Predicting UNIX Command Lines

Benjamin Korvemaker and Russell Greiner
{benjamin,greiner }@cs.ualberta.ca
Department of Computing Science

University of Alberta
Edmonton, Canada

Problem

UNIX command line prediction appears at first glance
to be a trivial task: after all, how many commands can
one person possibly use with regularity? Although this
applies to novice users!, novice users become advanced
users with experience. The problem of predicting UNIX
command lines has been targeted for the last decade
by a number of people in the Human-Computer Inter-
action (HCI) and Machine Learning (ML) communi-
ties. Greenberg collected a large amount of data(Green-
berg 1988), providing the community with the usage
patterns of 168 users of varying degrees of skill (non-
programmers, novice programmers, experienced pro-
grammers, and computer scientists). Despite being ten
years old, this data is still quite usable, and has become
a de facto benchmark.

Davison and Hirsh more recently provided a hand-
crafted algorithm that adapts to user activity over
time,(Davison & Hirsh 1997;)generating a simple prob-
abilistic model to predict command stubs?. Given a
command at time ¢, they keep track of which command
occurs at time t+1. Over time, a conditional probability
table can be built. However, instead of building a table
based on stub frequencies, a pseudo-probability is calcu-
lated by assigning each stub within the table an initial
probability (during insertion into the table), decaying
all probabilities within the table (by multiplication by
a0 < a < 1), and increasing the current probability
when a previously encountered stub is observed. This
method obtains nearly 756% accuracy when predicting
the 5 most likely commands®. This was a substantial
improvement over applying C4.5 to the task, which ob-
tained only 38.5% accuracy.

!Novice users are typically characterized by a lack of
knowledge about existing commands, as well as a lack of
knowledge about how to effectively use (or abuse) system
resources.

2A stub is simply the name of the command, rather
than the complete command line (i.e. if the command line
is “latex foo.tex”, the stub is “latex”).

3Predicting the top n commands allows a number of com-
mands to follow a single command without a great penalty.

Solution

Predicting a user’s next command line is a moving tar-
get: user goals can change, external events (mail ar-
riving, deadlines approaching) occur, what happened
in the past affects the future. Dividing data between
training and testing is problematic, and off-line machine
learning methods do not adapt easily to short-term pat-
terns. Updating a table of estimated probabilities of the
next command as each command is executed addresses
these issues somewhat:

e Short-term patterns can be recognized quickly.

e Testing can be done by comparing the predictions to
the actual command typed.

By constructing a Bayesian network (BN) that dynam-
ically updates the local structure of conditional prob-
ability tables(Friedman & Goldszmidt 1996), we are
able to model user actions and habits over time. Con-
structing this model as an Interpolated Markov Model
(IMM) (Salzberg et al. 1998) becomes fairly straight-
forward:

1. If command C} occurs after command C;_q, increase
the probability that C; will occur after C;_;. For
all other commands C' which have been observed to
follow Cy_1, reduce the probability they will occur
Ci_1.

2. If C; has been observed to frequently follow the se-

quence C;_o C;_1, apply step 1 similarly. Repeat for
the sequence C; 3 Cy_o Cy_1, and so on.

By constructing multiple experts (see Figure™??

fig : experts), each focusingonaparticularaspectofprediction(e.,

vi abstract.tex

latex abstract.tex

xdvi abstract.dvi

dvips abstract.dvi -o abstract.ps
gv abstract.ps

they could be represented as:

vi abstract.tex

latex <T-1 ARG1>

xdvi <T-1 ARG1 STEM>.dvi

dvips <T-1 ARG1> -o <T-1 ARG1 STEM>.ps
gv <T-1 ARG3>

We have developed a number of operators to improve
the chances of finding common, generic patterns. The
advantages of this are two-fold:

1. Improved prediction accuracy.

2. Computer-generated shell-aliases can be generated.

Results

While duplicating the work of Davison and Hirsh, we
obtained 72.7% accuracy when predicting stubs (as op-
posed to their “almost 75%”), and 46.9% accuracy when
predicting complete command lines. Further algorithm
enhancements and a stronger statistical basis provide
even better results:

e Parsing command lines

e Skipping the first 100 commands as purely train-
ing data (empirically determined to be a reasonable
value)

e Looking for longer command line sequences (e.g. the
KTEX sequence tends to have at least 3 or 4 com-
mands)

e Using multiple “experts” predictions and combining
their prediction by standard techniques

Command History

Last 2 Commands
Expert

Sequence of Commands
Expert

Last Command
Expert

Time of Day
Expert

Long Term History

Figure 1: Example combination of multiple expert pre-
dictors.

| Source of Prediction | Cmd [Stub |
5 most frequent lines | 33.9% | 62.3%
command;_1° 47.4% | 73.3%
command history® 48.9% | 74.6%
command history” 46.9% | 73.4%

Where

Cmd is the accuracy of the predicted command
lines, not counting the first 100 as training
data.

Stub is the accuracy of the predicted command
stubs, not counting the first 100 as training
data.

Our first implementation required an extension to
7ZsH, labourously entrenched into the various inner
workings of zZsH. Although we had a functional shell
which could predict complete command lines, there
were usability issues. Our most recent implementation
is tied far less to any particular UNIX shell, and poten-
tially is far more usable.

See http://www.cs.ualberta.ca/ benjamin/AUI/
for more information and updates.

References

Davison, B. D., and Hirsh, H. In Predicting the Future:
AT Appreaches to Time-Series Analysis.

Davison, B. D., and Hirsh, H. 1997. Toward an adap-
tive command line interface. In Advances in Human
Factors/Ergonomics: Design of Computing Sytems:
Social and Ergonomic Considarations, 505-508. El-
sevier.

Friedman, N., and Goldszmidt, M. 1996. Learning
bayesian networks with local structure. In Proceedings
of the 12th Conference on Uncertainty in Artificial In-
telligence.

Greenberg, S. 1988. Using unix: Collected traces of
168 users. Research Report 88/333/45, Department
of Computer Science, University of Calgary, Calgary,
Alberta.

Salzberg, S.; Delcher, A.; Kasif, S.; and White, O.
1998. Microbial gene identification using interpolated
markov models. Nucleic Acids Research 26(2):544—
548.

SDuplication of Davison and Hirsh’s work.

5New Algorithm
"New Algorithm + Improved Statistics

