
Optimal Depth-First Strategies for And-Or Trees

Russell Greiner Ryan Hayward
Dept of Computing Science

University of Alberta
{greiner, hayward}@cs.ualberta.ca

Michael Molloy
Dept of Computer Science

University of Toronto
molloy@cs.toronto.edu

Abstract

Many tasks require evaluating a speci£ed boolean expression
ϕ over a set of probabilistic tests where we know the prob-
ability that each test will succeed, and also the cost of per-
forming each test. A strategy speci£es when to perform which
test, towards determining the overall outcome of ϕ. This pa-
per investigates the challenge of £nding the strategy with the
minimum expected cost.

We observe £rst that this task is typically NP-hard — e.g.,
when tests can occur many times within ϕ, or when there
are probabilistic correlations between the test outcomes. We
therefore focus on the situation where the tests are probabilis-
tically independent and each appears only once in ϕ. Here, ϕ
can be written as an and-or tree, where each internal node
corresponds to either the “And” or “Or” of its children, and
each leaf node is a probabilistic test.

There is an obvious depth-£rst approach to evaluating such
and-or trees: First evaluate each penultimate subtree in
isolation; then reduce this subtree to a single “mega-test”
with an appropriate cost and probability, and recur on the
resulting reduced tree. After formally de£ning this approach,
we prove £rst that it produces the optimal strategy for shallow
(depth 1 or 2) and-or trees, then show it can be arbitrarily
bad for deeper trees. We next consider a larger, natural sub-
class of strategies — those that can be expressed as a linear
sequence of tests — and show that the best such “linear strat-
egy” can also be very much worse than the optimal strategy
in general. Finally, we show that our results hold in a more
general model, where internal nodes can also be probabilistic
tests.

Keywords: Satis£cing search, Diagnosis, Computational complexity

1 Introduction

Baby J is a fussy eater, who only likes foods that are sweet,
or contain milk and fruit, or contain milk and cereal; see
Figure 1. Suppose that you want to determine whether J will
like some new food, and that you can test whether the food
satis£es J’s basic food-properties (Sweet, Milk, Fruit,
Cereal), where each test has a known cost (say unit cost
for this example). Notice that the outcome of one test may
render other test(s) unnecessary (if the food has Fruit, it

Copyright c© 2002, American Association for Arti£cial Intelli-
gence (www.aaai.org). All rights reserved.

does not matter whether it has Cereal), so the cost of deter-
mining whether J £nds a food yummy depends on the order
in which tests are performed as well as their outcomes.

A strategy1 describes the order in which tests are to be
performed. For example, the strategy ξ〈SMCF 〉 £rst per-
forms the Sweet test, returning true (aka Yummy) if it suc-
ceeds; if it fails, ξ〈SMCF 〉 will perform the Milk test, return-
ing false if it fails. Otherwise (if Sweet fails and Milk
succeeds), ξ〈SMCF 〉 will perform the Cereal test, returning
false if it fails; if it succeeds, ξ〈SMCF 〉 will perform the
Fruit test, returning true/false if it succeeds/fails. See
Figure 2(a). Notice that ξ〈SMCF 〉 will typically perform
only a subset of the 4 tests; e.g., it will skip all of the re-
maining tests if Sweet succeeds.

Of course, there are other strategies for this situation,
including ξ〈SMFC〉, which differs from ξ〈SMCF 〉 only by
testing Fruit before Cereal, and ξ〈SCFM〉, which tests the
Cereal-Fruit component before Milk. Each strategy
is correct, in that it correctly determines whether J will like
a food or not. However, for a given food, different strate-
gies will perform different subsets of the tests. (E.g., while
ξ〈SMCF 〉 will perform all of the tests for a non-sweet, milky
non-cereal with fruit, ξ〈SMFC〉 will not need to perform the
£nal Cereal test.) Hence, different strategies can have dif-
ferent costs. If we also know the likelihood that each test
will succeed, we can then compute the expected cost of a
strategy, over the distribution of foods considered.

In general, there can be an exponential number of strate-
gies, each of which returns the correct answer, but which
vary in terms of their expected costs. This paper discusses
the task of computing the best — that is, minimum cost and
correct — strategy, for various classes of problems.
1.1 Framework
Each of the strategies discussed so far is depth-£rst in that,
for each and-or subtree, the tests on the leaves of the
subtree appear together in the strategy. We will also con-
sider strategies that are not depth-£rst; e.g., ξ〈CSMF 〉 is not
depth-£rst, since it starts with Cereal and then moves on to
Sweet before completing the evaluation of the i#2-rooted
subtree.

This strategy, like the depth-£rst ones, is linear, as it can
be described in a linear fashion: proceed through the tests in

1Formal de£nitions are presented in §2.

¶
µ

³
´Yummy

©©¼ HHHjÂ
Á

¿
À

Sweet
p=0.3 c=1

¶
µ

³
´i#1

©©©¼
HHHjÂ

Á
¿
À

Milk
p=0.8 c=1

¶
µ

³
´i#2

©©©¼
HHHjÂ

Á
¿
À

Fruit
p=0.2 c=1

Â
Á

¿
À

Cereal
p=0.7 c=1

Figure 1: An and-or tree, T1. Here and-nodes are in-
dicated with a horizontal bar through the descending arcs;
i#1 is an and-node while Yummy and i#2 are or-nodes.
the given order, omitting tests only if logically unnecessary.

There are also non-linear strategies. For example, the
ξnl strategy, Figure 2(b), £rst tests Cereal and if posi-
tive, tests Milk then (if necessary) Sweet. However, if the
Cereal test is negative, it then tests Sweet then (if nec-
essary) Fruit then Milk. Notice no linear sequence can
describe this strategy as, for some instances, it tests Milk
before Sweet, but for others, it tests Sweet before Milk.

We consider only correct strategies, namely those that re-
turn the correct value for any assignment. We can measure
the performance of a strategy by the expected cost of re-
turning the answer. A standard simplifying assumption is to
require that these tests be independent of each other — e.g.,
Figure 1 indicates that 30% of the foods sampled are Sweet,
80% are with Milk, etc. While each strategy returns the cor-
rect boolean value, they have different expected costs. For
example, the expected cost of ξ〈SMCF 〉 is
C[ξ〈SMCF 〉] = c(S) + Pr(−S)×

[c(M) + Pr(+M)× [c(C) + Pr(−C) c(F)]]
where Pr(+T) (resp., Pr(−T)) is the probability that test T
succeeds (resp., fails), and c(T) is the cost of T.

Suppose that we are given a particular probabilistic
boolean expression (PBE), which is a boolean formula, to-
gether with the success probabilities and costs for its vari-
ables. A strategy is optimal if it (always returns the cor-
rect value and) has minimum expected cost, over all such
strategies. This paper considers the so-called minimum cost
resolution strategy problem (MRSP): given such a formula,
probabilities and costs, determine an optimal strategy.
§2 describes these and related notions more formally. §3

describes an algorithm, DFA [Nat86], that produces a depth-
£rst strategy, then proves several theorems about this algo-
rithm; in particular, that DFA produces the optimal depth-
£rst strategy, that this DFA strategy is optimal for and-or
trees with depth 1 or 2 (Theorem 4), but it can be quite far
from optimal in general (Theorem 6). §4 then formally de-
£nes linear strategies, shows they are strict generalizations
of depth-£rst strategies, and proves (Theorem 8) that the best
linear strategy can be far from optimal. §5 motivates and de-
£nes an extension to the PBE model, called “Precondition

PBE”, where each test can only performed in some context
(i.e., if some boolean condition is satis£ed), and shows that
the same results apply. The extended paper [GHM02] pro-
vides the proofs for the theorems.

1.2 Related Work
We close this section by framing our problem, and provid-
ing a brief literature survey (see also §5.1). The notion of
MRSP appears in Simon and Kadane [SK75], who use the
term satis£cing search in place of strategy. Application in-
stances include screening employment candidates for a po-
sition [Gar73], competing for prizes at a quiz show [Gar73],
mining for gold buried in Spanish treasure chests [SK75],
and performing inference in a simple expert system [Smi89;
GO91].

We motivate our particular approach by considering the
complexity of the MRSProblem for various classes of prob-
abilistic boolean expressions. First, in the case of arbi-
trary boolean formulae, MRSP is NP-hard. (Reduction from
SAT [GJ79]: if there are no satisfying assignments to a for-
mula, then there is no need to perform any tests, and so a
0-cost strategy is optimal.)

We can try to avoid this degeneracy by considering only
“positive formulae”, where every variable occurs only posi-
tively. However, the MRSP remains NP-hard here. (Proof:
reduction from ExactCoverBy3Set, using the same construc-
tion that [HR76] used to show the hardness of £nding the
smallest decision tree.)

A further restriction is to consider “read-once” formulae,
where each variable appears only one time. As noted above,
we can view each such formula as an “and-or tree”. The
MRSP complexity here is not known.

This paper considers some special cases. Barnett [Bar84]
discusses how the choice of optimal strategy depends on the
probability values in a special case when there are two inde-
pendent tests (and so only two alternative search strategies).
Geiger and Barnett [GB91] note that the optimal strategies
for and-or trees cannot be represented by a linear order
of the nodes. Natarajan [Nat86] introduced the ef£cient al-
gorithm we call DFA for dealing with and-or trees, but did
not investigate the question of when it is optimal. Our paper
proves that this simple algorithm in fact solves the MRSP for
very shallow-trees, of depth 1 or 2, but can do very poorly
in general.

We consider the tests to be statistically independent of
each other; this is why it suf£ces to use simply Pr(+X),
as test X does not depend on the results of the other experi-
ments that had been performed earlier. If we allow statistical
dependencies, then the read-once restriction is not helpful,
as we can convert any non-read-once but independent PBE
to a read-once but correlated PBE by changing the i-th occu-
rance of the test “X” to a new “Xi”, but then insist that X1

is equal to X2, etc. We will therefore continue to consider
the tests to be independent.

2 De£nitions

We focus on read-once formulae, which correspond to and-
or trees — i.e., a tree structure whose leaf nodes are each

ξ〈SMCF 〉

--
®­©ªS
©©*

HHj

+

−

+

®­©ªM
©©*

HHj

+

− −

®­©ªC
©©*

HHj

+

−

+

®­©ªF
©©*

HHj

+

−

+

−

ξnl
-
®­©ªC
©©*

HHj

+

−

©©
©©*

HHHHj

®­©ªM
©©*

HHj

+

−

+

®­©ªS
©©*

HHj

+

−

+

−

®­©ªS
©©*

HHj

+

−

+

®­©ªF
©©*

HHj

+

− −

®­©ªM
©©*

HHj

+

−

+

−

Figure 2: Two strategy trees for and-or tree T1: (a) ξ〈SMCF 〉 (b) ξnl.

labeled with a probabilistic test (with a known positive cost2

and success probability) and whose internal nodes are each
labeled as an or-node or an and-node, with the understand-
ing that the subtree rooted at an and-node (or-node) is sat-
is£ed if and only if all (at least one) of the subtrees are sat-
is£ed.

Given any assignment of the probabilistic tests, for exam-
ple {−S, +M, −F, +C}, we can propagate the assignment
from the leaf nodes up the tree, combining them appropri-
ately at each internal node, until reaching the root node; the
value is the tree’s overall evaluation of the assignment.

A strategy ξ for an and-or tree T is a procedure for
evaluating the tree, with respect to any assignment. In gen-
eral, we present a strategy itself as a tree, whose internal
nodes are labeled with probabilistic tests and whose leaf
nodes are labeled either true + or false -, and whose
arcs are labeled with the values of the parent’s test (+ or
-). By convention, we will draw these strategy trees side-
ways, from left-to-right, to avoid confusing them with top-
to-bottom and-or trees. Figure 2 shows two such strategy
trees for the T1 and-or tree. Different nodes of a strat-
egy tree may be labeled with the same test. Recall that the
strategy need not corresponds to a simple linear sequence of
experiments; see discussion of ξnl.

For any and-or tree T , we will only consider the set of
correct strategies Ξ(T), namely those that return the correct
value for all test assignments. For T1 in Figure 1, each of
the strategies in Ξ(T1) returns the value S ∨ (M ∧ [F ∨ C]).

For any test assignment γ, we let k(ξ, γ) be the cost of
using the strategy ξ to determine the (correct) value. For
example, for γ = {−S, +M, −F, +C}, k(ξ〈SMFC〉, γ) =
c(S) + c(M) + c(F) + c(C) while k(ξ〈CMSF 〉, γ) = c(C) +
c(M).

The expected cost of a strategy ξ is the average cost of
evaluating an assignment, over all assignments, namely

C[ξ] =
∑

γ:Assignment
Pr(γ)× k(ξ, γ) . (1)

Given the independence of the tests, there is a more ef£-
cient way to evaluate a strategy than the algorithm implied

2We can also allow 0-cost tests, in which case we simply as-
sume that a strategy will perform all such tests £rst, leaving us
with the challenge of evaluating the reduced MRSP whose tests all
have strictly-positive costs.

by Equation 1. Extending the notation C[·] to apply to
any strategy sub-tree, the expected cost of a leaf node is
C[+] = C[−] = 0, and of a (sub)tree ϕχ rooted at a
node labeled χ is just

C[ϕχ] = c(χ) + Pr(+χ)× C[ϕ+χ]
+ Pr(−χ)× C[ϕ−χ]

(2)

where ϕ+χ (ϕ−χ) is the subtree rooted at χ’s + branch (−
branch).

To de£ne our goal:
De£nition 1 A correct strategy ξ∗ ∈ Ξ(T) is optimal for an
and-or tree T if and only if its cost is minimal, namely

∀ξ ∈ Ξ(T), C[ξT] ≤ C[ξ] .

Depth, “Strictly Alternating”: We de£ne the depth of a
tree to be the maximum number of internal nodes in any
leaf-to-root path. (Hence depth 1 corresponds to simple con-
junctions or disjunctions, and depth 2 corresponds to CNF or
DNF.)

For now (until §5), we will assume that an and-or tree is
strictly alternating, namely that the parent of each internal
and-node is an or-node, and vice versa. If not, we can
obtain an equivalent tree by collapsing any or-node (and-
node) child of an or-node (and-node). Any strategy of the
original tree is a strategy of the collapsed one, with identical
expected cost.
3 The depth-£rst algorithm DFA

To help de£ne our DFA algorithm, we £rst consider depth 1
trees.
Observation 1 [SK75] Let TO be a depth 1 tree whose
root is an or node, whose children correspond to tests
A1, . . . , Ar, with success probabilities Pr(+Ai) and costs
c(Ai). Then the optimal strategy for TO is the one-path
strategy Aπ1

, . . . , Aπr
, (Figure 3(c)) where π is de£ned so

that Pr
(

+Aπj

)

/c(Aπj
) ≥ Pr

(

+Aπj+1

)

/c(Aπj+1
) for

1 ≤ j < r.

Proof: As we can stop as soon as any test succeeds, we
need only consider what action to perform after each initial
sequence of tests has failed; hence we need only consider
strategy trees with “one-path” structures. Towards a con-
tradiction, suppose the optimal strategy ξAB did not satisfy
this ordering, in that there was (at least one) pair of tests, A
and B such that A came before B but Pr(+A) /c(A) <

²
±

¯
°Yummy

©©¼ HHjº
¹

·
¸Sweet

p=0.3 c=1

²
±

¯
°i#1

©©¼ HHjº
¹

·
¸Milk

p=0.5 c=1

º
¹

·
¸

AFC
p=0.76 c=1.3

²
±

¯
°Yummy

©©¼ HHjº
¹

·
¸Sweet

p=0.3 c=1

º
¹

·
¸

AMFC

p=.608 c=2.04

²
±
¯
°Aπ1

©©*

HHj

+

−

+

²
±
¯
°Aπ2

©©*

HHj

+

−

+

. . .
HHj²±
¯
°Aπr

©©*

HHj

+

−

+

−

Figure 3: Intermediate results of DFA on T1 (a) after 1 iteration (b) after 2 iterations. (c) A one-path strategy tree.
Pr(+B) /c(B). Now consider the strategy ξBA that re-
ordered these tests; and observe that ξBA’s expected cost
is strictly less than ξAB’s, contradicting the claim that ξBA
was optimal. 2

An isomorphic proof shows . . .
Observation 2 Let TA be a depth 1 tree whose root is
an and node, de£ned analogously to TO in Observa-
tion 1. Then the optimal strategy for TA is the one-
path strategy Aφ1

, . . . , Aφr
, where φ is de£ned so that

Pr
(

−Aφj

)

/c(Aφj
) ≥ Pr

(

−Aφj+1

)

/c(Aφj+1
) for 1 ≤

j < r.

Now consider a depth-s alternating tree. The DFA algo-
rithm will £rst deal with the bottom tree layer, and order the
children of each £nal internal node as suggested here: in or-
der of Pr(+Ai) /c(Ai) if the node is an or-node. (Here we
focus on the or-node case; the and-node case is analogous.)
For example, if dealing with Figure 1’s T1, DFA would com-
pare Pr(+F) /c(F) = 0.2/1 with Pr(+C) /c(C) = 0.7/1,
and order C £rst, as 0.7 > 0.2.

DFA then replaces this penultimate node and its children
with a single mega-node; call it A, whose success probabil-
ity is

Pr(+A) = 1−
∏

i

Pr(−Ai)

and whose cost is the expected cost of dealing with this
subtree:
c(A) = c(Aπ1

) + Pr(−Aπ1
)× [c(Aπ2

) + Pr(−Aπ2
)×

(. . . c(Aπr−1
) + Pr

(

−Aπr−1

)

× c(Aπr
))]

Returning to T1, DFA would replace the i#2-rooted subtree
with the single AFC -labeled node, with success probability
Pr(+AFC) = 1− (Pr(−F)×Pr(−C)) = 1−0.8×0.3 =
0.76, and cost c(AFC) = c(C) + Pr(−C) × c(F) = 1 +
0.3× 1 = 1.3; see Figure 2(a).

Now recur: consider the and-node that is the parent to
this mega-node A and its siblings. DFA inserts this A test
among these siblings based on its Pr(−A) /c(A) value, and
so forth.

On T1, DFA would then compare Pr(−M) /c(M) = 0.2/1
with Pr(−AFC) /c(AFC) = 0.24/1.3 and so select the M-
labeled node to go £rst. Hence, the substrategy associated
with the i#1 subtree will £rst perform M, and return− if un-
successful. Otherwise, it will then perform the AFC mega-
test: Here, it £rst performs C, and returns + if C succeeds.
Otherwise this substrategy will perform F, and return + if it
succeeds or − otherwise.

DFA then creates a bigger mega-node, AMFC , with suc-
cess probability Pr(+AMFC) = Pr(+M)×Pr(+AFC) =
0.8×0.76 = 0.608, and cost c(AMFC) = c(M)+Pr(+M)×
c(AFC) = 1 + 0.8× 1.3 = 2.04; see Figure 2(b).

Finally, DFA compares S with AMFC , and selects S
to go £rst as Pr(+S) /c(S) = 0.3/1 > 0.608/2.04 =
Pr(+AMFC) /c(AMFC). This produces the ξ〈SMCF 〉

strategy, shown in Figure 2.
This DFA algorithm is very ef£cient: As it examines each

node only in the context of computing its position under
its immediate parent (which requires sorting that node and
its siblings), DFA requires only O(

∑

v d
+(v) log d+(v)) =

O(n ln r) time, where n is the total number of nodes in the
and-or tree, and d+(v) is the out-degree of the node v,
which is bounded above by r, the largest out-degree of any
internal node.

Notice also that DFA keeps together all of the tests under
each internal node, which means it is producing a depth-£rst
strategy. To state this more precisely, we £rst identify each
(sub)tree S of a given and-or tree T with an associated
boolean expression φ(S). (E.g., the boolean expression as-
sociated with Si#1, the subtree of Figure 1’s T1 rooted in
i#1, is φ(Si#1) ≡ M&(F ∨ C).) During the evaluation of
a strategy for T , an and-or subtree S is “determined” once
we know the value of φ(S).
De£nition 2 A strategy ξ for T is depth-£rst if, for each sub-
tree S, whenever a leaf of S is tested, ξ will determine the
boolean value of φ(S) before performing any test outside of
S.

To see that ξ〈SMCF 〉 (Figure 2(a)) is depth-£rst, notice
that every time C appears, it is followed (when necessary)
by F; notice this C−F block will determine the value of the
Si#2 subtree. Similarly, the M − C − F block in ξ〈SMCF 〉

will always determine the value of the Si#1 subtree. By
contrast, the ξ〈CMSF 〉 strategy is not depth-£rst, as there is
a path where C is performed but, before the Si#2 subtree is
determined (by testing F) another test (here M) is performed.
Similarly ξnl is not depth-£rst.
3.1 DFA Results
First observe that DFA is optimal over a particular subclass
of strategies:
Observation 3 DFA produces a strategy that has the lowest
cost among all depth-£rst strategies.

Proof: By induction on the depth of the tree. Observations 1
and 2 establish the base case, for depth-1 trees. Given the

depth-£rst constraint, the only decision to make when con-
sidering depth-s+1 trees is how to order the strategy subtree
blocks associated with the depth-s and-or subtrees; here
we just re-use Observations 1 and 2 on the mega-blocks. 2

Observations 1 and 2 show that DFA produces the best
possible strategy, for the class of depth-1 trees. Moreover,
an inductive proof shows . . .
Theorem 4 DFA produces the optimal strategies for depth-2
and-or trees, i.e., read-once DNF or CNF formulae.

Theorem 4 holds for arbitrary costs — i.e., the proof does
not require unit costs for the tests. It is tempting to believe
that DFA works in all situations. However . . .
Observation 5 DFA does not always produce the optimal
strategy for depth 3 and-or trees, even in the unit cost case.

We prove this by just considering T1 from Figure 1.
As noted above, DFA will produce the ξ〈SMCF 〉 strategy,
whose expected cost (using Equation 2 with earlier results)
is C[ξ〈SMCF 〉] = c(S)+Pr(−S)× c(AMCF) = 1+0.7×
2.04 = 2.428. However, the ξnl strategy, which is not depth-
£rst, has lower expected cost C[ξnl] = 1 + 0.7[1 + 0.2×
1] + 0.3[1 + 0.7× (1 + 0.2× 1)] = 2.392.

Still, as this difference in cost is relatively small, and as
ξnl is not linear, one might suspect that DFA returns a rea-
sonably good strategy, or at least the best linear strategy.
However, we show below that this claim is far from being
true.

In the unit-cost situation, the minimum cost for any non-
trivial n-node tree is 1, and the maximum possible is n;
hence a ratio of n/1 = n over the optimal score is the worst
possible — i.e., no algorithm can be off by a factor of more
than n over the optimum.
Theorem 6 For every ε > 0, there is a unit-cost and-or
tree T for which the best depth-£rst strategy costs n1−ε times
as much as the best strategy.

4 Linear Strategies

As noted above (De£nition 2) we can write down each
of these DFA-produced strategies in a linear fashion; e.g.,
ξ〈SMCF 〉 can be viewed as test S, then if necessary test M,
then if necessary test C and if necessary test F. In general. . .
De£nition 3 A strategy is linear if it performs the tests in
£xed linear order, with the understanding that the strategy
will skip any test that will not help determine the value of
the tree, given what is already known.

Hence, ξ〈SMCF 〉 will skip all of M, C, F if the S test suc-
ceeds; and it will skip the C and F tests if M fails, and will
skip F if C succeeds.

As any permutation of the tests corresponds to a linear
strategy, there are of course n! such strategies. One natural
question is whether there are simple ways to produce “good”
strategies from this class. The answer here is “yes”:
Observation 7 DFA algorithm produces linear strategies.

Proof: Argue by induction on the depth k. For k = 1, the
result holds by Observations 1 and 2. For k ≥ 2, use the

inductive hypothesis to see that DFA will produce a linear or-
dering for each subtree (as each subtree is of depth≤ k−1).
DFA will then form a linear strategy by simply sequencing
the linear strategies of the subtrees. 2

Observation 3 implies there is always a linear strategy
(perhaps that one produced by DFA) that is at least as good
as any depth-£rst strategy. Unfortunately the converse is not
true — the class of strategies considered in Theorem 6 are
in fact linear, which means the best depth-£rst strategy can
cost n1−ε times as much as the best linear strategy, for any
ε > 0.

Is there always a linear strategy whose expected cost is
near-optimal? Unfortunately, . . .
Theorem 8 For every ε > 0, there is an and-or tree T for
which the best linear strategy costs n1/3−ε times as much as
an optimal strategy.

5 Precondition BPE Model

Some previous researchers have considered a generalization
of our PBE model that identi£es a precondition with each
test — e.g., test T can only be performed after test S has
been performed and returned +. We show below that we get
identical results even in this situation.

To motivate this model, suppose there is an external lab
that can determine the constituent components of some un-
known food, and in particular detect whether it contains
milk, fruit or cereal. As the post of£ce will, with probability
1 − Pr(i#1), lose packages sent to the labs, we therefore
view i#1 as a probabilistic test. There is also a cost for
mailing a food sample to this lab c(i#1), which is in addi-
tion to the cost associated with each of the speci£c tests (for
Milk, or for Fruit, etc.). Hence if the £rst test performed in
some strategy is Milk, then its cost will be c(i#1) + c(M).
If we later perform, say, Fruit, the cost of this test is only
c(F) (and not c(i#1)+c(F)), as the sample is already at the
lab.

This motivates the notion of a “preconditioned probabilis-
tic boolean expression” (P-PBE) which, in the context of
and-or trees, allows each internal node to have both a cost
and a probability. Notice this cost structure means that a
pure or-tree will not collapse to a single level, but can be of
arbitrary depth. (In particular, we cannot simply incorpo-
rate the cost c(i#2) into both F and C, as only the £rst of
these tests, within any evaluation process, will have to pay
this cost. And we cannot simply associate this cost with one
of these tests as it will only be required by the £rst test, and
we do not know which it will be; indeed, this £rst test could,
conceivably, be different for different situations.)

We de£ne the alternation number of an and-or tree
to be the maximum number of alternations, between and-
nodes and or-nodes, in any path from the root. Notice that
the alternation number of a strictly alternating and-or tree
is one less than its depth. For example, T1 in Figure 1 has
depth 3 and alternation number 2.

5.1 Previous P-PBE Results
There are a number of prior results within this P-PBE frame-
work. Garey [Gar73] gives an ef£cient algorithm for £nd-

ing optimal resolution strategies when the precedence con-
straints can be represented as an or tree (that is, a tree with
no conjunctive subgoals); Simon and Kadane [SK75] extend
this to certain classes of or DAGs (directed-acyclic-graphs
whose internal nodes are all or). Below we will use the
Smith [Smi89] result that, if the P-PBE is read-once and
involves only or connections, then there is an ef£cient al-
gorithm for £nding the optimal strategy — essentially lin-
ear in the number of nodes [Smi89]. However, without the
read-once property, the task becomes NP-hard; see [Gre91].
(Sahni [Sah74] similarly shows that the problem is NP-hard
if there can be more than a single path connecting a test to
the top level goal, even when all success probabilities are 1.)

One obvious concern with this P-PBE model is the source
of these probability values. In the standard PBE framework,
it is fairly easy to estimate the success probability of any test,
by just performing that test as often as it was needed. This
task is more complicated in the P-PBE situation, as some
tests can only be performed when others (their precondi-
tions) had succeeded, which may make it dif£cult to collect
suf£cient instances to estimate the success probabilities of
these “blockable” tests. However, [GO96] shows that it is
always possible to collect the relevant information, for any
P-PBE structure.
5.2 P-PBE Results
Note £rst that every standard PBE instance corresponds to
a P-PBE where each internal node has cost 0 and success
probability 1. This means every negative result about PBE
(Theorems 6 and 8) applies to P-PBE.

Our only positive result above is Theorem 4, which
proved that an optimal strategy ξ∗(T) for a depth-2 (≈ 1-
alternation) and-or tree T is depth-£rst; i.e., it should ex-
plore each sub-tree to completion before considering any
other sub-tree. In the DNF case T ≡ (X1

1& . . .&X
1
k1
) ∨

· · · ∨ (Xm
1 & . . .&X

m
km
), once we evaluate any term — say

(Xi
1& . . .&X

i
ki
) — ξ∗(T) will sequentially consider each

of these Xi
j until one fails, or until they all succeed, but it

will never intersperse any Xj
` (j 6= i) within this sequence.

This basic idea also applies to the P-PBE model, but us-
ing the [Smi89] algorithm to deal with each “pure” subtree,
rather than simply using the Pr(±X) /c(X) ordering. To
state this precisely: A subtree is “pure” if all of its internal
nodes all have the same label — either all “Or” or all “And”;
hence the i#2-rooted subtree in Figure 1 is a pure subtree
(in fact, every penultimate node roots a pure subtree), but the
subtree rooted in i#1 is not. A pure subtree is “maximal”
if it is the entire tree, or if the subtree associated with the
parent of its root is not pure; e.g., the i#2-rooted subtree
is maximal. Now let DFA∗ be the variant of DFA that forms
a strategy from the bottom up: use [Smi89] to £nd a sub-
strategy for each maximal pure subtree of the given and-or
tree, compute the success probability p and expected cost c
of this substrategy, then replace that pure subtree with a sin-
gle mega-node with probability p and cost c, and recur on
the new reduced and-or tree. On the Figure 1 tree, this
would produce the reduced trees shown in Figure 2. DFA∗

terminates when it produces a single node; it is then easy to
join the substrategies into a single strategy.

As a corollary to Theorem 4 (using the obvious corollary
to Observation 3),
Corollary 9 In the P-PBE setting, DFA∗ produces the opti-
mal strategies for 1-alternation and-or trees.

6 Conclusions

This paper addresses the challenge of computing the opti-
mal strategy for and-or trees. As such strategies can be
exponentially larger than the original tree in general, we in-
vestigate the subclass of strategies produced by the DFA al-
gorithm, which are guaranteed to be of reasonable size —
in fact, linear in the number of tests. After observing that
these DFA-produced strategies are the optimal depth-£rst
strategies, we then prove that these strategies are in fact the
optimal possible strategies for trees with depth 1 or 2. How-
ever, for deeper trees, we prove that these depth-£rst strate-
gies can be arbitrarily worse than the best linear strategies.
Moreover, we show that these best linear strategies can be
considerably worse than the best possible strategy. We also
show that these results also apply to the more general model
where intermediate nodes are also probabilistic tests.
Acknowledgements

All authors gratefully acknowledge NSERC. RH also ac-
knowledges a University of Alberta Research Excellence
Award; and MM also acknowledges a Sloan Research Fel-
lowship. We also gratefully acknowledge receiving helpful
comments from Adnan Darwiche, Rob Holte, Omid Madani
and the anonymous reviewers.
References
[Bar84] J. Barnett. How much is control knowledge worth?: A

primitive example. Arti£cial Intelligence, 22:77–89, 1984.
[Gar73] M. Garey. Optimal task sequencing with precedence con-

straints. Discrete Mathematics, 4, 1973.
[GB91] D. Geiger and J. Barnett. Optimal satis£cing tree searches.

In Proc, AAAI-91, pages 441–43, 1991.
[GHM02] R. Greiner, R. Hayward, and M. Malloy. Optimal depth-

£rst strategies for And-Or trees. Tech. rep, U. Alberta, 2002.
[GJ79] M. Garey and D. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. 1979.
[GO91] R. Greiner and P. Orponen. Probably approximately op-

timal derivation strategies. In Proc, KR-91, 1991.
[GO96] R. Greiner and P. Orponen. Probably approximately opti-

mal satis£cing strategies. Arti£cial Intelligence, 82, 1996.
[Gre91] R. Greiner. Finding the optimal derivation strategy in a

redundant knowledge base. Arti£cial Intelligence, 50, 1991.
[HR76] L. Hya£l and R. Rivest. Constructing optimal binary de-

cision trees is NP-complete. Information Processing Letters,
35(1):15–17, 1976.

[Nat86] K. Natarajan. Optimizing depth-£rst search of AND-OR
trees. Report RC-11842, IBM Watson Research Center, 1986.

[Sah74] S. Sahni. Computationally related problems. SIAM Jour-
nal on Computing, 3(4):262–279, 1974.

[SK75] H. Simon and J. Kadane. Optimal problem-solving search:
All-or-none solutions. Arti£cial Intelligence, 6:235–247, 1975.

[Smi89] D. Smith. Controlling backward inference. Arti£cial In-
telligence, 39(2):145–208, June 1989.

