
Optimal Depth-First Strategies for And-Or Trees

Tracking Number: 253

Abstract

A probabilistic boolean expression (PBE) consists of a
boolean expression over a set of boolean variables, each with
a corresponding cost and probability value that indicates re-
spectively the cost of determining a variable’s value and the
probability that the value is true. Given a PBE, a resolu-
tion strategy is a sequential testing algorithm that determines
the value of the expression, where each test is a query of the
value of one variable. A strategy is optimal if its expected
cost is minimum, over all possible strategies. The minimum
cost resolution strategy problem (MRSP) is to find an optimal
strategy of a given PBE.

As MRSP is NP-hard in general, we consider the restricted
case in which each variable occurs exactly once; the cor-
responding expressions are sometimes called and-or trees,
since they have a tree representation in which internal nodes
correspond to (boolean) operators and leaf nodes correspond
to variables. We further assume that variables are indepen-
dent (for otherwise the problem remains NP-hard), and focus
on a depth-first algorithm, DFA, that orders subexpressions
within subtrees based on probability/cost ratios.

We prove that DFA produces optimal strategies for and-or
trees with depth 1 or 2, but its results can be very bad for
and-or trees with depth 3 or more. We then note that these
results also apply if these tests can have preconditions. Fi-
nally, we also consider another natural subclass of strategies
— those that can be expressed as a linear sequence of vari-
ables. We show that the best such linear strategy can also be
very much worse than the optimal strategy in general.

Keywords: Satisficing search, Diagnosis, Computational
complexity

1 Introduction

Baby J is a fussy eater. J likes only foods that are sweet, or
contain milk and fruit, or contain milk and cereal; see Fig-
ure 1. Suppose that you want to determine whether J likes
some new food, and that you can test whether the food satis-
fies J’s basic food-properties (Sweet, Milk, Fruit, Ce-
real), where each test has a known cost (say unit cost for
this example). Notice that the outcome of one test may ren-
der other test(s) unnecessary (if the food has Fruit, it does

Copyright c
�

2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

not matter whether it has Cereal), so the cost of determin-
ing whether J finds a food yummy depends on the order in
which tests are performed as well as the outcomes.

A strategy1 describes the order in which tests are to be
performed. For example, this is strategy �������	��
� : per-
form the Sweet test, returning true (aka Yummy) if it suc-
ceeds; if it fails, �������	��
� will perform the Milk test, return-
ing false if it fails. Otherwise (if Sweet fails and Milk
succeeds), ����������
�� will perform the Fruit test, returning
false if it fails; if it succeeds, perform the Cereal test, re-
turning true/false if it succeeds/fails. See Figure 2(a).
Of course, there are other strategies for this situation, includ-
ing �������	
���� , which differs from �������	��
� only by testing
Fruit before Cereal, and ��������
���� , which tests the Fruit-
Cereal component before Milk. Notice both strategies
are “correct”, in that they each correctly determine whether
J will like a food or not. If we also know the likelihood that
each test will succeed, we can then compute the expected
cost of a strategy, over the distribution of foods considered.

In general, there can be an exponential number of strate-
gies, all of which return the correct answer, but which vary
in terms of their expected cost. This paper discusses the task
of computing the best — that is, minimum cost and correct
— such strategy, for various classes of problems.

1.1 Framework
Each of the strategies discussed so far can be described in a
linear fashion: proceed through the tests in the given order,
omitting tests only if logically unnecessary. We consider
each such strategy to be linear.

In fact, each of these strategies is depth-first in that, for
each and-or subtree, the tests on the leaves of the subtree
appear together in the strategy. We can also consider a strat-
egy such as ����
���	��� which is not depth-first, since it starts
with Cereal and then moves on to Sweet before complet-
ing the evaluation of the i#2-rooted subtree.

As suggested by the notation, this non-depth-first strategy
is still linear. Not all strategies are linear. Consider, for ex-
ample the ����� strategy, which proceeds as follows: First test
Cereal. If positive test Milk then (if neccessary) Sweet.
If the Cereal test is negative then test Sweet then (if nec-
cessary) Fruit then Milk. ����� is depicted in Figure 2(b).

1Formal definitions are presented in � 2.

�� ��
Yummy��� � � � ���	
 ��

Sweet
p=0.3 c=1

�� ��
i#1��� � � � ���	
 ��

Milk
p=0.8 c=1

�� ��
i#2��� � � � ���	
 ��

Fruit
p=0.2 c=1

	
 ��
Cereal

p=0.7 c=1

Figure 1: An and-or tree �� . Here and-nodes are indi-
cated with a horizontal bar through the descending arcs; i#1
is an and-node while Yummy and i#2 are or-nodes.

We consider only correct strategies, namely those which
return the correct value for any assignment. We can mea-
sure the performance of a strategy by the expected cost of
returning the answer. A standard simplifying assumption
is that these tests are all independent of each other — e.g.,
Figure 1 indicates that 30% of the foods sampled are Sweet,
80% are with Milk, etc. While each stategy returns the cor-
rect boolean value, they have different expected costs. For
example, the expected cost of ��� ���	��
�� is��� �������������! #" $&%

S '�(Pr
%�)

S '+*� $�%
M '�(Pr

% (M ',* � $&% F '�(Pr
%�)

F ' $�% C ' -
where Pr .0/ T 1 (resp., Pr .32 T 1) is the probability that test
T succeeds (resp., fails), and 45. T 1 is the cost of T.

Suppose that we are given a particular probabilistic
boolean expression (PBE) — i.e., a boolean formula, to-
gether with the success probabilities and costs for its vari-
ables. A strategy is optimal if it (always returns the correct
value and) has minimum expected cost, over all such strate-
gies. The problem considered in this paper is, given such a
formula, probabilities and costs, determine an optimal strat-
egy; this problem is the minimum cost resolution strategy
problem (MRSP).

In 6 2 we describe these and related notions more formally.6 3 describes an algorithm, DFA [Nat86], that produces the
optimal depth-first linear strategy, then proves several the-
orems about this algorithm; in particular, Theorem 4 shows
that the DFA strategy is optimal for and-or trees with depth
1 or 2, while Theorem 6 proves it can be quite far from op-
timal in general. 6 4 then formally defines linear strategies,
and proves (Theorem 8) that the best linear strategy can be
far from optimal. 6 5 motivates and defines an extension
to the PBE model, called “Precondition PBE”, where each
test can only performed in some context, and shows that the
same results apply. The extended paper provides the proofs
for the theorems.
1.2 Related Work
We close this section by framing our problem, and providing
a brief literature survey (see also 6 5.1). The notion of MRSP
appears in Simon and Kadane [SK75], who use the term sat-
isficing search in place of resolution strategy. Application
instances include screening employment candidates for a po-
sition [Gar73], competing for prizes at a quiz show [Gar73],

mining for gold buried in Spanish treasure chests [SK75],
and performing inference in a simple expert system [Smi89;
GO91].

We motivate our particular approach by considering the
complexity of the MRSProblem for various classes of prob-
abilistic boolean expressions. First, in the case of arbi-
trary boolean formulae, MRSP is NP-hard. (Reduction from
SAT [GJ79]: if there are no satisfying assignments to a for-
mula, then there is no need to perform any tests, and so a7 -cost strategy is optimal.)

We can avoid this degeneracy by considering only “posi-
tive formulae”, where every variable occurs only positively.
However, the MRSP remains NP-hard here. (Proof: reduc-
tion from ExactCoverBy3Set, using the same construction
that [HR76] used to show the hardness of finding the small-
est decision tree.)

A further restriction is to consider “read-once” formulae,
where each variable appears only one time. As noted above,
we can view each such formula as an “and-or tree”.2 The
MRSP complexity here is not known.

This paper considers some special cases. Barnett [Bar84]
discusses how the choice of optimal strategy depends on the
probability values in a special case when there are two inde-
pendent tests (and so only two alternative search strategies).
Geiger and Barnett [GB91] note that the optimal strategies
for and-or trees cannot be represented by a linear order
of the nodes. Natarajan [Nat86] introduced the efficient al-
gorithm we call DFA for dealing with and-or trees, but did
not investigate the question of when it is optimal. Our paper
proves that this simple algorithm in fact solves the MRSP
for very shallow-trees, which have depth 2 or 3, but can do
very poorly in general.

We consider the tests to be statistically independent of
each other; this is why we can succinctly write Pr .8/�9:1 ,
as it does not depend on the other experiments that had been
performed earlier. If we allow statistical dependencies, then
the read-once restriction is not helpful, as we can convert
any non-read-once but independent PBE to a read-once but
correlated PBE by changing the ; -th occurance of the test
“ 9 ” to a new “ 9=< ”, but then insist that 9 � is equal to 9=> ,
etc. We will therefore continue to consider the tests to be
independent.

2 Definitions

We focus on read-once formulae, which correspond to and-
or trees — i.e., a tree structure whose leaf nodes are each
labeled with a probabilistic test (with a known positive cost3

2This problem also maps immediately to a “probabilistic se-
ries/parallel task”, where each arc in a graph corresponds to a prob-
abilistic test, where success (resp., failure) means there is a flow
possible (resp., not possible) from a specified source node to a tar-
get. The challenge now is to determine the best arcs to test, to de-
termine whether there will be flow in a given situation. [Colbourn,
personal conversation, 1998].

3We can also allow ? -cost tests, in which case we simply as-
sume that a strategy will perform all such tests first, leaving us
with the challenge of evaluating the reduced MRSP whose tests all
have strictly-positive costs.

� ����������� �� �� ��S � ���� ��	

�

(
�� ��M � ���� ��	

�)
�� � �C � ���� ��	

�

(
�� � �F � ���� ��	

�

(
)

� ������ � � � � ��C � ���� ��	

�
� � � ���
� � � ��	

�� ��M � ���� ��	

�

(
�� � �S � ���� ��	

�

(
)

�� ��S � ���� ��	

�

(
�� � �F � ���� ��	

�)
�� ��M � ���� ��	

�

(
)

Figure 2: Two strategy trees for and-or tree �� : (a) �������	
���� (b) � ��� .
and success probability) and whose internal nodes are each
labeled as an or-node or and-node, with the understanding
that the subtree rooted at an and-node (or-node) is satisfied
if and only if all (at least one) of the subtrees are satisfied.

Given any assignment of the probabilistic tests, for exam-
ple �02 S � / M � 2 F � / C � , we can propagate the assignment
from the leaf nodes up the tree, combining them appropri-
ately at each internal node, until reaching the root node; the
value is the tree’s overall evaluation of the assignment.

A strategy � for an and-or tree is a procedure for
evaluating the tree, with respect to any assignment. In gen-
eral, we present a strategy itself as a tree, whose internal
nodes are labeled with probabilistic tests and whose leaf
nodes are labeled either true + or false -, and whose
arcs are labeled with the values of the parent’s test (+ or
-). By convention, we will draw these strategy trees side-
ways, from left-to-right, to avoid confusing them with top-
to-bottom and-or trees. Figure 2 shows two such strategy
trees for the �� and-or tree. Different nodes of a strategy
tree may be labeled with the same test. Notice that there is
no unambiguous way to write � ��� as a simple linear sequence
of experiments, as for some test assignments M precedes S,
while in others S precedes M.

For any and-or tree , we will only consider the set
of correct strategies � . �1 , namely those which return the
correct value for all test assignments. For � in Figure 1,
each of the strategies in � .! � 1 returns the value S � . M ��
F � C � 1 .

For any test assignment � , we let �+. �����+1 be the cost of
using the strategy � to determine the (correct) value. For
example, for ��� �02 S � / M � 2 F � / C � , �+. ����������
�!���+1"�45. S 1 / 45. M 1 / 45. F 1�/ 45. C 1 while �+. ����
�	����!�#� 1$� 45. C 1�/45. M 1 .

The expected cost of a strategy � is the average cost, over
all assignments, namely% � �&�'� ()+*Assignment

Pr .&��1-,.�+. ���#� 10/ (1)

Given the indepedence of tests, there is a more efficient way
to evaluate a strategy than the algorithm implied by Equa-
tion 1. Extending

% �21 � to apply to any strategy sub-tree, the
expected cost of a leaf node is

% � / �3� % � 2 �3� 7 , and of

a (sub)tree 405 rooted at a node labeled 6 is just% � 4057� � 45.86 1 / Pr .0/"6 19, % � 40:;5��/ Pr . 2<6 19, % � 4>= 5 � (2)

where 4 :;5 (4$= 5) is the subtree rooted at 6 ’s / branch (2
branch).

To define our goal:
Definition 1 A correct strategy �@?BAC� . �1 is optimal for an
and-or tree if and only if its cost is minimal, namelyD �EAC� . �1F� % � �HG;� I % � �&�J/
Depth, “Strictly Alternating”: We define the depth of a
tree to be the maximum number of internal nodes in any
leaf-to-root path. (Hence depth K corresponds to simple con-
junctions or disjunctions, and depth L corresponds to CNF or
DNF.)

For now (until 6 5), we will assume that an and-or tree is
strictly alternating, namely that the parent of each internal
and-node is an or-node, and vice versa. If not, we can
obtain an equivalent tree by collapsing any or-node (and-
node) child of an or-node (and-node). Any strategy of the
original tree is a strategy of the collapsed one, with identical
expected cost.
3 The depth-first algorithm DFA

To help define our DFA algorithm, we first consider depth K
trees.
Observation 1 [SK75] Let ;M be a depth 1 tree whose
root is an or node, whose children correspond to testsN � , . . . ,

N"O
, with success probabilities Pr .0/ N < 1 and

costs 45. N < 1 . Then the optimal strategy for ;M is the
linear strategy

N"PRQ �H/S/H/T� NUP&V , where W is defined so that
Pr X0/ N"P�Y�Z\[45. NUP�Y 1^] Pr X8/ N"PSY�_@Q3Z\[45. NUP�Y`_7Q 1 for KaIbdcfe

. See Figure 3(c).

Proof: As we can stop as soon as any test succeeds, we
need only consider what action to perform after each ini-
tial sequence of tests has failed; hence we need only con-
sider strategy trees with linear structures. Towards a con-
tradiction, suppose the optimal strategy ��g�h did not satisfy
this ordering, in that there was (at least one) pair of tests,

N
and i such that

N
came before i but Pr .8/ N 1 [4�. N 1 c

Pr .0/Bi 1 [45.`i 1 . Now consider the strategy ��h\g that re-
ordered these tests; and observe that ��h\g ’s expected cost

�� ��
Yummy�� � � ����� ��

Sweet
p=0.3 c=1

�� ��
i#1�� � � ����� ��

Milk
p=0.5 c=1

�� ��� ���
p=0.76 c=1.3

�� ��
Yummy�� � � ���� � ��

Sweet
p=0.3 c=1

�� ��� �����
p=.608 c=2.04

	
��
A � Q � ���� ��	

�

(
	
 �
A ��� � ���� ��	

�

(
����� � ��	 	
 �

A � V � ���� ��	

�

(
)

Figure 3: Intermediate results of DFA on � (a) after 1 iteration (b) after 2 iterations. (c) A linear strategy tree.
is strictly less than � g�h ’s, contradicting the claim that � h\g
was optimal. �

An identical proof shows . . .
Observation 2 Let g be a depth 1 tree whose root is
an and node, defined analogously to M in Observa-
tion 1. Then the optimal strategy for g is the lin-
ear strategy

N��RQ �S/H/H/S� N��&V , where � is defined so that
Pr X32 N � Y;Z\[45. N � Y 1] Pr X�2 N � Y`_7Q�Z [45. N � Y`_7Q 1 for K Ibdc e

.

Now consider a depth- � alternating tree. The DFA al-
gorithm will first deal with the bottom tree layer, and or-
der the children of each final internal node as suggested
here: in order of Pr .0/ N < 1 [4�. N < 1 if the node is an or-
node. (Here we focus on this or-node case; the and-
node case is analogous.) For example, if dealing with Fig-
ure 1’s � , DFA would compare Pr .8/ F 1 [45. F 1 � 7 / L [K with
Pr .0/ C 1 [45. C 1 � 7 /�� [K , and order C first, as 7 /���� 7 / L .

DFA then replaces this penultimate node and its children
with a single mega-node; call it � , whose success probabil-
ity is

Pr .8/�� 1 � K 2�� < Pr . 2 N <�1
and whose cost is the expected cost of dealing with this sub-
tree:$&% � ' " $&%! � Q '�(Pr

%�)" � Q ',* � $&%! ���&'�(Pr
%0)" ���+' *%$#%#%# $&%! � V'&@Q '�(Pr X)" � V'&@Q Z * $�%! � V ' '

Returning to � , DFA would replace the ;)(EL -rooted subtree
with the single � ��
 -labeled node, with success probability
Pr .0/�� ��
 1 � K,2 . Pr . 2 F 1 , Pr . 2 C 1 1$� K 2 7 / *B, 7 / +B�7 /���, , and cost 45.-� ��
 1 � 4�. C 1 / Pr . 2 C 1 , 45. F 1 � K�/7 / + , K �aK+/ + ; see Figure 3(a).

Now recur: consider the and-node that is the parent to
various children, including this mega-node � . This test gets
inserted based on its Pr . 2.� 1 [45.-� 1 value, and so forth.

On � , DFA would then compare Pr . 2 M 1 [4�. M 1>� 7 / L [K
with Pr . 2.� ��
 1 [45./� ��
 1<� 7 / L�0 [K+/ + and so select the M-
labeled node to go first. Hence, the substrategy associated
with the i#1 subtree will first performM, and return 2 if un-
successful. Otherwise, it will then perform the � ��
 mega-
test: Here, it first performs C, and return / if it succeeds.
Otherwise this substrategy will perform F, and return / if it
succeeds or 2 otherwise.

DFA then creates a bigger mega-node, � �	��
 , with suc-
cess probability Pr .0/�� �	��
 1>� Pr .0/ M 10, Pr .0/�� ��
 1 �

7 / *$, 7 /��1,"� 7 / , 7 * , and cost 45./� ����
 1 � 45. M 1 / Pr .0/ M 1 ,45.-� ��
 1 � K / 7 / * , K / + � L�/ 7 0 ; see Figure 3(b).
Finally, DFA compares S with � �	��
 , and selects S

to go first as Pr . / S 1 [45. S 1 � 7 / + [K2� 7 / , 7 * [L / 7 0 �
Pr .0/�� ����
 1 [4�.-� �	��
 1 . This produces the �������	
����
strategy, shown in Figure 2.

Observe first that DFA is very efficient: indeed, as
it examines each node only in the context of comput-
ing its position under its immediate parent, which re-
quires sorting that node and its siblings, DFA requires only3 .547698 : .!: 1<;>=@?"8 : .-: 1 1"� 3 .!AB;>C e 1 time, where 8 : .!: 1 is
the out-degree of the node : , A is the total number of nodes
in the and-or tree, and e is the largest out-degree of any
internal node.

Notice also that DFA keeps together all of the tests under
each internal node, which means it is producing a depth-first
strategy. To state this more precisely,
Definition 2 A strategy � is depth-first if the tests associated
with each and-or sub-tree appear together in the strategy
� . Namely, for any and-or subtree ED , let : . FD 1 be the tests
labeling nodes within D ; then every place any test in D
appears in the � strategy, it appears in a contiguous subtree
that includes every test of : . ED 1 .

The strategy ��������
���� , shown in Figure 2(a), is depth-
first, as every time C appears it is next to its sibling F (so
all of the children of i#2 appear in a continguous region);
similarly, there is a contiguous region that contains all-and-
only the tests under i#1 — M, C and F. By contrast, the
����
�	����� strategy is not depth-first, as there is a path where
C is not next to its sibling F; similarly � ��� (Figure 2(b)) is
not depth-first.
3.1 DFA Results
First observe that DFA is optimal over a particular subclass
of strategies:
Observation 3 DFA produces a strategy that has the lowest
cost among all depth-first strategies.

Proof: By induction on the depth of the tree. Observations 1
and 2 establish the base case, for depth- K trees. Given the
depth-first constraint, the only decision to make when con-
sidering depth- �3/CK trees is how to order the strategy subtree
blocks associated with the depth- � and-or subtrees; here
we just re-use Observations 1 and 2 on the mega-blocks. �

Moreover, Observations 1 and 2 show that DFA produces
the best possible strategy, for the class of depth- K trees.
Moreover, an inductive proof shows . . .

Theorem 4 DFA produces the optimal strategies for depth- L
and-or trees, i.e., read-once DNF or CNF formulae.

Theorem 4 holds for arbitrary costs – i.e., the proof does
not require unit costs for the tests. It is tempting to believe
that DFA works in all situations. However . . .
Observation 5 DFA does not always produce the optimal
strategy for depth + and-or trees, even in the unit cost case.

We can prove this by just considering � from Figure 1.
As noted above, DFA will produce the ��� ���	
���� strategy,
whose expected cost (using Equation 2 with earlier results)
is
% � ��� ���	
���� �3� 4�. S 13/ Pr .�2 S 1\, 45.-� ��
�� 1$� K�/ 7 /��",L�/ 7 0 � L�/ 0@L1* . However, the � ��� strategy, which is not depth-

first, has lower expected cost
% � � ��� � � K / 7 /�� � K / 7 / L��KT� / 7 / + � K�/ 7 /���� .�K�/ 7 / L��$K�1 �@� L / + � L . In fact, the reader

can verify that � ��� is the unique optimal strategy.
Still, as this difference in cost is relatively small, and as

� ��� is not linear, one might suspect that DFA returns a rea-
sonably good strategy, or at least the best linear strategy.
However, we show below that this is far from being true.

In the unit-cost situation, the minimum cost for any non-
trivial A -node tree is K , and the maximum possible is A ;
hence a ratio of A [KU� A over the optimal score is the worst
possible — i.e., no algorithm can be off by a factor of more
than A over the optimum.
Theorem 6 There are unit-cost and-or trees for which
the best depth-first strategy costs � .!A � =��	� ��
 1 times as much
as the best strategy.

4 Linear Strategies

As noted above (Definition 2) we can write down each
of these DFA-produced strategies in a linear fashion; e.g.,
�������	
���� can be viewed as S, then if necessary M, then if
necessary C and if necessary F. In general,
Definition 3 A strategy is linear if it performs the tests in
fixed linear order, with the understanding that the strategy
will skip any test that will not help answer the question,
given what is already known.

Hence, ��� ���	
��� will skip all of M, C, F if the S test suc-
ceeds; and it will skip the C and F tests if M fails, and will
skip F if C succeeds.

While it is not clear that an optimal strategy can always be
expressed in poly(n) space (let alone determined in poly(n)
time), these linear strategies can always be expressed very
efficiently. This section therefore considers this subclass of
strategies.

As any permutation of the tests corresponds to a linear
strategy, there are of course A�� such strategies. One natural
question is whether there are simple ways to produce “good”
strategies from this class. The answer here is “yes”:
Observation 7 The DFA algorithm produces a linear strat-
egy.

Proof: Argue by induction on the depth � . For � � 7 , the
result holds by Observations 1 and 2. For �] K , use the
inductive hypothesis to see that DFA will produce a linear or-
dering for each subtree (as each subtree is of depth I � 2CK).

DFA will then form a linear strategy by simply sequencing
the linear strategies of the subtrees. �

Given Observation 3, this means there is always a linear
strategy (perhaps that one produced by DFA) that is at least as
good as any depth-first strategy. Unfortunately the converse
is not true — the class of strategies considered in Theorem 6
are in fact linear. This shows that the best depth-first strat-
egy can cost

3 .-A � =��	� ��
 1 times as much as the best linear
strategy.

The next natural question is how effective this class of
linear strategies is in general — i.e., is there always a lin-
ear strategy whose expected cost is near-optimal. Our next
result shows that this is not the case:

Theorem 8 There are and-or trees for which the best lin-
ear strategy costs � .!A ���� =���� ��
 1 times as much as an optimal
strategy.

5 Precondition BPE Model

Many previous researchers have considered a generalization
of our PBE model that identifies a precondition with each
test — e.g., test can only be performed after test � has
been performed and returns / . We show below that we get
identical results in this situation.

To motivate this model, suppose there is an external lab
that can determine the constituent components of some un-
known food, and in particular detect whether it contains
milk, fruit or cereal. As the post office will, with probabilityK�2 Pr . i#1 1 , lose packages sent to the labs, we therefore
view i#1 as a probabilistic test. There is also a cost for
mailing a food sample to this lab 45. i#1 1 , which is in addi-
tion to the cost associated with each of the specific tests (for
Milk, or for Fruit, etc.). Hence if the first test performed is
Milk, then its cost will be 4�. i#1 1,/ 45. M 1 . If we later per-
form, say, Fruit, the cost of this test is only 45. F 1 (and not45. i#1 1 / 45. F 1), as the sample is already at the lab.

In our current context of and-or trees, this model per-
mits each internal node to have both a non-negative cost and
a probability. In general, we refer to this as a “precondi-
tioned probabilistic boolean expression”, P-PBE. Notice this
cost structure means that a pure or-tree will not collapse to
a single level, but can be of arbitrary depth. (In particular,
we cannot simply incorporate the cost 45. i#2 1 into both F
and C, as only the first of these tests, along any evaluation
process, will have to pay this cost. And we cannot simply
associate it with one of these tests as it will only be required
by the first test, and we do not know which it will be; indeed,
this first test could, conceivably, be different for different sit-
uations.4)

This motivates us to define the alternation number of an
and-or tree to be the maximum number of alternations, be-
tween and-nodes and or-nodes, in any path from the root.
Notice that the alternation number of a strictly alternating
and-or tree is one less than its depth. For example, � in
Figure 1 has depth 3 and alternation number 2.

4This cannot happen in linear strategies, which includes all of
the strategies considered in this paper. However, even for linear
strategies, we still do not know which of the tests will be first.

5.1 Previous P-PBE Results
There are a number of prior results within this P-PBE frame-
work. Garey [Gar73] gives an efficient algorithm for find-
ing optimal resolution strategies when the precedence con-
straints can be represented as an or tree (that is, a tree with
no conjunctive subgoals); Simon and Kadane [SK75] extend
this to certain classes of or DAGs (directed-acyclic-graphs
whose internal nodes are all or). Below we will use the
Smith [Smi89] result that, if the P-PBE is read-once and
involves only or connections, then there is an efficient al-
gorithm for finding the optimal strategy — essentially lin-
ear in the number of nodes [Smi89]. However, without the
read-once property, the task becomes NP-hard; see [Gre91].
(Sahni [Sah74] similarly shows that the problem is NP-hard
if there can be more than a single path connecting a test to
the top level goal, even when all success probabilities are K .)

One obvious concern with this model is the source of
these probability values. In the standard PBE framework,
it is fairly easy to simultaneously estimate the values of all
probabilities from a data sample. This task is more com-
plicated in the P-PBE situation, as some tests can only be
performed when others (their preconditions) had succeeded,
which may make it difficult to collect sufficient instances to
estimate the success probabilities of these “blockable” tests.
However, Greiner and Orponen [GO96] show that it is al-
ways possible to collect the relevant information, for any
P-PBE structure.
5.2 P-BPE Results
Note first that every standard BPE instance corresponds to
a P-BPE where each internal node has cost 7 and success
probability K . This means every negative result about BPE
(Theorems 6 and 8) applies to P-BPE.

Our only positive result above is Theorem 4, which
basically proved that an optimal strategy �7?�.!�1 for a K -
alternation and-or tree should explore each sub-tree to
completion before considering any other sub-tree. In the
DNF case �� .!9 �� � /S/H/ � 9 �� Q 1+� 1S1H1 � . 9��� � /H/H/ ��� ��	� 1 ,
once we evaluate any term — say . � < � � /H/H/ ��� < �	
 1 — � ?�. �1
will sequentially consider each of these

� <� until one fails,
or until they all succeed, but it will never intersperse any

� � �
(b�� ;) within this sequence.

This basic idea also applies to the P-BPE model — but us-
ing the [Smi89] algorithm to deal with each “pure” subtree,
rather than simply considering Pr .���9 1 [45. 9 1 . To state this
precisely: A subtree is “pure” if all of its internal nodes all
have the same label — either all “Or” or all “And”; hence
the i#2-rooted subtree in Figure 1 is a pure subtree (in fact,
every penultimate node roots a pure subtree), but the subtree
rooted in i#1 is not. A pure subtree is “maximal” if the sub-
tree associated with the parent of its root is not pure. Now
let DFA ? be the variant of DFA which forms a strategy from
the bottom up by using [Smi89] to find a substrategy for
each maximal pure subtree of the given and-or tree, with an
associated success probability � and expected cost 4 . After
replacing that subtree with a single mega-node with proba-
bility � and cost 4 , DFA ? recurs on the new reduced and-or
tree. On the Figure 1 tree, this would produce the reduced
trees shown in Figure 2. DFA ? terminates when it produces

a single node; it is then easy to join the substrategies into a
single stategy.

As a corollary to Theorem 4,
Corollary 9 In the P-PBE setting, DFA ? produces the opti-
mal strategies for K -alternation and-or trees.

6 Conclusions

This paper addresses the challenge of computing the opti-
mal strategy for and-or trees. As such strategies can be
exponentially larger than the original tree in general, we in-
vestigate the subclass of strategies produced by the DFA al-
gorithm, which are guaranteed to be of reasonable size —
in fact, linear in the number of tests. After observing that
these DFA-produced strategies are the optimal depth-first
strategies, we then prove that these strategies are in fact the
optimal possible strategies for trees with depth K or L . How-
ever, for deeper trees, we prove that these depth-first strate-
gies can be arbitrarily worse than the best linear strategies.
Moreover, we show that these best linear strategies can be
considerably worse than the best possible strategy. We also
show that these results also apply to the more general model
where intermediate nodes are also probabilistic tests.

References
[Bar84] J. Barnett. How much is control knowledge worth?:

A primitive example. Artificial Intelligence, 22:77–89,
1984.

[Gar73] M. R. Garey. Optimal task sequencing with prece-
dence constraints. Discrete Mathematics, 4, 1973.

[GB91] D. Geiger and J. Barnett. Optimal satisficing tree
searches. In Proc, AAAI-91, 1991.

[GJ79] M. Garey and D. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
1979.

[GO91] R. Greiner and P. Orponen. Probably approximately
optimal derivation strategies. In Proc, KR-91, 1991.

[GO96] R. Greiner and P. Orponen. Probably approx-
imately optimal satisficing strategies. Artificial Intelli-
gence, 82(1–2):21–44, April 1996.

[Gre91] R. Greiner. Finding the optimal derivation strategy
in a redundant knowledge base. Artificial Intelligence, 50,
1991.

[HR76] L. Hyafil and R. Rivest. Constructing optimal bi-
nary decision trees is NP-complete. Information Process-
ing Letters, 35(1):15–17, 1976.

[Nat86] K. Natarajan. Optimizing depth-first search of
AND-OR trees. Tech. report, RC-11842, IBM Research
Center, 1986.

[Sah74] S. Sahni. Computationally related problems. SIAM
Journal on Computing, 3(4):262–279, 1974.

[SK75] H. Simon and J. Kadane. Optimal problem-solving
search: All-or-none solutions. Artificial Intelligence,
6:235–247, 1975.

[Smi89] D. Smith. Controlling backward inference. Artifi-
cial Intelligence, 39(2):145–208, June 1989.

