The Trials and Tribulations of Building an Adaptive User Interface

Benjamin Korvemaker & Russell Greiner
{benjamin, greiner }@cs.ualberta.ca
Department of Computer Science
University of Alberta
Edmonton, Canada

Abstract

As every user has his own ideosyncracies and pref-
erences, an interface that is honed for one user may
be problematic for another. To accomodate a diverse
range of users, many computer applications therefore
include an interface that can be customized — e.g., by
adjusting parameters, or defining macros. This allows
each user to have his “own” version of the interface,
honed to his specific preferences. However, most such
interfaces require the user to perform this customiza-
tion by hand — a tedious process that requires the
user to be aware of his personal preferences. We are
therefore exploring adaptive interfaces, that can au-
tonomously determine the user’s preference, and adjust
the interface appropriately.

This paper reports a series of experiments towards
building such an adaptive interface — here a UNIX-
shell that can predict the user’s next command based
on his previous interactions, and use this to simplify
the user’s future interactions. After summarizing the
Davison/Hirsh (1998) work (for learning “command
stubs” ), we then explore several ways of extending and
improving this system; e.g., to predict entire command
lines, to use various other types of information, etc.

Keywords: online learning, learning and adapta-
tion, learning user preferences

1 Introduction

There are today a wide variety of interactive computer
applications, ranging from web-browser and searchers,
through spreadsheets and data-base management sys-
tems, to editors, as well as games. As these systems be-
come more complicated — as required to be able to ac-
complish more tasks, better — their interfaces necessar-
ily also become more complex. Many of these systems
have begun including tricks to help the users; e.g., if the
user begins an empty file with “Dear John”, WORD will
suggest a “Letter” template; similarly if the user begins
a line with “*”  'WORD will change that character to a
bullet “o” and go into its List environment.

Unfortunately, different users have different prefer-
ences, which means the tricks that are appropriate for

one user may be problematic for another. (E.g., there
apparently are people who like the Microsoft “Office As-
sistant”...) Moreover, different users want to do differ-
ent things with the system, as they have very different
abilities, background knowledge, styles, etc. This real-
ization — that “one size does NOT fit all” — argues
for customizable interfaces, that can provide different
interfaces for different users, and hence allow each user
to have an interface that is honed to his individual pref-
erences.

Of course, many of today’s application programs can be
customized; e.g., most editors and shells include macro-
or scripting- facilities. However, this customization pro-
cess must typically be done by the user — which means,
typically, that it is mot done by the user, as this cus-
tomization process (1) requires that the user knows how
to make this modification (e.g., knows both the names
of the relevant parameters, and how to modify them);
(2) requires the user to be aware of his specific prefer-
ences, and (3) is usually quite tedious.

This research project, therefore, pushes on a differ-
ent approach: Build application systems that can au-
tonomously adapt themselves to the individual users.
In particular, we focus on techniques for detecting pat-
terns in the user’s interactions, and then using this in-
formation to make the interaction simpler for the user,
perhaps by automatically re-setting some system pa-
rameters, or defining appropriate new macros.

This paper investigates a specific manisfestation of this
task: We have built a UNIX command shell that can
predict the user’s behavior from his previous com-
mands, and then use these predictions to simplify his
future interactions with the shell. The rest of this in-
troductory section presents two illustrative examples
to help describe our task more precisely. After Sec-
tion 2 provides the background for this work, Section 3
then sketches our algorithm, based on the earlier Davi-
son/Hirsh system (DH98). Finally, Section 4 presents
our empirical results, over a large existing dataset of
186 users. It discusses in particular the range of studies
we ran, to better understand this challenge. All told,
this paper presents what has been tried before, summa-



% vi crossword.c

% make crossword

cc -g crossword.c -o crossword -1lm

% crossword puzzleO1

bus error (core dumped)

% vi crossword.c

% make crossword

cc -g crossword.c —-o crossword —1lm

% crossword puzzleO1

Solution found in 15584 attempts.

% crossword puzzle02

segmentation violation (core dumped)

% ddd crossword core

% vi crossword.c

% make crossword

cc -g crossword.c -o crossword —1lm

Undefined symbol: print

first referenced in file crossword.o

1d: fatal: Symbol referencing errors.

No output written to crossword

*** Error code 1

make: Fatal error: Command failed for target
‘crossword’

% vi crossword.c

% make

cc -g crossword.c -o crossword —1lm

% crossword puzzle03

Solution found in 13 attempts.

% elm -s"it works" fred

Figure 1: Wilma’s Command Sequences

rizes what we have learned, and suggests some of the
problems.

Examples: Figure 1 shows Wilma’s interactions with
a shell, as she works on her crossword-solving pro-
gram. It is easy to see that there is a consistent pattern
within Wilma’s activities; e.g., the vi-make-crossword
sequence is repeated several times. Although Wilma
has taken advantage of traditional UNIX facilities, she
still has to type a number of characters.

Now examine Fred’s command sequences; Figure 2. He
has already completed the assignment and is trying to
write up his results. Unfortunately, Fred is not very
familiar with ATEX and is having trouble formatting
an equation.

Here, an even more obvious pattern is visible. Note
that, if Fred had had a script to perform the latex-
dvips-ghostview steps for him, he wouldn’t have made
the mistake of running dvips on a BTEX source file.

Task: Our immediate goal is a UNIX shell that can
anticipate the user’s next command, and use this in-
formation to simplify his interactions. One way to
use that information would be to fill the user’s current
buffer with this predicted command — e.g., after “vi

vi crossword.tex

latex crossword.tex

dvips crossword.dvi

ghostview crossword.ps

% vi crossword.tex

% latex crossword.tex

% dvips crossword.tex

% ghostview crossword.ps

% vi crossword.tex

% latex crossword.tex

% dvips crossword.tex

dvips: ! Bad DVI file: first byte not preamble
% dvips crossword.dvi

% ghostview crossword.ps

% wall

Can anyone help me with latex?77?
“D

Figure 2: Fred’s Command Sequences

crossword. c”, this shell could load “make crossword”
into Wilma’s buffer. Wilma could then execute this
command by simply typing a carriage return. Alter-
atively, she could delete this buffer, or a portion thereof,
and retype whatever else she wishes. Similarly, after
Fred’s “latex crossword.tex”,the shell could suggest
“dvips crossword.dvi”; assuming Fred accepted this
suggestion, this could save Fred the hassle of figuring
out why “dvips crossword.tex” did not work.

However, as this single most-likely command is still very
unlikely, we decided to use the slightly different ap-
proach of suggesting the 5 most likely commands. As
shown in Figure 3, our shell will display (in the top of
the screen) these 5 most likely commands. It also binds
them to the F'1 through F'5 keys; the user can execute
any of these commans by simply pressing the associated
function key. Notice either option means the user can
achieve his results with less typing, and so do his work
in less time, while making fewer mistakes.

In a nutshell, our shell will use this record of previ-
ous commands to predict what command the user is
likely to use next. These examples illustrate why our
approach has a chance of succeeding: People tend to
follow patterns. For example, after a successful latex
command, many users then type dvips to produce a
postscript file from the dvi file that latex generated;
and if that succeeds, use ghostview to display the gen-
erated paper. !

Later versions of this type of shell could take more
sophisticated actions based on this information. For
example, they could define (and inform the user of)

!Note that even commands that seem random, such as
“df”, “uptime” or “readmail”, are probably (probabilisti-
cally) predictable based on some external event. Of course,
this may require elaborate instrumentation.
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Figure 3: Display of the Implementation

new macros, corresponding to (variabilized forms of
the) sequences observed most often. Or the adaptive
shell could pre-fetch information for the next antici-
pated command(s) — e.g., get the fonts for the possible
“dvips” command, swap out programs to preemptively
make room for netscape, swap out netscape before
starting some color-intensive task, or format the up-
coming man page. They might also be able to detect
patterns that correspond to problems — e.g., that the
user is thrashing — and then provide useful assistance.

2 Background

The extended version of this paper provides a compre-
hensive survey of adaptive user interfaces (e.g., (Lan97;
SH93; HBH198) and others) and other work related to
our task. Here, for space reasons, we can only discuss
the two most relevant previous results.

Our project is a direct extension of the seminal work
by Davison and Hirsh, (DH97; DH98) which predicts
user command stubs (commands without options and
parameters, e.g., the “latex” of the command “latex
foo.tex”) from the user’s previous command stubs.
Their hand-crafted algorithm generates and uses a ta-
ble whose (i,j) entry is the probability of command
stub s; occurring immediately after the stub s;; i.e.,
P(Stubstq = s;|Stub; = s;) where the random vari-
able Stub; denotes the stub typed as the user’s i** com-
mand. After seeing the current stub “stub;”, their per-
formance system could then predict the most likely sub-
sequent stub

stub;, ; = argmax{P(Stub;11 = s|Stub; = stub;)}
S M

The main challenge, then, is how to fill this N x N
table of numbers (where there are N possible stubs).
The “obvious” approach, of using empirical frequency
over the samples observed, is arguably appropriate only

if the data is iid (independent and identifically dis-
tributed), which means in particular that the frequency
of seeing some command does not change over time.
That assumption is clearly false in our situation.

Instead, their algorithm used a different way to esti-
mate these probability values, one designed to empha-
size recent new commands. On seeing say the command
“cd ...” followed by “latex ...” it would first decay
the probabilities on the “cd line” of the table by an
(empirically determined) factor o < 1 — i.e., it would
first reset, for each stub s,

P(Stubyyy = s|Stub, = cd) *= « (2)
Note here that
ZP(StubH_l = s|Stubt = Cd) =

as this summation had been 1 before this reduction.
They then add the remaining 1 — a quantity to the
(latex, cd) entry:

P(Stubyyy = latex|Stub; =cd) += 1—a (3)

Hence, this row continues to sum to 1, which is
why we can view these values as probabilities.) This

rule tremendously boosts the value of P(Stub, =
latex | Stub, = cd), even if its previous value was 0.
This effect is extremely useful; e.g., Davison/Hirsh note
that 20% of commands are simply the repeating the im-
mediately prior command!) We will later refer to this
algorithm as the “Alpha-Updating Rule” or “AUR”.

Davison and Hirsh could then predict the single most-
likely command, stuby,, (from Equation 1); however
this was correct only 39.9% of the time. They therefore
switched to predicting the five most likely commands,
and found that the actual stub (i.e., the one the user
actua211y entered) was in this top-5 list almost 3/4 of the
time.

Evaluation Criterion: Our basic algorithm is a di-
rect extension of theirs; see Section 3. We also adopted
their evaluation criterion: Our systems are on-line: af-
ter observing the sequence of stubs, (stuby,...,stuby),
each then predicts stub;,; (Equation 1), or perhaps

the top five: {stubj}y,...stub;>;}. It is then told the
correct stubyy; that the user actually typed, which it
can use first to update its “classifier”, and then to pre-
dict stubj,,, (or perhaps {stubj},,...stub;>,}), etc.
We define “accuracy” as how frequently the predicted
command completely matches the user’s actual com-
mand. That is, after K instances, we compare the
correct sequence (stuby,...,stubg) to our prediction
(stuby,...,stub}k), and report as accuracy the num-
ber of times “stub; = stub;”, divided by K. In

2They limited n to 5 as more than five commands typi-
cally causes the user to focus on the predictions rather than
the task at hand (or ignoring the predictions altogether).



the “top 5” case, the system gets a “point” whenver
stub; € {stub}',...stub}°}. We use the same crite-
rion, mutatis mutandis, for our studies.

Acknowledging that the prediction system may take a
while to “lock onto” the particular person, we some-
times ignore the mistakes made during the first, say,
100 commands. Here, the accuracy would be the num-
ber of times “stub; = stub;,” over time i=101..K,
divided by K — 100. (We will later refer to this as
“accuracy—100”.)

Other people have done work in the area as well. In
particular, Greenberg (Gre88) collected a large dataset
for 168 users, and used this to classify users into novice
users, experienced users, scientists and non-users (see
Table 2 below). Although these datasets were col-
lected 10 years ago, they still are the largest and most-
complete source of user command histories that are
publicly available. We use this dataset (albeit for dif-
ferent purposes) in the studies reported here.?

We finally note that, while the concept of command pre-
diction has been explored for at least ten years, nothing
has yet been deployed into the mainstream market. We
believe this can be partially explained by observing;:

e Computing resources may not have been sufficient to
adequately predict user commands, until recently.

e It is difficult to collect sample data. UNIX users are
a territorial bunch, with their favorite editors, OS
variants, and shells.?

o It is typically very difficult to craft data collection
mechanisms that are transparent to the user. While
the ZSH source code is relatively organized and legible
(especially when compared to TCSH source code), it
still took 30 hours to find and change the appropriate
5 lines of code.

3 Prediction Algorithm

As stated above, our adaptive shell monitors the com-
mands typed by the user (along with other associated
information, see below) then uses this information to
predict, after each command, which command the user
will type next. To reduce the invasiveness of the data
collection, we modified the UNIX shell, zSH,® both to

3To simplify this presentation, we are not included the
more recent, but less complete, data obtained from our im-
plementation.
4One potential subject explained why he turned us down:
. switching shells is like cutting off my fingers and saw-
ing (sic) them on backwards and I have to relearn how to
use my thumb as my little finger ...”

SWe chose zsH as it claims to be able to emulate the
more popular shells (TCSH, CSH, BASH, KSH), and it contains
most of the mechanisms required to collect the parameters
we want.

“

collect the relevant information, and then to reset the
display and the function keys, as shown in Figure 3.

The real challenge, of course, is the actual prediction al-
gorithm, which determines, for each possible command
cmd, the conditional probability that cmd will be the
next command, based on the earlier commands, etc.

In particular, we need to compute the probabil-
ity that the next command will be cmd;y;, based
on the available information — ie., P(Cmdyy; =
emdyqq | cmdy, . ..). Moreover, we need to produce a
good estimate to this distribution after very few sam-
ples, which is further complicated by the realization
that the “local distribution” (i.e., the probability that
one command will immediately follow another) is not
stationary. As we want a prediction system that can
track the user’s distribution of commands, we there-
fore lift the Davison and Hirsh idea of emphasizing the
immediately prior command, then decaying the proba-
bilities over time; see the AUR (Section 2, Equations 2
and 3).

However, we extended their work in two significant
ways. First, we want to predict entire command lines,
rather than just command stubs. Although predicting
the next command stub might save a few keystrokes,
UNIX stubs are notoriously short — in fact, over our
dataset, the average stub length is only 4.2 characters.
Assuming the predictions are mapped to a function key
and that the ENTER key must be pressed afterwards,
reducing the number of keystrokes from four to two is
not a significant savings. Further, when one considers
that the function keys are usually not particularly close
to the “home keys”, the effort spent repositioning the
hand may well negate the time saved. Note, however,
the average length of the entire command line is 9.7
characters; and reducing 9.7 to 2 would be useful. We
therefore focus on this task, even though it is, of course,
much harder, especially for commands that happen fre-
quently, but with highly varying arguments — e.g., cd,
1s, vi and finger.

The second extension was to help us solve this harder
task: We want to allow our predictor to use other in-
formation in producing these predictions — such as the
entire previous command line, the error code of that
previous command, the time of day and day of week,
etc.

DataStructure to Encode Probabilities: We could
imagine using a huge multi-dimensional table for this,
whose (i, j, k, £,m) entry is the conditional probability
that P(Cmdsy1 = ¢|Cmd; = j, Error = k, time =
¢, day = m), where ¢ and j vary over the possible
command lines, k over the range of possible error codes,
£ over the times in a day and m over the 7 days in the
week. Unfortunately, our dataset included over 60,000
different commands lines. Even if we make this specific
to the individual users, note there was some individual
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Figure 4: Structure Encoding Probabilities

users that used over 3000 different commands!® Even if
we quantize the error codes to only two values (0 or non-
0), and the time to only hours, this table would need to
have over 3000 x 3000 x 2 x 24 x 7 = 3,024,000, 000
entries — which would be difficult even to store, much
less to estimate from a paucity of data (BD77). Recall
that we want our system to be able to help users after
observing only a small handful of interactions.

To reduce the number of parameters, we instead used
a different structure, which imposes a bound on the
number of possible current commands (set to n), and
on the number of possible predicted commands (set to
m). We also let the set of m predicted commands vary,
depending on the current command. Here, we need
only maintain the “active” subset of the command-
pairs (cmd;, cmd;), based on the largest P(Cmd;yq =
cmd; | Cmd; = cmd; ) values.

We also further quantized the time values, to only the
4 values: morning, afternoon, evening and night. The
resulting structure is shown in Figure 4. To explain
the notation: the value of command; might be “latex
crossword”; it points to an associated cmd} table.
There, perhaps cmd% is “dvips crossword.dvi” with

P} = 0.13; and Cmdg = “vi crossword.tex” with
P? = 0.09; etc.

The value stored in

Y7 = P(Cmdiy = dvips crossword.dvi |
Cmd; = “latex crossword.tex”, ErrorCode > 0)

5All told, the Greenberg data involved over 61,774 dis-
tinct commands, of the total of 303,628 commands typed by
the 168 users. (Table 2 provides more details.) Some users
used as few as 35 different commands, while one user used
3153. The corresponding values for stubs alone ranged from
7 to 358; there were a total of 6391 different stubs used.

day

day

day

is the probability that the next command is “dvips
crossword.dvi”, given that the previous command was
command; = “latex crossword.tex”, and this exe-
cution produced an error.

In general, of course Yz-j = P(Cmd;y; = cmdg | Cmd; =
command;, ErrorCode > 0); note that 37", v/ =
1. Similarly, N/ = P(Cmd;y; = cmd!|Cmd; =
command;, ErrorCode = 0); A/ = P(Cmdy, =
emd’ | Cmd; = command;, Time = Afternoon ); W} =
P(Cmdyy1 = cmdf|Cmdt = command;, Day =
Wednesday ); etc.

In our experiments, we set n = 2000 and m = 10; this
means our encoding involved at most n xmx2x4x7 =
1,120,000 values, but less for users who used under
2000 commands. We show below that this is a ro-
bust prediction mechanism that is (relatively) resource
friendly. The rest of this section discusses how we esti-
mated these values; the next section, how we used these
quantities to predict the most likely command(s).

Estimating the Probabilities: To produce this “ta-
ble”, we need first to define which commands to include
as “current commands” (i.e., the far left table in Fig-
ure 4), and as “predicted commands” (middle column),
and second; to compute the actual conditional proba-
bilities used to fill the values.

As explained above, as the distribution is not station-
ary, we should not simply use frequency estimates —
e.g., we should not estimate P; as the number of times
we observed Cmd; = ¢; followed by Cmdi11 = ¢j
(over all ts), divided by the total number of times that
Cmd; = ¢;. We instead used the AUR, in several places:
First, as we can keep only 2000 “current commands”,
we need to know which commands are still active. We
therefore maintain probabilities for the various com-
mands, and update them using this technique. We then
keep only the 2000 command lines with highest values.
This means we maintain commands used recently, and
let the commands that are unused for an extended time,
fall away.

It also means new commands have a chance of being in-
cluded, which would not happen if we, instead set the
probability to the empirical frequency. For example,
imagine that the first time latex was used was in the
1000** command. In the “probability ~ empirical fre-
quency” approach, the probability of latex would be
only 1/1000. As this is probably the smallest value, it
is likely the one that would be flushed! Note that this is
problematic, as this means that the system will never
consider any new commands — even if the next 100
commands are all latex!

We also use this AUR to set and update the condi-
tional probabilitiy values P/. For each current com-
mand command;, we then keep only the 10 predictions
with the highest P} scores. We also used this AUR to

K3



Accuracy
Cmd — 0 Cmd — 100 Stub — 0 Stub — 100
previous 1 line 7.5% ARk 18.6% ko
previous 5 lines 38.8% ool 60.7% kR
most freq 5 lines 34.2% 33.9% 62.2% 62.3%
from command 46.9% 47.4% 72.7% 73.3%
from command + parsing 43.8% 44.0% ook ook
from command + error 46.9% 46.9% 72.6% 72.6%
from command + day 46.7% 46.7% 72.4% 72.5%
from command + time 46.6% 46.6% 72.4% 72.4%
from command + day + time | 46.6% 46.6% 72.4% 72.4%
using last 2 commands 36.9% 36.9% 59.2% 59.5%
Legend:

Cmd Line = “Complete Command Line”

Stub = “Just command itself (no args, options)”

Accuracy = “top five includes next command line/stub”

Table 1: Summary of results

set the values for the Yij and other values. (Note, how-
ever, that the decision of which predicted commands
cmd? to keep depends only on the P/ values, and NOT
the Yij quantities, nor does it depend on Wf , etc.)

We need an « value for each of these AURs; in our
experiments, we set

acmd = 0.90 to decide which current commands to keep
ap = 0.95 to update the P}’s

agrror = 0.91 to update ErrorCode probabilities

apow = 0.90 to update DayOfWeek probabilities

arop = 0.90 to update TimeOfDay probabilities

which we emprically found gave the best results.

4 Experiments and Results

This section presents our empirical results, based on the
data from the Greenberg (Gre88) dataset.

Exp#1 first attempts to duplicate the Davison and
Hirsh results, dealing only with stubs, albeit on our
datasets. The rest of this section considers several ex-
tensions: Exp#2 argues for predicting complete com-
mand lines, rather than just the stubs, and presents
our results here. There are obvious ways to parse com-
mand lines, and then re-use that information — e.g.,
after “latex foo.tex”, we may expect the next com-
mand to be “dvips foo.dvi -0”; note the foo is re-
peated. Exp#3 states this notion more precisely, and
then presents our results. So far, everything deals only
with command lines or stubs. We would naturally ex-
pect that our system could make better predictions
if it were given more information about the context
of the current/previous command. We therefore ex-
plored using “error codes” (Exp#4) and “current day
and/or current time (Exp#5). Another source of in-
formation is the command that was typed before the
current command; Exp#6 discusses our attempts to
estimate and use P(cmdsy; |cmdy, cmdy—q). Finally,

Exp#7 and Exp#8 consider predicting the next com-
mand stub, but here using (respectively) the previous
command line, and then the command line plus the er-
ror code. The final Exp#9 discusses the predictability
of different classes of users; it also provides additional
information about the Greenberg dataset we are using.

We summarize our main results in Table 1. Be-
fore explaining the details of this table (see below),
note immediately the winner, across the board, is
the simplest approach, of simply using the current
commnd in predicting the next command — i.e,
argmax P(cmd; g | cmd, ), using the AUR to maintain
the distribution. In particular, we did not improve (and
often, did not even match) this accuracy when we also
used error code, day, time, or earlier commands.

In more detail: The “Cmd —x” columns in Table 1
deal with predicting the complete command line, and
“Stub —x”’s, with predicting only the stubs. The y =0
columns test the predictive accuracy over the user’s EN-
TIRE sequence of data; the x = 100 columns test the
predictive accuracy after ignoring the first 100 experi-
ences of each user. (Recall this is considered the algo-
rithm’s learning phase, to help it adjust to the person.)”

To get some baseline values, we also implemented a
naive prediction method that simply predicts the last
5 commands. This system obtains 60.7% accuracy pre-
dicting command stubs and 38.8% accuracy predicting
command lines. We get even worse numbers, of course,
if we consider just the previous SINGLE command. We
also considered a system that simply predicts the 5 most

"We chose 100 after finding it worked better than other
training-set sizes, in the context of “learning full command
lines from full command lines” (i.e., the “winner”):

Number ignored: 50 100 200 300

Predictive accuracy: 47.3% 47.4% 46.7% 43.3%



frequent previous commands; these values were compa-
rable. (They too appear in Table 1.) Clearly any pre-
diction system that performs worse than these should
simply be considered a failure.

The following subsections focus on the predicting the
command line from various bits of evidence, in the “raw
accuracy” model. The table presents the other data,
dealing with the “accuracy—100” model, and with the
stub-prediction task.

Exp#1. Predicting Command Stubs from Com-
mand Stubs. First, we simply duplicated the Davi-
son and Hirsh algorithm, and obtained 72.7% accuracy
(accuracy—100 score of 73.3%). This is reasonably close
to their “near-75%” accuracy. (Note that we are using
a different dataset.)

Exp#2. Predicting Command Lines from Com-
mand Lines. As noted earlier, predicting entire com-
mand lines would be tremendously more useful that just
predicting stubs. When we use the entire command
lines to predict the next command line, our accuracy is
46.9%. (47.4% when we ignore the first 100 “training-
commands”). It is not surprising that this is consider-
ably smaller than the accuracy for predicting stubs, as
this is a much more difficult task. (Recall we are only
satisfied with a perfect match.)

Of course, getting the stub right might still be useful,
even if the rest of the command line is incorrect. For
example, we could then give the user the option of mov-
ing the stub into the user’s buffer, to be augmented, by
hand, with the appropriate arguments and options. We
therefore considered a different scoring measure, where
we awarded the system 1 point if the correct line ap-
peared in the list presented to the user; 0.5 points if the
correct stub appeared, and 0 otherwise. Here, the aver-
age score rose to 57.8% — that is, 46.9% of the time our
list included the correct line, and an additional 21.8%,
it included the correct stub.

Exp#3. Predicting Command Lines from
Parsed Command Lines. Most UNIX commands
follow the pattern: (stub)(switches)(arguments).
By parsing the command lines into a sequence of to-
kens, it is possible to identify common patterns between
a command that occurs at time ¢t and a command that
occurs at time ¢t + 1. (Treating (stub) (switches) as a
distinct command is reasonable, since many users alias
common (stub) (switches) pairs (for example, aliasing
“la” to “ls -a”).) It then becomes straightforward
to compare the arguments between two commands
and identify equivalent patterns. This can be further
extended by dividing each (argument) into (a-stub)
and (a-ext) — e.g., “foo.tex” becomes “foo” and
“tex”). For example, a command sequence could be

parsed as follows:

Original Parsed

vi foo.tex vi foo.tex

latex foo.tex latex (ARG 1)

dvips foo.dvi dvips (ARG — STUB 1).dvi

gv foo.ps gv (ARG — STUB 1).ps

Parsing the command lines identifies generalities that
may or may not be correct.® For instance, after the shell
had been trained on the above example, if a user then
enters “vi /etc/hosts” the predicter may then sug-
gest “latex /etc/hosts”, which is not very likely to
be correct. Further suppose that “vi /etc/hosts” had
occurred, followed by ping otherhost. In the model
we implement, the shell can identify relationships such
as this much more readily if it does not parse the com-
mand lines. By parsing the command lines, we end
up with a lossy data compression. The average accu-
racy for parsed command lines is 43.8%. (accuracy—100
score of 44.0%). Apparently, the benefits of knowing
what to do when seeing “vi bar.tex” are outweighed
by the loss of individual patterns.

Exp#4. Predicting Command Lines from Com-
mand Lines and Error Codes. All UNIX commands
have a return code, typically an error code from within
the program. Moreover, note that the next command
is often be dependent on whether or not the previous
command succeeded. For example, if compilation is
successful, users will typically execute the new object
code. But if compilation fails, we might expect the user
to either run a debugger, or edit the source code. We
therefore decided to include this, as part of the criteria
for deciding on the proper action.

As the meaning of the error code depends on the
command itself, we quantizing it down to no error
versus error, (read “0 versus non-0"). This also kept
managable the size of the data structure, while provid-
ing us with a reasonable amount of information (5.2%
of the commands returned an error). However, using
the error code provides no improvement over the basic
model — producing an accuracy of 46.9%.

Why? First, many commands do not (usually) re-
turn an error. Second, the total number of commands
likely to follow a given command is relatively low. As we
were predicting the top five commands, we found that
the commands with a matching error code are likely to
be listed, anyway (by perhaps earlier).

Exp#5. Using Day of Week and Time of Day.
We had anticipated that knowing the day of the week
and/or the time of day (morning, afternoon, evening,
night) would be helpful, figuring that people work in
different modes during the daytime versus nighttime; or
between week-days and week-ends. We found, however,

8Note that this parsing information could also be useful if
we later decide to generate scripts, as it can help distinguish
the “variables” from the “constants”.



Group name Predictability # subject  #Cmds
non-programmers 0.434 25 25,608
novice programmers 0.610 55 77,423
experienced pgms 0.420 36 74,906
computer scientists 0.369 52 125,691

Table 2: Greenberg’s DataSet

that it did not help in general: as the table shows, this
informatoin caused the average accuracy to go down
slightly — by about 0.5%.

This may be because the granularity used is too
coarse and so this computation ends up duplicating
P( Cde_l |cmdt )

Exp#6. Predicting Command Lines from Mul-
tiple Command Lines. Identifying a long-term trend
for predicting the next command might be more effec-
tive. By using the last two commands, we get 36.9% ac-
curacy for command lines and 68.8% accuracy for com-
mand stubs. (Here, we just kept the best n = 2000
previous-command-pairs, and used them in the same
way we had used previous-single-commands.) Note that
this command line accuracy is worse than the naive
approach that simply predicts the previous five com-
mands!

Exp#7. Predicting Command Stubs from Com-
mand Lines. Above we sought ways to to improve on
the prediction rate for command lines. We might be
able to use some of these ideas to improve the accu-
racy of predicting command stubs. By using the addi-
tional information in a command line, the list of pos-
sible (command — stubs) may be reduced (hopefully
reducing the chance of error). Unfortunately, we then
lose the generality for commands that have not occurred
before, and the command stub accuracy drops to 68.7%.

Exp#8. Predicting Command Stubs from Com-
mand Stubs and Error Codes. Although using the
error code had relatively little impact on predicting
command lines from command lines, it causes command
stub prediction accuracy to drop slightly 72.6%. This
suggests that the error code might not contribute any
practical information with the current model; it but
may still be useful in future work.

Exp#9. Predictability of Different Classes of
Users. As mentioned earlier, the Greenberg data was
originally used to learn to classify each computer user
into one of the four categories shown in Table 2.

We see clearly that novice programers are by far the
most predictable, and computer scientists, the least.? A

°It is interesting to speculate on why: novices proba-
bly know relatively few commands (which implies a smaller
set of commands to predict from); and computer scientists
are always trying out new things — and in particular, new
command and new sequences.

later system may be able to exploit this information, in
helping to set up a user profile, or whatever.

(The table’s two columns indicate the break-down of
the data: how many users were of each categories, and
how many commands, total, were from each category.)

5 Contributions, and Future Work

Our results, summarized in Table 4, reinforce the Davi-
son/Hirsh claim that it is possible to predict user ac-
tions, using a fairly simple and efficient algorithms.
Moreover, the accuracy is high enough to lead to a prac-
tical, usable system. While the accuracy is not as high
as we would like, it has proven surprisingly difficult to
improve on the accuracy score. Perhaps this shows that
we have, in fact, achieved the inherent predictability of
the data — i.e., people truly are random (to this de-
gree), or at least, we appear to be, given the available
data.

This last theme, in turn, suggests that we should con-
sider other sources of information, to better capture the
context. For example, many users use multiple windows
simultaneously (e.g., one for editing and one for compil-
ing). Moreover, today’s window managers (e.g., FVWM)
allow users to execute applications without typing. Ob-
taining information about when these events occur is
also important. Finally, external events have an im-
pact on what a user will do. Identifying events such
as email arrival, or high load averages, should also be
considered.

Of course, our long-term goals are not simply saving
keystrokes for the small population of people that use
UNix-style shells. Instead, our goal is to obtain a better
understand of techniques for predicting future user in-
teractions, in the hope of using such technologies to im-
prove other interfaces — perhaps for common software
products such as WORD or POWERPOINT. We suspect
that we will be able to use these, or related, techniques
not just to predict the commands, but also to detect
patterns of the user interactions, and use this to pro-
vide a truly helpful assistant — much in the line as the
Microsoft “Office Assistant”, but one that is adaptive
to the individual users. (E.g., that can determine when
the user doesn’t want to be bothered, or that some spe-
cific user typically enjoys hearing new hints, or ...)

Simple, yet powerful, interfaces are clearly important
today, given the vast number of interactive application
programs. As these applications scale up, effective in-
terfaces may become even more essential. We anticipate
that adaptive interfaces, capable of producing interfaces
that users will be willing to use, will be a major tool
used in building effective interfaces. We hope the re-
sults presented in this paper will help future researchers
better focus on the relevant aspects of this task.

Finally, any reader who wishes to be part of
the subsequent studies (and then to one of



the first to reap the eventual benefits of this
adaptive shell) should read the material in
http://www.cs.ualberta.ca/~greiner/adapt-interface.html.)
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