier can spend per
instance bC ∈ <+.

Throughout, the bBACl can see the current “tableau”, whose rows each cor-
respond to an instance i ∈ {1, . . . ,m} and whose first r columns each correspond
to a feature, and whose r + 1st column is the class label. Initially, only the class
label is specified; the other m × r entries are all unknown. In general, we will

let x
(j)
i refer to the value of the ith feature of the jth instance. At any point,

bBACl can perform the (i, j) “probe”, to determine the value of x
(j)
i , at cost

C(Xi). This also reduces bBACl’s remaining budget from bL to bL − C(Xi).
Once this budget reaches zero, bBACl stops collecting information and returns
a bounded active classifier BAC, which corresponds to a decision tree of bounded
depth [2].

1 If any tests costs C(Xi) = 0, we can simply gather that information for each instance.
We assume that these costs are independent of each other, for one or more instances;
see Section 6.

The score of any BAC B is its expected misclassification error:

Q(B) =
∑

x,y

P (x, y)L(B(x), y) (1)

Let All(bC) be the set of all such active classifiers that spend at most bC per
instance, then our goal is the BAC:

BAC∗ = arg min
B∈All(bC)

Q(B) (2)

that minimizes this error.

2.1 Simplifying Assumptions

For our work we will assume a constant misclassification cost `ij = 1 for i 6= j
and `ii = 0. Our algorithms will need to estimate the probabilities over the

values of the features of an instance P (x
(j)
i) to decide which probe to perform.

We will take a Bayesian stance by assuming there is a prior distribution over
labeled instances, before seeing any data.2 As a simplification, we will make

the Näıve Bayes assumption, which means the distribution of x
(j)
i is indepen-

dent of x
(j)
k (for k 6= i) as we know the value of the class yj .

3 Hence, if in-
stance j is labeled with class +, we will model the distribution of its ith feature

x
(j)
i ∼ Dir(α

(i)
1,+, . . . , α

(i)
w,+) as a Dirichlet distribution with parameters α

(i)
j,+ > 0,

assuming Xi has w values [3]. These parameters are unrelated to the ones for

negatively labeled instances α
(i)
j,− and also unrelated to the parameters values

for other features Xh6=i. Initially, we will assume that each such distribution is
uniform Dir(1, . . . , 1). If we later see 29 Y = + instances with Xi = + and

14 Y = + instances with Xi = −, the posterior distribution for x
(j)
i for a new

Y = + instance would be Dir(1+29, 1+14). The mean probability for Xi = +
here would be 30/(30 + 15) = 2/3.

In general, if a variable X’s prior distribution is X ∼ Dir(α1, . . . , αw), then

P (X = i) =
αi

∑

k αk

(3)

If we then observe a sample S that includes ai instances of X = i, then X’s
posterior distribution remains a Dirichlet, with new parameters

X|S ∼ Dir(α1 + a1, . . . , αw + aw) (4)

2 The sparsity of the data means the obvious frequentist approach of using simple
frequencies is problematic.

3 Note that Näıve Bayes models often produce good classifiers even for datasets that
violate this assumption.

2.2 Complexity Results

[4] proves the following much simpler task is NP-hard: Given a set of coins with
known prior distributions and a fixed total number of flips, decide when to flip
which coin to decide which coin has the highest head probability. Our framework
inherits that negative result. (Identify each coin fi with a binary feature, whose
head probability corresponds to the probability the class is true, given fi is true:
P (c = +|fi = +), and let P (c = +|fi = −) = 0 for all features.) In addition, [1]
shows that computing the best active classifier is NP-hard in general, even if we
know the entire distribution. Again, our framework inherits that negative result.
That paper also provided a tractable algorithm for (PAC-)learning a bounded
active classifier given the underlying distribution (i.e. after observing the feature
values); this observation motivates our interest in finding such optimal bounded
active classifiers.

3 Algorithms

This section summarizes a number of “budgeted bounded-active-classifier learn-
ers”. We focus on only the data collection part of the algorithms; after collecting
$bL worth of feature-values, each of the algorithms then passes its learned Dirich-
let distributions to a dynamic program that produces the BAC∗ that minimizes
Equation 2.

3.1 Optimal Policy

As our problem is a finite Markov Decision Process, there exists a deterministic
optimal policy for spending the learning budget such that the expected total
(expected) misclassification error4 of the final bounded active classifier is min-
imized. Mathematically, the optimal learning policy is the one that minimizes
Equation 5:

∑

i∈Outcomes

Prob(i)E(errorBAC∗ |i) (5)

where each “outcome” corresponds to a state in which our learning budget has
been fully exhausted and has resulted in posterior Dirichlet distributions over
the feature values.

Such a policy can be computed via a bottom-up dynamic program. To see
this, note that we can compute the value of all possible outcomes where the
learning budget has been exhausted, and then use these to compute the value
of all possible outcomes where there is only $1 left in the learning budget, and
so on. Unfortunately, the number of outcomes (and hence the computational
complexity) has a prohibitive lower bound:

4 the first expectation is over the set of possible Dirichlet distributions the learner’s
purchases can result in, and the second expectation is over the possible instances
(x,y) that can occur given the resulting Dirichlets

Proposition 1. Let |Xi| denote the domain size of feature Xi, |S| denote the

number of classes, t = |S|
∑

i |Xi| −1, and each feature have unit cost. Then the

bottom-up dynamic program must compute the value of

Ω

(

(

bL+t
bL

)bL (

bL+t
t

)t
(t)

−1

2

)

outcomes.

Due to space constraints, we defer the proof to [5]. Given the exponential de-
pendence on the learning budget and the domain sizes of all the features, the
straightforward calculation of the optimal policy via dynamic programming can
tractably solve only small problems.

We have considered methods of improving upon this näıve dynamic program,
namely by reducing the number of subproblems that must be solved. Below we
show an interesting way to achieve this reduction by exploiting the equivalence
of two “permuted” states under the conditional independence assumption.

Definition 1. A proper permutation for a feature Xi with t domain values is

a bijective function f : [1, t] → [1, t] that reorders the t parameters for every

Dirichlet distribution on Xi.

Example 1. Let

(Xi|Y = 0) ∼ Dir(4, 2, 7), (Xi|Y = 1) ∼ Dir(3, 8, 5)

Then a proper permutation for feature Xi is:

(Xi|Y = 0) ∼ Dir(7, 2, 4), (Xi|Y = 1) ∼ Dir(5, 8, 3).

Proposition 2. Let us identify a “state” of our problem by the value of bLand

the set of Dirichlets over the feature-class pairs. Consider any two states A and

B, which have equal values of bL and are such that the Dirichlets of A can be

made equal to the Dirichlets of B by specifying a set of r proper permutations,

one for each feature Xi. Under these conditions, the expected value of state A is

equal to the expected value of state B when following an optimal policy, and the

optimal action to take from state A is the optimal action to take from state B.

We defer the proof to [5]. This proposition allows us to improve the näıve
dynamic program by reusing the computed value of a state A for properly per-
muted versions of A. The real-time improvement using Proposition 2 is shown in
Table 3.1 below. In the last case, the näıve dynamic program ran out of memory
after more than two hours, while our improved version finished properly in un-
der an hour. Unfortunately such improvements are not sufficient to remove the
exponential complexity of the dynamic program, leading to the more tractable,
suboptimal approaches we consider next.

3.2 Round Robin (RR)

This obvious algorithm simply purchases complete instances until its budget
bL is exhausted. It draws examples randomly, and so expects to have collected

Table 1. Proposition 2’s reduction in computation time

bL bC Features Classes Domain Size Näıve Improved

2 4 6 2 4 161 sec 65 sec
3 2 4 3 3 888 sec 432 sec
4 3 4 3 3 8280 sec 3360 sec

data about members of each class y in proportion to P (Y = y). If there are r
unit-cost features, we expect to know everything about roughly bL/r instances.
Notice this approach implicitly assumes that all features are equally valuable in
learning the target concept.

3.3 Biased Robin (BR)

A more selective approach than Round Robin is to purchase a single feature and
test whether or not its observed value has increased some measure of quality.
The Biased Robin algorithm follows such an approach, continually purchasing
feature Xi as long as it improves quality, and otherwise moving to feature Xi+1

(and of course looping back to X1 after Xr). There are several choices for how
to measure quality or loss and these are discussed in Section 3.6. As further
motivation for this algorithm, [6] found it to be one of the best approaches for
budgeted learning of a passive Näıve Bayes classifier, albeit with a a different
loss function. This method also corresponds to the “Play the Winner” approach
discussed in [7].

3.4 Single Feature Lookahead (SFL)

With a limited learning budget, one would like to avoid wasting purchases on
poor features. This motivates a prediction-based approach, which uses a loss
function to approximately predict the expected loss incurred after making each
possible purchase. If only the next purchase is considered, then this reduces to
the (1-step) greedy algorithm.

SFL uses this prediction based approach, but controls the level of myopia
or “greediness” involved by providing an additional parameter, d, the lookahead
depth. With a lookahead depth of d, SFL calculates the expected loss of spending
its next $d continuously purchasing feature i of class j. That is, if S denotes our
current set of Dirichlets and S′ denotes the Dirichlets after spending min($d, $bL)
purchasing feature Xi of a Y = j instance, then the expected loss for (i, j) is:

SFL(i, j) =
∑

S′

P (S′|S)Loss(S′) (6)

The feature-class pair (i, j) with lowest expected loss is purchased, the Dirich-
lets are updated based on the observed outcome of that purchase, and Equation

6 is computed again for all feature-class pairs. This process repeats until the
learning budget is exhausted. SFL has shown strong performance on two previ-
ously investigated variants of the budgeted learning problem [6, 8], and is thus
well-motivated for our task.

3.5 Randomized Single Feature Lookahead (RSFL)

Our experiments show that the SFL algorithm is biased toward the feature that
currently looks best. That is, SFL often takes very long runs of purchasing a
single discriminative feature-class pair and neglects to explore other potentially
good features. This property can be problematic, particularly when a dataset
contains several discriminative features that can jointly yield a more accurate
BAC than any single feature by itself. The Randomized Single Feature Looka-
head algorithm (RSFL), alleviates this problem by increasing exploration among
the best looking feature-class pairs. The RSFL algorithm is very similar to SFL,
as it too calculates the expected loss in Equation 6 for each feature-class pair.
However, rather than deterministically purchasing the feature-class pair with
the best SFL score, RSFL considers the best X feature-class pairs and for each
feature-class pair (i,j) in this set, it chooses to purchase feature i of class j with
probability:

exp −SFL(i,j)
τ

∑

i,j exp −SFL(i,j)
τ

(7)

Here τ is a temperature controlling exploration versus exploitation. We set τ = 1
throughout this paper.

3.6 Loss Functions

As mentioned earlier, several of our algorithms rely on a loss function

g : {Dirichlet distributions over features} → IR (8)

that measures the quality of a given probability distribution. After experimenting
with several different choices of loss functions, we found Conditional Entropy
Loss and Depth 1 BAC Loss to be effective.5

Conditional Entropy measures the uncertainty of the class label Y given the
value of a feature Xi:

−
∑

x

P (Xi = x)
∑

y

P (Y = y|Xi = x) log2 P (Y = y|Xi = x) (9)

The Biased Robin algorithm uses loss Equation 9 before and after the purchase
of feature Xi to determine whether the purchase improved the prediction ability
of Xi.

5 The obvious loss function is just to use Equation 2 to compute the expected error
of the optimal BAC. However, since loss functions can be called several times on a
single purchase, the computational expense of computing Equation 2 is prohibitive.

On the other hand, the Depth 1 BAC loss function

min
i

∑

x

P (Xi = x)min
y

(1 − P (Y = y|Xi = x)) (10)

is used by SFL, RSFL, and the greedy algorithm. This function calculates the
expected misclassification error of the best Depth 1 BAC.

4 Experimental Results

To compare the algorithms, 50 repetitions of five-fold cross validation were
performed on several datasets from the UCI Machine Learning Repository [9].
Datasets with continuous values were discretized using supervised entropy dis-
cretization [10]. Each dataset was randomly partitioned into five folds. The algo-
rithms were run five times, and on each run a single fold was set aside for testing,
while the remaining four were available for purchasing. We used the average of
values from these five runs as the misclassification error of each algorithm on
the whole dataset. This process was repeated a total of 50 times to reduce the
variance and get a measure of the average misclassification error. Thus, each
point in the graphs that follow represents 50 repetitions of five-fold CV.

In the first set of experiments all features have unit cost and the datasets
contain some irrelevant features. We set the classifier’s budget to bc = 3, as this
is large enough to allow several features to be relevant, but small enough to keep
computations tractable. Initially, all Dirichlets parameters are set uniformly to
1. For reference, each graph also includes a gold standard “All Data” algorithm
which is allowed to see the entire dataset, and thus represents the best that one
can do using the Näıve Bayes assumption on the data.

Figure 1 shows the performance of the algorithms on the glass identification
dataset. The glass dataset is a binary class problem with nine features whose
domain sizes vary between one and three. The four features that have a domain
size of one represent irrelevant information that any learning algorithm (espe-
cially one under a constraining budget) should avoid. Both RSFL and BR learn
better than the obvious RR algorithm for all learning budgets considered. In
fact, we found the optimal bC = $3 BAC produced by the “All Data” algorithm
involves four different features, and these four features are precisely the ones that
RSFL and BR purchase heavily during learning. This is in contrast to the RR
purchasing behaviour that spends on all features equally, despite their unequal
predictive power. Finally, SFL and Greedy spend their entire budget on only one
or two features during learning, which accounts for their low accuracy BACs.

The Breast Cancer dataset contains ten features, only one of which is irrel-
evant to the concept. The Breast data is particularly interesting because nearly
all its features are good predictors, but three features have markedly lower con-
ditional entropy than the rest. To produce the lowest error BAC, the learning
algorithms must discover the superiority of these three features. We find RSFL
does exactly this, spending 20%, 21%, and 32% of its budget respectively on the

Fig. 1. Identical costs and some irrelevant features – RSFL and BR outperform RR.

0 10 20 30 40 50 60 70 80 90
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Glass

Learning Budget

0/
1

M
is

cl
as

si
fic

at
io

n
E

rr
or

RR
BR
SFL (depth25)
RSFL (depth25)
Greedy
All Data

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Breast Cancer

Learning Budget

0/
1

M
is

cl
as

si
fic

at
io

n
E

rr
or

RR
BR
SFL (depth25)
RSFL (depth25)
Greedy
All Data

three strong features. In comparison, RR spends 10% of its budget on every fea-
ture which makes it much more difficult for it to separate the top features from
the rest. BR also performs better than RR for all learning budgets considered.

The next set of experiments, shown in Figure 2, considers datasets without
any irrelevant features. The Iris dataset has only four features and is a three
class problem. Given that all four features are relevant, and that bC = 3 in this
experiment, the optimal BAC requests every feature at some point in its tree.
With only four features to consider, RSFL is able to test them all effectively and
produce better BACs than RR for all budgets considered. BR is also competitive
with RR, except at some of the very low budgets where BR’s exploration model
prevents it from ever investigating some of the features.

Fig. 2. Identical costs, no irrelevant features - RR still suboptimal.

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Iris

Learning Budget

0/
1

M
is

cl
as

si
fic

at
io

n
E

rr
or

RR
BR
SFL (depth25)
RSFL (depth25)
Greedy
All Data

0 20 40 60 80 100 120 140 160

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Vote

Learning Budget

0/
1

M
is

cl
as

si
fic

at
io

n
E

rr
or

RR
BR
SFL (depth25)
RSFL (X=2*bc)
Greedy
All Data
RSFL (X=6*bc)

Figure 2 shows another binary class problem, the Vote dataset, that contains
16 relevant features. Many of these features have similar (high) predictive power.
Once again we see that both RSFL and BR beat RR. RSFL asymptotes fairly

soon – it spends its budget finding a few strong features quickly and outputs
a fairly low error BAC. As expected, at larger budgets RR collects enough in-
formation on every feature to find many more suitable candidates for its BAC
than RSFL can. We show in the graph that one can improve the performance of
RSFL by increasing the number of top feature-class pairs that RSFL considers
on this dataset. We also observe that BR’s exploration model is particularly well
suited to this task because it is able to collect information on every feature at
larger budgets, and this property is crucial on a dataset such as Vote with a
large number of predictive features.

Our final set of experiments involved datasets where the features differed in
cost. Both the Heart Disease dataset and the Pima Indians dataset have known
cost data [9], and we use a scaled version of these costs in our tests. The scaled
Heart Disease costs range from $1 to $7, and our tests are run with bc = $7.
This dataset represents the worst case for RR, because the irrelevant features
happen to be the most expensive ones. In fact, RSFL achieves the same error
rate after $100 that RR takes $500 to reach. In the Pima dataset, feature costs
are between $1 and $5, and we set bc = $5. The two irrelevant features have cost
$1, and the single best feature is $4. Once again, BR and RSFL dominate RR
for all budgets considered.

Fig. 3. Different feature costs - RSFL and BR dominate RR.

0 50 100 150 200 250 300 350 400 450 500

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Heart Disease (Cleve)

Learning Budget

0/
1

M
is

cl
as

si
fic

at
io

n
E

rr
or

RR
BR
SFL (depth25)
RSFL (depth25)
Greedy
All Data

0 50 100 150
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42
Pima

Learning Budget

0/
1

M
is

cl
as

si
fic

at
io

n
E

rr
or

RR
BR
SFL (depth25)
RSFL (depth25)
Greedy
All Data

5 Related Work

There are a number of different senses of “costs” in the context of learning
[11]. This research considers two costs: the costs paid by the learner to acquire
the relevant information at training time to produce an effective classifier and
also the costs paid by the classifier, at performance time, to acquire relevant
information about the current instance. We impose hard constraints on the cost
of tests that can be performed per instance, and on the expenses paid by the
learner.

Many existing (sub)fields, such as active learning [12] and experimental de-
sign [13] (as well as earlier results such as [6]) focus on only the first of these
costs – e.g. bounding how much the learner can spend to produce an accurate
passive classifier. In addition, many of these systems request the class label for
an otherwise completely specified instance. Thus they require only a single quan-
tity per instance. Our problem is the complement of this: class labels are known
but attribute information must be purchased. Unlike most of the other models,
this means our work may need to consider the correlations amongst the many
unknown properties of an instance. Other results seeking to reduce the sam-
ple complexity for learning include decision theoretic subsampling [14], on-line
stopping rules [15], progressive sampling [16], and active feature value acquisi-
tion [17]. We note that these techniques differ from our approach because we
place a firm budget on the learner’s ability to acquire information, while these
approaches typically allow the learner to purchase until some external stopping
criteria (for instance, accuracy) is satisfied.

Recent work by [18] considers a subproblem that we encounter in our overall
framework: how to represent the class distribution when only a firm budget of n
training examples can be used. For example, if our budget allows for ten training
examples, should we select five from class one and five from class two or skew
our samples toward the majority class.

As for the costs paid by the classifier at performance time, both [19] and [1]
attempt to produce a decision tree that minimizes expected total cost. However,
neither work assumes an a priori resource bound on the learner, thereby allowing
for unconstrained amounts of training data with which to build these classifiers.
Again, our work makes the more realistic assumption that if data costs money
at performance time, it very likely costs money at learning time as well.

Finally, we can view our model as a (fixed horizon, partially observable)
Markov Decision Process (MDP) [20]: after performing a set of tests, the learner
is in a “state” associated with those tests and their outcomes; it can then se-
lect some new test to run, which stochastically maps that state to a new state
(depending on the outcome of that test). There is a vast literature on finding op-
timal policies for such MDPs [21]. We note that although the MDP formulation
is theoretically clear, it has not yielded strong results in our experiments due
to the dimensionality and lack of obvious features for function approximation.
Recent research has provided new ideas for handling large MDPs [22], but such
methods are still unsuitable to our task because of the exponential dependence
on the size of the learning budget (i.e. the horizon). A simpler version of our
problem also exists in the MDP framework [8], and the results of that work mo-
tivate several of the policies that we adapt for the budgeted learning of bounded
active classifiers.

6 Conclusions

Many standard learning algorithms implicitly assume the features are always
available for free, to both the learner at “training time” and later the classifier, at

“performance time”. This paper extends those systems by explicitly considering
these costs, at both training and performance time. It introduces the formal
framework for budgeted learning a bounded active classifier, and presents some
complexity results. It also proposes an improvement for the optimal algorithm
which it proves works effectively. Moreover, this paper motivates and defines a
variety of tractable learning strategies and shows they work effectively on data
with identical and different feature costs. In particular, we demonstrated that
our proposed strategies can often do much better than the obvious algorithm –
”Round Robin” – especially when training data is limited. We devote future work
to developing a tractable approximation algorithm with guarantees on learning
performance.

References

1. Greiner, R., Grove, A.J., Roth, D.: Learning cost sensitive active classifiers. Arti-
ficial Intelligence (2002)

2. Dobkin, D., Gunopoulos, D., Kasif, S.: Computing optimal shallow decision trees.
In: International Workshop on Mathematics in Artificial Intelligence. (1996)

3. Heckerman, D.: A tutorial on learning in bayesian networks. In: Learning in
Graphical Models. The MIT Press (1999)

4. Madani, O., Lizotte, D.J., Greiner, R.: Active model selection. Technical report,
University of Alberta (2004)

5. Website: http://www.cs.ualberta.ca/∼aloak/bl/bl.html (2005)
6. Lizotte, D.J., Madani, O., Greiner, R.: Budgeted learning of naives-bayes classifiers.

In: Proceedings of Uncertainty In Artificial Intelligence. (2003)
7. Robbins, H.: Some aspects of the sequential design of experiments. Bulletin of the

American Mathematical Society (1952)
8. Madani, O., Lizotte, D.J., Greiner, R.: Active model selection. In: Proceedings of

Uncertainty in Artificial Intelligence. (2004)
9. S. Hettich, C.B., Merz, C.: UCI repository of machine learning databases (1998)

10. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes
for classification learning. In: International Joint Conference on Artificial Intelli-
gence. (1993)

11. Turney, P.: Types of cost in inductive concept learning. In: Workshop on cost
sensitive learning (ICML). (2000)

12. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models.
In: Advances in Neural Information Processing Systems. (1995)

13. Chaloner, K., Verdinelli, I.: Bayesian experimental design: A review. Statistical
Science (1995)

14. Musick, R., Catlett, J., Russell, S.: Decision theoretic subsampling for induction
on large databases. In: International Conference on Machine Learning. (1993)

15. Schuurmans, D., Greiner, R.: Sequential pac learning. In: Conference on Learning
Theory. (1995)

16. Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In: International
Knowledge Discovery and Data Mining Conference. (1999)

17. Melville, P., Saar-Tsechansky, M., Provost, F., Mooney, R.: Active feature-value
acquisition for classifier induction. In: ICDM. (2004)

18. Weiss, G.M., Provost, F.: Learning when training data are costly: the effect of class
distribution on tree induction. Journal of Artificial Intelligence Research (2003)

19. Turney, P.: Cost-sensitive classification: empirical evaluation of a hybrid genetic
decision tree induction algorithm. Journal of Artificial Intelligence Research (1995)

20. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall
(2002)

21. Sutton, R.S., Barto, A.G.: Reinforcement Learning. The MIT Press (1998)
22. Kearns, M., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal

planning in large markov decision processes. Machine Learning (2002)

