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Abstract

Automated image interpretation is an important
task in numerous applications ranging from se-
curity systems to natural resource inventoriza-
tion based on remote-sensing. Recently, a sec-
ond generation of adaptive machine-learned im-
age interpretation systems have shown expert-
level performance in several challenging do-
mains. While demonstrating an unprecedented
improvement over hand-engineered or first gen-
eration machine learned systems in terms of
cross-domain portability, design cycle time, and
robustness, such systems are still severely lim-
ited. In this paper we inspect the anatomy of
a state-of-the-art adaptive image interpretation
system and discuss the range of the correspond-
ing machine learning problems. We then report
on the novel machine learning approaches en-
gaged and the resulting improvements.

Keywords: learning from labeled and unlabeled
data, automated operator and feature set selec-
tion, reinforcement learning, Markov decision
processes, adaptive image interpretation.

1. Introduction & Related Research

Image interpretation is an important and highly challeng-
ing problem with numerous practical applications. Hand-
crafted image interpretation systems suffer from expensive
design cycle, a high demand for expertise in both subject
matter and computer vision, and the difficulties with porta-
bility and maintenance. Over the last three decades, var-
ious automatedways of constructing image interpretation
systems have been explored. The following brief account
is based on (Draper, 2003).

One of the promising approaches to automatic acquisition
of image interpretation systems lies with treating computer
vision as a control problem over a space of image process-
ing operators. Early attempts used the schema theory (Ar-

bib, 1972; Arbib, 1978). While presenting a systemic way
of designing image interpretation systems, the approach
was stillad-hocin its nature and required extensive manual
design efforts (Draper et al., 1996).

In the 1990’s the second generation of control policy based
image interpretation systems came into existence. More
than a systematic design methodology, such systems used
theoretically well-founded machine learning frameworks
for automatic acquisition of control strategies over a space
of image processing operators. The two well-known pio-
neering examples are a Bayes net system (Rimey & Brown,
1994) and a Markov decision process (MDP) based system
(Draper et al., 2000).

The latter system (called ADORE for ADaptive Object
REcognition) learned dynamic image interpretation strate-
gies for finding buildings in aerial images. As with many
vision systems, it identified objects (in this case, buildings)
in a multi-step process. The input data were raw images,
and the output was an interpretation which identified build-
ings in the image; in between, the data could be repre-
sented as intensity images, probability images, edges, lines,
or curves. ADORE modelled image interpretation process
as a Markov decision process, where the intermediate rep-
resentations were continuous state spaces, and the vision
procedures were actions. The goal was to learn a dynamic
control policy that selects the next action (i.e., image pro-
cessing operator) at each step so as to maximize the quality
of the final interpretation.

ADORE, which was a pioneering system, left several ex-
citing directions for future work and improvement. In
this paper we discuss a spectrum of machine learning
and decision making problems that need to be addressed
before ADORE-like systems can become truly hands-off
machine-learned tools capable of robust image interpreta-
tion portable across a wide variety of domains. These direc-
tions are investigated in a project titled MR ADORE (Multi
Resolution ADORE).

Section 2 reviews the requirements and design of MR
ADORE thereby demonstrating the critical assumptions it
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Figure 1. Artificial tree plantations result in simple forest im-
ages. Shown on the left is an original photograph. The right
image is its desired labeling provided by an expert as a part
of the training set.

makes and the resulting difficulties. Section 3 then re-
ports on the solution approaches employed to date and dis-
cusses the results. Throughout the paper the task of forest
canopy interpretation from aerial photographs is used as the
testbed.

2. MR ADORE Design Objectives

Our extension, MR ADORE (Bulitko et al., 2002), was de-
signed with the following objectives as its target: (i) rapid
system development for a wide class of image interpreta-
tion domains; (ii) low demands on subject matter, computer
vision, and AI expertise on the part of the developers; (iii)
accelerated domain portability, system upgrades, and main-
tenance; (iv) adaptive image interpretation wherein the sys-
tem adjusts its operation dynamically to a given image;
(v) user-controlled trade-offs between recognition accuracy
and resources utilized (e.g., time required).

These objectives favor the use of readily available off-the-
shelf image processing operator libraries (IPL). However,
the domain independence of such libraries requires an in-
telligent policy to control the application of library oper-
ators. Operation of such control policy is a complex and
adaptive process. It iscomplexin that there is rarely a one-
step mapping from image data to image label; instead, a
series of operator applications are required to bridge the
gap between raw pixels and semantic objects. Examples of
the operators include region segmentation, texture filters,
and the construction of 3D depth maps. Figure 2 presents a
partial IPL operator dependency graph for the forestry do-
main.

Image interpretation is anadaptiveprocess in the sense
that there is no fixed sequence of actions that will work
well for all/most images. For instance, the steps required
to locate and identify isolated trees are different from the
steps required to find connected stands of trees. Figure 3
demonstrates two specific forestry images that require sig-
nificantly different operator sequences for satisfactory in-
terpretation results.

The success of adaptive image interpretation systems there-
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Figure 2. A small fragment of the operator graph for the do-
main of forest image interpretation. Most operators were
ported from the freely available Intel Open CV and Intel IPL
libraries. Sample images are shown next to the data types.

fore depends on the solution to the control problem: for a
given image, what sequence of operator applications will
most effectively and reliably interpret the image?

3. MR ADORE Operation

MR ADORE starts with the Markov decision process
(MDP) as the basic mathematical model by casting the
IPL operators as the MDP actions and the results of their
applications as the MDP states. In the context of image
interpretation, the formulation frequently leads to several
challenges absent in the standard heuristic search/MDP do-
mains such as the grid world, the 8 puzzle (Reinefeld,
1993), etc. (i) Each individual state is so large (on the
order of several mega-bytes), that we cannot use standard
machine learning algorithm to learn the heuristic function.
Selecting optimal features for sequential decision-making
is a known challenge in itself. (ii) The number of allowed
starting states (i.e., the initial high-resolution images) alone
is effectively unlimited for practical purposes. In addition,
certain intermediate states (e.g., probability maps) have a
continuous nature. (iv) There are many image process-
ing operators (leading to a large branching factor); more-
over, many individual operators are quite complex, and can
take hours of computation time each. (v) Goal states are
not easily recognizable as the target image interpretation
is usually not knowna priori. This renders the standard
complete heuristic search techniques (e.g., depth-first, A*,
IDA* (Korf, 1985)) inapplicable directly.

In response to these challenges MR ADORE employs the
following off-line and on-line machine learning techniques.
First, we can use training data (here, annotated images) to
provide relevant domain information . Each training datum
is a source image, annotated by a user with the desired out-



1

2

Figure 3. Adaptive nature of image recognition: two different input images require significantly different satisfactory operator
sequences. Each node is labeled with its data type. Each arc between two data tokens is shown with the operator used.

put. Figure 1 demonstrates a training datum in the forestry
image interpretation domain.

Second, during the off-line stage the state space is explored
via limited depth expansions of training images. Within
a single expansion all sequences of IPL operators up to a
certain user-controlled length are applied to the training
image. Since training images are user-annotated with the
desired output, terminal rewards can be computed based
on the difference between the produced labeling and the
desired labeling. Then, dynamic programming methods
(Barto et al., 1995) are used to compute the value func-
tion for the explored parts of the state space. We represent
the value function asQ : S ×A → R whereS is the set of
states andA is the set of actions (here, IPL operators). The
trueQ(s, a) computes the maximum cumulative reward the
policy can expect to collect by taking actiona in states and
acting optimally thereafter.

Automatically constructed featuresf(s) are used to ab-
stract relevant attributes of large domain states thereby
making the machine learning methods practically feasible.
Then supervised machine learning extrapolates the sample
values computed by dynamic programming on the explored
fraction of the state space onto the entire space.

Finally, when presented with a novel input image to in-
terpret, MR ADORE first computes the abstracted ver-
sionf(s), then applies the machine-learned heuristic value
functionQ(..) to computeQ(f(s), a) for each IPL operator
a; it then performs the actiona∗ = arga max Q(f(s), a).

The process terminates when the policy executes action
Submit( 〈 labeling 〉) where〈 labeling 〉 becomes
the system’s output.

4. Machine Learning Problems

4.1. Automated Operator Selection

During the off-line phase, MR ADORE explores the state
space by expanding the training data provided by the user.
In doing so it applies all operator sequences up to a cer-
tain depthd. Larger values ofd are preferable, as this al-
lows more operators to be applied, which can lead to better
performance. Even short sequences (4-6 operators) clearly
exhibit the benefits; see Figure 4.

On the other hand, the size of the state space being explored
increases exponentially with the depthd and therefore the
search can become prohibitively expensive. With the cur-
rent operator set used in MR ADORE for the tree canopy
recognition task, the effective branching factor is approxi-
mately 26.5 which results in the sizes and timings shown in
Table 1.

There are three conflicting factors at work: (i) larger off-
the-shelf image processing operator libraries are required
to make MR ADORE cross-domain portable, (ii) longer
operator sequences are needed to achieve high interpreta-
tion quality, and (iii) combinatorial explosion during the
off-line phase can impose prohibitive requirements on the
storage and processing power. Fortunately, commercial



Figure 4. Longer operator sequences lead to better labeling. From left to right: the original image, desired user-provided
labeling, the best labelings with an operator sequence of length 4, 5, and 6.

Table 1. Off-line state space exploration. All operator se-
quences up to a fixed length are applied to an image. The
number of nodes and sequences, explored state space
physical size (GBytes), and the expansion time are aver-
aged over 10 images. A dual processor Athlon MP 1600+
running Linux was used.

Sequence Length # of Nodes # of Sequences Size (GBytes) Time
4 269           119                   0.038 30 sec
5 7,382        3,298                 1 10 min
6 192,490     86,037               26 8 hrs

domain-independent operator libraries almost invariably
contain numerous operators that are redundant or ineffec-
tive for some specific domain. Therefore, the feasibility of
the off-line learning phase as well as subsequent on-line
performance critically depends on the selection of an ef-
ficient operator library for a particular domain. Figure 5
demonstrates the considerable difference in the best possi-
ble interpretations obtainable with three operator sets.

Previous systems (e.g., (Draper et al., 2000)) relied onman-
ual selection of the highly relevant non-redundant opera-
tors thereby keeping the resulting IPL small and the off-line
state space exploration phase feasible. Unfortunately, such
solutions defeat the main objective of MR ADORE-like
systems:automaticconstruction of an interpretation sys-
tem for a novel domain. Therefore, we have implemented
the following effective approach forautomatedoperator se-
lection.

Filter operator selection methods attempt to remove some
operators based on system-independent criteria, such as op-
erator redundancy, relevance, and other metrics. While be-
ing less expensive than running the target system, such op-
timization criteria may not deal well with the higher in-
terdependence within operator sets in comparison to that
of feature sets (for which filter methods are traditionally
used).

Wrapper approaches account for the tight coupling of se-
quentially used operators by invoking the target system
with a candidate operator set. While being more accurate,
their optimization criteria can be too computationally ex-
pensive to be practically feasible. For instance, in the con-
text of MR ADORE measuring the performance of a typi-
cal operator set on a test suite of 48 images takes around 12
hours on a dual AMD Athlon MP+ 2400 Linux server.

Our approach combines the strength of both schools by

using wrapper-like heuristic search in the space of opera-
tor sets. Unlike traditional wrapper methods, however, we
guide the search with afast system-specific fitness func-
tion. In order to keep down the amount of human interven-
tion, we employ machine learning methods to induce an
approximation of the actual fitness function. This is done
by evaluating a collection of randomly drawn operator sets
via running the actual system (MR ADORE). The fitness of
operator setS is defined as:r(S)−α|S|, wherer(S) is the
best reward MR ADORE is able to gain with the operator
setS averaged over a suite of training images;|S| is the
size of the operator set; andα is a scaling coefficient.

In the preliminary experiments to date (Bulitko & Lee,
2003), we have used various supervised machine learning
approaches including decision trees, decision lists, naive
Bayes, artificial neural networks, and perceptrons to ap-
proximate the fitness function. Genetic algorithms, sim-
ulated annealing, and forward pass greedy selection were
used as the heuristic search techniques in the space of op-
erator sets. The empirical evidence showed a 50% reduc-
tion in the operator set size while allowing MR ADORE
to maintain the image interpretation accuracy of 97.8% of
that of the full operator set.

4.2. Learning From Unlabeled Data

During the off-line phase MR ADORE samples the value
function by computing the rewards of various interpreta-
tions of the same image resulting from all possible opera-
tor sequences. This is done by comparing the interpreta-
tions produced with the desired interpretation supplied by
the user. The rewards are then propagated onto all inter-
mediate data tokens using dynamic programming methods.
The resulting collection of[data token, action, reward] tu-
ples is used to train the functionQ(..), whose use was de-
scribed in the previous sections.

Clearly, the efficacy of this approach depends on the suf-
ficient volume of user-providedlabeled images. In the
domain of forest inventorization, manual labeling of tree
canopies on aerial photographs is a fairly expensive (tens
of thousands of dollars per 20-30 high resolution images),
slow, and error prone process. One study (Gougeon, 1995)
found the typical human interpretation error to be between
18 and 40%. On the other hand, unlabeled data can often
be captured automatically from aerial and orbit-based plat-
forms. Therefore, applications of MR ADORE-like sys-
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Operator Set 1: RGB_Segment, 
ConvertColorToGray, FilterMedian_5, FilterMin5, 
Close_Ellipse, Thresh_Bin_Gray_Incr, 
Thresh_BinInv_Gray_Incr

Input
Image

Desired
Labeling

Operator Set 2: RGB_Segment, ConvertColorToGray, FilterMin5, 
FilterMax5, Erode_Ellipse, Close_Ellipse, Open_Ellipse, 
Thresh_Bin_Gray_Incr, Thresh_Bin_Prob_Incr, Thresh_BinInv_Gray_Incr, 
HistogramEq_Color, HistogramEq_Gray, HistogramEqualizationP, 
Color_Histogram_Intersection, ColorCorrelation, PyrSegm

Operator Set 3: RGB_Segment, ConvertColorToGray, ConvertGrayToBW, 
FilterMedian_5, FilterGaussian5, FilterMin5, FilterMax5, Dilate_Ellipse, Close_Ellipse, 
Open_Ellipse, Thresh_Bin_Prob_Incr, Thresh_BinInv_Gray_Incr, HistogramEq_Color, 
HistogramEq_Gray, HistogramEqualizationP, Color_Histogram_Intersection, 
ColorCorrelation, PyrSegm

Evolved without
penalty (100%)

Evolved with
penalty (98%)

Random (53%)Optimal labelingInput image

Figure 5. Three operator sets shown with their best possible labelings of a particular image.

tems can be widened significantly if the unlabeled data can
be exploited.

A well-known and widely used approach to dealing with
missing values is EM (Dempster et al., 1977). Typically
there are two steps in each iteration of the algorithm —
expectation(E-step) andmaximization(M-step). Given a
family model parameterized by some unknown parameter
Θ and some dataD, EM aims at finding the optimal̂Θ to
maximize the probabilityP (D | Θ). The algorithm com-
putes the distribution over missing values in D, based on
the Θ, then uses this completed data set to estimate the
most likely parameter value. It was proved that unlessΘ
reaches a stable point, EM will always increaseP (D | Θ).

Co-training (Blum & Mitchell, 1998; Abney, 2002) is a
learning paradigm to address problems with strong struc-
tural prior knowledge. It assumes that: (i) there exist more
than oneindependentfeature representation of the data; (ii)
these representations areredundantin that each one alone
can be used for determining the labels; (iii) the represen-
tations areconsistentin that the concept function defined
over one representation agrees on the labels with the con-
cept function that is defined over another representation.
Under these assumptions, different learners are built for
different representations. Then the classifier built by one
learner can be used to estimate some of the unknown labels;
another learner can uses these newly-labeled data points,
along with the original labeled data, to produce its classi-
fier. This new classifier can be used to produce labels for
other unlabeled data points, which can be given to the first
learner, etc.

Both EM and co-training can be viewed as bootstrapping
algorithms in the sense that they work by repeatedly esti-
mating missing values and learning from the estimates. Our
approaches share the basic idea of bootstrapping. While
many previous co-training systems (Blum & Mitchell,
1998; Nigam et al., 2000; Szummer & Jaakkola, 2001;
Szummer & Jaakkola, 2002) focused on learning effective
classifiers(for text or similar tasks), MR ADORE learns
a control policy in the image interpretation domain. More

Algorithm I
Input: labeled data: DL; unlabeled data: DU ;
two learners: A and B.

1. Initialize: D′
U ← {}.

2. Repeat until some termination condition
is satisfied:

(a) Train A with DL ∪D′
U ;

(b) Train B with DL;

(c) Select a random subset of unlabeled data:
∆D′

U ⊂ DU ;

(d) B labels the data in ∆D′
U ;

(e) D′
U ← D′

U ∪∆D′
U ;

3. Output: the classifier produced by learner A.

Algorithm II
Input: labeled data: DL; unlabeled data: DU ;
two learners: A and B.

1. Initialize: D′
UA ← {} and D′

UB ← {}.

2. Repeat until some termination condition
is satisfied:

(a) Train A with DL ∪D′
UA;

(b) Train B with DL ∪D′
UB ;

(c) Select two subsets of unlabeled data ∆D′
UA

and ∆D′
UB randomly from DU ;

(d) Estimate the labels:
A labels ∆D′

UB ; B labels ∆D′
UA;

(e) D′
UA ← D′

UA ∪∆D′
UA;

D′
UB ← D′

UB ∪∆D′
UB ;

3. Output: the classifier produced by learner A.

1

Figure 6. Algorithm I

importantly, we consider the problem of semi-supervised
learning in the framework of sequential decision making,
which means that the reward gained by the resulting policy
is more important than other measurements such as mean-
squared-errors of theQ-function.

Each of our approaches involved two learners; we consid-
ered neural networks (Hagan et al., 1996) andk-nearest-
neighbors (Cover & Hart, 1967). In the algorithms, some
data inDU are labeled and denotedD′

U , D′
UA, or D′

UB .

Figure 6 illustrates the first algorithm. Labeled dataDL are
used to train two weak learnersA andB. In order to im-
proveA, learnerB repeatedly selects and labels randomly
selected data samples inDU . The data are then added to
D′

U to trainA in later iterations. The size ofD′
U increases

as training goes on.

The second algorithm (Figure 7) extends the idea and en-
ablesA to influenceB. That is, in each iteration,B labels
some randomly selected samples inDU . The samples are
then used to trainA. Consequently,A labels some ran-
domly selected data inDU which are then used to trainB.
The algorithm, thus, proceeds in the co-training fashion.
The sizes ofD′

UA andDUB are gradually increased.

We apply the two algorithms to learningQ-function in



Algorithm I
Input: labeled data: DL; unlabeled data: DU ;
two learners: A and B.

1. Initialize: D′
U ← {}.

2. Repeat until some termination condition
is satisfied:

(a) Train A with DL ∪D′
U ;

(b) Train B with DL;

(c) Select a random subset of unlabeled data:
∆D′

U ⊂ DU ;

(d) B labels the data in ∆D′
U ;

(e) D′
U ← D′

U ∪∆D′
U ;

3. Output: the classifier produced by learner A.

Algorithm II
Input: labeled data: DL; unlabeled data: DU ;
two learners: A and B.

1. Initialize: D′
UA ← {} and D′

UB ← {}.

2. Repeat until some termination condition
is satisfied:

(a) Train A with DL ∪D′
UA;

(b) Train B with DL ∪D′
UB ;

(c) Select two subsets of unlabeled data ∆D′
UA

and ∆D′
UB randomly from DU ;

(d) Estimate the labels:
A labels ∆D′

UB ; B labels ∆D′
UA;

(e) D′
UA ← D′

UA ∪∆D′
UA;

D′
UB ← D′

UB ∪∆D′
UB ;

3. Output: the classifier produced by learner A.

1

Figure 7. Algorithm II

MR ADORE and evaluate the resulting policy in terms of
MSE and, more importantly, the relative reward. The lat-
ter is the actual interpretation reward gained by the policy
learned relative to the maximum reward achievable in the
system. We used texture features (e.g., local binary pat-
terns) as well as other features (e.g., mean values and his-
tograms of RGB/HSV) in the experiments to date. Two
learners: a multi-layer feed-forward artificial neural net-
work (ANN) and ak-nearest-neighbor (kNN) were used.
Figure 8 demonstrates how well the ANN performs when
trained on labeled data only.

Approximating the true Q-function with kNN works by
interpolating the Q-values from thek state-action pairs
nearest to the state-action pair at hand. Thus, training
data resulting from the expert-labeled input images leads
a database of cases for each operator in MR ADORE. Each
case is recorded in terms of the features extracted off the
data token and the actual Q-value of applying the operator
on the token.

Initially, bothDL andDU are constructed by selecting ran-
dom subsets; for the nearest neighbor algorithm we used
k = 1. We fix |DL| = 20 and the number of unlabeled data
added toD′

U (referred to asunlabel n = |∆D′
U |) is also

fixed. So in each iteration, a random subset ofunlabel n
data tuples are selected fromDU and added toD′

U for fur-
ther training.

In the first set of experiments, kNN used the Euclidean dis-
tance (i.e., thel2-norm of two vectors) in the HSV his-
togram space to measure the proximity of two data to-
kens (e.g., images or probability maps). Figure 9 illustrates
the results. Remarkably, even though the mean-squared-
errors with Algorithm I are worse than those in Figure 8,
the average relative reward is improved by approximately
4% (unlabel n = 20), 15% (unlabel n = 60) and 8%
(unlabel n = 100) which is equivalent to supervised train-
ing with 10, 80 and 20additional user-labeledimages, re-
spectively.
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Figure 8. Training ANN-represented Q-function: the relative
reward and the mean-squared-error vs. the amount of la-
beled data. Mean RGB values of the images were used
as the features. Both the learning rate and momentum are
fixed at 0.3.

Note that the Euclidean proximity of two data tokens in
the feature space is not a reliable indication of similarity
between their Q-values. Indeed, frequently in sequential
decision-making the same operator should be favored on
two images distant in the feature space if the features are
suboptimal. Therefore, the optimal metric function to be
used with a kNN approximator of the Q-function is non-
trivial to hand-craft. Hence, we train a three-layer feed-
forward ANN (referred to as ANN-k) to be the distance
function used within the kNN co-training experiments.

Figure 10 shows the result of the second algorithm with a
machine learned distance metric (ANN-k). With the same
amount (|DL| = 20) of labeled data, the accuracy was
improved by approximately20% (unlabel n = 10), 4%
(unlabel n = 15), and7% (unlabel n = 20), respectively,
although the mean-squared-errors are slightly higher than
those in Figure 8. These improvements are roughly equiv-
alent to supervised training with 80, 10, and 30 additional
expert-labeled images, respectively.

5. Conclusions and Future Research

Future research directions include further analysis of the
relative contributions of the different ML techniques en-
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Figure 9. Experimental results using Algorithm I. The num-
ber of unlabeled data samples added to D′

U in each iteration
is fixed at 20, 60 or 100, and |DL| = 20. ANN uses mean
RGB values of an image as features, while KNN uses the
Euclidean distance in the HSV histogram space to measure
the proximity of two data.

gaged, scaling up experiments, automated methods for pol-
icy construction, additional machine learning methods for
the value functions, explicit time and resource considera-
tions for real-time operation, explicit backtracking for the
off-line dynamic programming methods, and RTA*-style
lookahead enhancements (Korf, 1990).

Conventional ways of developing image interpretation sys-
tems usually require a significant subject matter and com-
puter vision expertise from the developers. The resulting
systems are expensive to upgrade, maintain, and port to
other domains.

More recently, second-generation adaptive image interpre-
tation systems (Bulitko et al., 2002) used machine learning
methods to (i) reduce the human input in developing an
image interpretation system for a novel domain and (ii) in-
crease the robustness of the resulting system with respect
to noise and variations in the data.

In this paper we presented and analyzed a state-of-the-art
adaptive image interpretation system called MR ADORE
and demonstrated several important machine learning and
decision making problems that need to be addressed. We
then reported on the progress achieved in each of the direc-
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Figure 10. Experimental results using Algorithm II. The num-
ber of unlabeled data added to D′

U in each iteration is fixed
at 10, 15 or 20, and |DL| = 20. ANN uses mean RGB
values of an image as features, while kNN uses a machine
learned distance metric (ANN-k) to estimate the Q-value-
relevant distance between two data in the texture feature
space.

tions with supervised and unsupervised machine learning
methods.

While early in its development, MR ADORE has already
demonstrated a typical image interpretation accuracy of 70-
90% in the challenging domain of forest image interpreta-
tion. As Figure 11 illustrates, it can outperform the best
static policies as well as human interpreters.
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