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Abstract 
 

Greiner and Zhou [1] presented ELR, a discriminative 
parameter-learning algorithm that maximizes conditional 
likelihood (CL) for a fixed Bayesian Belief Network (BN) 
structure, and demonstrated that it often produces 
classifiers that are more accurate than the ones produced 
using the generative approach (OFE), which finds 
maximal likelihood parameters. This is especially true 
when learning parameters for incorrect structures, such 
as Naïve Bayes (NB). In searching for algorithms to learn 
better BN classifiers, this paper uses ELR to learn 
parameters of more nearly correct BN structures – e.g., of 
a general Bayesian network (GBN) learned from a 
structure-learning algorithm [2]. While OFE typically 
produces more accurate classifiers with GBN (vs. NB), we 
show that ELR does not, when the training data is not 
sufficient for the GBN structure learner to produce a good 
model. Our empirical studies also suggest that the better 
the BN structure is, the less advantages ELR has over 
OFE, for classification purposes. ELR learning on NB 
(i.e., with little structural knowledge) still performs about 
the same as OFE on GBN in classification accuracy, over 
a large number of standard benchmark datasets. 

 
1. Introduction 
 

Many tasks – including pattern recognition and fault 
diagnosis – can be viewed as classification, as each 
requires identifying the class labels for instances, each 
typically described by a set of attributes. Learning 
accurate classifiers is an active research topic in machine 
learning and data mining. An increasing number of 
projects are using Bayesian belief net (BN) classifiers, 
whose wide use was motivated by the simplicity and 
accuracy of the naïve Bayes (NB) classifier [3]. While 
these NB learners find parameters that work well for a 
fixed structure, it is desirable to optimize structure as well 

as parameters, towards achieving an accurate Bayesian 
network classifier. 

Most BN learners are generative, seeking parameters 
and structure that maximize likelihood [4]. By contrast, 
logistic regression (LR [5]) systems attempt to optimize 
the conditional likelihood (CL) of the class given the 
attributes; this typically produces better classification 
accuracy.  Standard LR, however, makes the “naïve 
bayes” assumption: that the attributes are independent 
given the class. The discriminative learning tool, ELR 
(Extended Logistic Regression [1]) extends LR by 
computing the parameters that maximize CL for arbitrary 
structures, even given incomplete training data.  [1] shows 
that ELR often produces better classifiers than generative 
learners: when the learner has complete data, ELR is often 
superior to the standard generative approach “Observed 
Frequency Estimate” (OFE) [6], and when given 
incomplete data, ELR is often better than the EM [7] and 
APN [8] systems. ELR appears especially beneficial in 
the common situations where the given BN-structure is 
incorrect. 

Optimization of BN structure is also an important 
learning task. Conceivably, optimizing both structure and 
parameters would be a further improvement, producing 
BNs that are yet better classifiers. Our paper empirically 
explores this possibility. 

Section 2 reviews the essentials of Bayesian network 
classifiers. Section 3 introduces Bayesian network 
learning, focusing on a particular conditional 
independence (CI) based algorithm for learning BN 
structure, and the ELR algorithm for learning BN 
parameters. Section 4 presents our empirical experiments 
and analyses, based on 25 standard benchmark datasets 
[9] and the data generated from the Alarm [10] and 
Insurance [8] networks.  

We provide additional details, and additional data, in 
http://www.cs.ualberta.ca/~greiner/ELR.html. 
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2. Bayesian (network) classifiers 
 

A Bayesian network (BN) is a probabilistic graph 
model B = 〈N, A, Θ〉, where each network node n∈N 
represents a random variable and each directed arc a∈A  
between nodes represents a probabilistic association 
between variables, forming a directed acyclic graph. 
Associated with each node ni∈N is a conditional 
probability distribution (CPtable), collectively represented 
by Θ={θi} which quantifies how much a node depends on 
its parents [11]. 

A classifier is a function that assigns a class label to 
instances, typically described by a set of attributes. Over 
the last decade or so, Bayesian networks have been used 
more frequently for classification tasks.  

Bayesian classifiers, such as naïve Bayes (NB) 
classifier, Tree Augmented Naïve-Bayes (TAN) classifier 
and General Bayesian Networks (GBN) classifier etc. 
(defined below), are among those effective classifiers, in 
the sense that their predictive performance is competitive 
with state-of-the-art classifiers1. 

A naïve Bayes classifier has a simple structure with the 
class node as the parent of all the attribute nodes; see 
Figure 1(a). No connections between attribute nodes are 
allowed in a NB structure. NB is easy to construct and 
highly effective, especially when the features are not 
strongly correlated. 

 
 
 
 
 

                                                      

(a)                                             (b) 

 

 

 

(c) 

Figure 1. (a) Naïve Bayes   (b) General 
Bayesian Net   (c) Tree Augmented Naïve-Bayes 

 
Tree Augmented Naïve-Bayes (TAN) is a natural 

extension to the naïve Bayes structure that allows some 
augmenting edges between attributes.  Again the class 
variable C has no parents, and each attribute has the class 
variable as a parent.  Here, however, an attribute can have 
at most one other attribute as a parent; these attribute-
attribute links form a tree (Figure 1(c)). TAN classifiers 

can be learned in polynomial time by using the Chow-Liu 
algorithm [12]. TAN classifiers are attractive as they 
embody a good tradeoff between the quality of the 
approximation of correlations among attributes, and the 
computational complexity in the learning stage [9]. 

                                                 
1 There are other Bayesian network classifiers, such as the 
BN Augmented Naïve-Bayes (BAN) classifier, Bayesian 
Multi-net classifier, etc.; we will not consider them here. 

General Bayesian Network (GBN) is an unrestricted 
BN, which treats the class node as ordinary node (Figure 
1(b)) – e.g., the class node can also be a child of some 
attribute nodes. See Section 3.1.1. 
 
3. Learning Bayesian networks 

 
There are two major tasks in learning a BN: learning 

the graphical structure, and learning the parameters 
(CPtable entries) for that structure. 

 
3.1 Learning Bayesian network structure 
 

Learning structure is a model selection problem in the 
sense that each structure corresponds to a model (for 
which parameters have to be estimated) and we need to 
select a model based on the data.  

In general, there are two general classes of approaches 
to learn the structure of a Bayesian network: conditional 
independence (CI) based algorithms (using an information 
theoretic dependency analysis), and search-&-scoring 
based algorithms [13]. We will focus on the first 
approach.  C X1 X2 
 
3.1.1 CI-based algorithm. The Bayesian network 
structure encodes a set of conditional independence 
relationships among the nodes, which suggests the 
structure can be learned by identifying the conditional 
independence relationships between the nodes. 

C 

… X1 X2 Xn X3 X4 

Using information theory, the conditional mutual 
information of two nodes X and Y, with respect to a 
(possibly empty) conditioning set of nodes C, is defined 
as [14]: 

C

X4 
X2 

∑=
cyx cyPcxP

cyxPcyxPCYXI
,, )|()|(

)|,(log),,()|,(  X1 X3 X5

Of course, we do not have access to the true P(a) 
distribution, but only a training sample S, from which we 
can compute empirical estimates PS(a)≈ P(a).  We use this 
to  approximate  I( X, Y| C )  as  IS ( X, Y| C ).  When  this 
IS( X, Y| C ) is smaller than a certain threshold value ε >0, 
we say that X and Y are d-separated (conditionally 
independent) given the condition set C.  

Cheng et al. [14] developed a CI-based algorithm for 
GBN structure learning, the three-phase dependency 
analysis algorithm, TPDA. The three phases of the TPDA 
algorithm are drafting, thickening and thinning. The 
“drafting” phase produces an initial set of edges based on 
pair-wise mutual information, the “thickening” (resp., 
“thinning”) phases adds (resp.,removes) arcs between 
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nodes respectively according to results of CI tests, e.g.  
“Is IS( X, Y| C ) greater than ε?”  [14]. 

This CI-based algorithm is correct (i.e. will produce 
the perfect model of distribution) given a sufficient 
quantity of training data D whenever the underlying 
model is monotone DAG-faithful [14].  This system can 
be downloaded as part of the Bayesian Belief Network 
Software package from  

http://www.cs.ualberta.ca/~jcheng/bnsoft.htm.  
 

3.2 Learning Bayesian network parameters 
 

We assume there is an underlying distribution P(.) over 
n (discrete) random variables N = {X1, X2, .., Xn} (which 
includes the classification variable – i.e., C = Xi for some 
i.). For example (just for illustration purpose), perhaps X1 
is the “SARS” random variable, whose value ranges over 
{true, false}, X2 is “visitAsia”  {true, false}, X∈ 3 is 
“bodyTemperature” {37,…,44}, etc. We also assume 
the probability of asking any “What is P(C | E=e)?” query 
corresponds directly to natural frequency of the E=e 
event, which means we can infer this from the data 
sample S; see [15].  

∈

Our goal is to construct an effective Bayesian belief 
net (BN), B = 〈N, A, Θ〉 for this classification task. Here, 
given a node D∈N with immediate parents F⊂N, the 
parameter θd|f represents the network’s term for P( D=d | 
F=f) [11]. 

Given any unlabeled instance, the belief net B will 
produce a distribution over the values of the query 
variable, e.g. 

PB ( SARS=true | visitAsia = false)   =   0.2  
PB ( SARS=false | visitAsia = false)   =   0.8  
In general, the associated classifier system HB will 

return the highest value: 
HB(e) = arg maxc{B(C=c|E=e)} 

hence,  HB(visitAsia = false)  = false. 
The goal of learning BN parameters is a Bayesian net 

that minimizes the classification error of the resulting B-
based classifier HB : 

err(B) = ∑ 〈e,c〉 P(e,c) × I(HB(e) ≠ c) 
where I(a≠b) = 1 if a≠b, and = 0 otherwise.  

The actual parameter learner attempts to optimize the 
log conditional likelihood of a belief net B. Given a 
sample S, it can be approximated as: 

∑
>∈<

∧

=
Sce

B

S

ecP
S

BLCL
,

)(

))|(log(1)(                          (1) 

[16] and [9] note that maximizing this score will 
typically produce a classifier that comes close to 
minimizing the classification error. Unfortunately, the 
complexity of finding the Bayesian network parameters 
that optimize Equation 1 is NP-hard [15]. 

For the complete dataset, people often use the 
Observed Frequency Estimate (OFE) approach that is 
known to produce the parameters that maximize 

likelihood for a given structure. For example, if 80 of the 
100 C=1 instances have X2=0, then OFE sets 
θx2=0|C=1=80/100. (Some versions use a Laplacian 
correction to avoid 0/0 issues.) For incomplete datasets, 
algorithms such as Adaptive Probabilistic Network (APN) 
[8] or Expectation Maximization (EM) [7] are used to 
learn the parameters.  

 
3.2.1 Discriminative Parameter Learning Algorithm. 
Greiner & Zhou implemented a discriminative parameter-
learning algorithm, ELR, to maximize the log conditional 
likelihood (Equation 1) [1]. It produces better classifiers 
than the standard “generative” approach in a variety of 
situations, especially in common situation where the 
given BN-structure is incorrect. 

Given the intractability of computing the optimal 
CPtable entries, ELR hill-climbs to improve the empirical 
score  by changing the values of each CPtable 
entry θ

)(
)(

BLCL
S∧

d|f [1]. To incorporate the constraints θd|f≥0 and 
∑dθd|f=1, we used a different set of parameters: the 
“softmax” (or “logistic”) βd|f, where  

       
∑

=
'

| |'

|

d

fd fd

fd

e
e

β

β

θ .  

As the βis sweep over the reals, the corresponding fdi |
θ ’s 

will satisfy the appropriate constraints. 
Given a set of labeled queries, ELR descends in the 

direction of the total derivative with respect to these 
queries, which is the sum of the individual derivatives. 
 
Proposition [1]: For the tuple (labeled query) [e;c] and 
each “softmax” parameter βd|f , 

)]|(),|([)]|,(),|,([)(
|

|

]);([

efBecfBefdBcefdBBLCL
fd

fd

ce

−−−=
∂

∂
∧

θ
β

 

(Here B(x) refers to probability that B assigns to x.) 
For effective learning, parameters are initially set to 

their maximum likelihood values using observed 
frequency estimates before gradient descent. ELR uses 
line-search and conjugate gradient techniques, which are 
known to be effective for LR tasks [17]. Our empirical 
studies also show that the number of iterations is crucial.  
We therefore use a type of cross validation (called “cross 
tuning”) to determine this number.  ELR also incorporates 
several other enhancement to speed-up this computation, 
which leads to significant savings for some problems [1]. 
 
4. Empirical Experiments and Analyses 
 

The main focus of this paper is to apply ELR to learn 
parameters of GBN structures learned from CI-based 
algorithms and compare (one-sided paired T-tests [18]) its 
classification performance with several other structure and 
parameter learning combinations. We evaluated various 
algorithms over the standard 25 benchmark datasets used 
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by Friedman et al. [9]: 23 from UCI repository [19], plus 
“mofn-3-7-10” and “corral”, which were developed by 
[20] to study feature selection.  We also used the same 5-
fold cross validation and Train/Test learning schemas. As 
part of data preparation, continuous data are discretized 
using the supervised entropy-based approach [21].  

As mentioned in Section 3, CI-based algorithms can 
effectively learn GBN structures from complete datasets, 
provided enough data instances are available. We used 
Cheng’s Power Constructor (which implements the CI-
based algorithm TPDA described above) to learn the 
graphical structure, then applied the ELR parameter 
optimization to the learned GBN structure. We 
experimentally compare the results from GBN learning to 
the results based on the NB and TAN structures, and 
considered both OFE and ELR parameter learners.  

Section 4.1 investigates how the GBN structure 
(produced by TPDA) compares to NB and TAN for 
classification purposes, by comparing results of OFE 
parameter learning on these three classes of structures. 
Section 4.2 asks “Can ELR learning improve the 
classification results on GBN, more than the 
improvements on the relatively incorrect structures NB 

and TAN?” – does GBN+ELR improve GBN+OFE as 
much as NB+ELR improves on NB+OFE and TAN+ELR 
improves on TAN+OFE in classification tasks? Section 
4.3 investigates how ELR learning on the (typically 
incorrect) NB model competes with OFE learning on the 
better GBN structure produced by TPDA. Empirical 
classification results over 25 benchmark datasets are listed 
in Table 1 and Figure 2. Finally, Section 4.4 applies ELR 
to learn parameters of correct structures, to determine if 
correct structures can further improve ELR learning in 
classification tasks. 

 
4.1 GBN + OFE vs. NB, TAN + OFE 

 
Given a typically incorrect structure such as NB, OFE 

can perform poorly [22] in classification tasks. We were 
therefore surprised when our experimental results (Table 
1) showed OFE parameter learning on NB structure 
(NB+OFE) performed just about the same as GBN+OFE 
in classification accuracy over the 25 benchmark datasets.  
A closer look reveals that GBN+OFE did particularly 
poorly in 5 domains (satimage, segment, soybean-large,

 
Table 1. Empirical accuracy of classifiers learned from complete data 

 
                       Data set GBN+ELR         GBN+OFE       NB+ELR NB+OFE           TAN+ELR         TAN+OFE 

1     australian         86.81± 1.11     86.38± 0.98     84.93± 1.06     86.81± 0.84     84.93 1.03     84.93 1.03 ± ±
2     breast               95.74± 0.43     96.03± 0.50     96.32± 0.66     97.21± 0.75     96.32 0.70     96.32 0.81 ± ±
3     chess                90.06 0.92     90.06 0.92     95.40± 0.64     87.34± 1.02     97.19 0.51     92.40 0.81 ± ± ± ±

±4     cleve                82.03 1.83     84.07± 1.48     81.36± 2.46     82.03± 2.66     81.36 1.78     80.68 1.75 ± ±
±5     corral               100.00 0.00  100.00± 0.00    86.40± 3.25     86.40± 5.31    100.00 0.00   93.60 3.25 ± ±

6     crx                   85.69± 1.30     86.00± 1.94     86.46± 1.85     86.15± 1.29     86.15 1.70     86.15 1.70 ± ±
7     diabetes           76.34± 1.30     75.42± 0.61     75.16± 1.39     74.77± 1.05     73.33 1.97     74.38 1.35 ± ±

±8     flare                82.63 1.28     82.63± 1.28     82.82± 1.35     80.47± 1.03     83.10 1.29     83.00 1.06 ± ±
±9     german            73.70 0.68     73.70± 0.68     74.60± 0.58     74.70± 0.80     73.50 0.84     73.50 0.84 ± ±
±10   glass                44.76 4.22     47.62± 3.61     44.76± 4.22     47.62± 3.61     44.76 4.22     47.62 3.61 ± ±
±11   glass2              78.75 3.34     80.63± 3.75     81.88± 3.62     81.25± 2.21     80.00 3.90     80.63 3.34 ± ±
±12   heart                78.89 4.17     79.63± 3.75     78.89± 4.08     78.52± 3.44     78.15 3.86     78.52 4.29 ± ±
±13   hepatitis          90.00 4.24     90.00± 4.24     86.25± 5.38     83.75± 4.24     85.00± 5.08     88.75 4.15 ±
±14   iris                92.00 3.09     92.00± 3.09     94.00± 2.87     92.67± 2.45     92.00 3.09     92.67 2.45 ± ±
±15   letter                81.21 0.55     79.78± 0.57     83.02± 0.53     72.40± 0.63     88.90 0.44     83.22 0.53 ± ±
±16   lymphography 78.62 2.29     79.31± 2.18     86.21± 2.67     82.76± 1.89     84.83 5.18     86.90 3.34 ± ±
±17   mofn-3-7-10    100.00 0.00   86.72± 1.06    100.00± 0.00   86.72± 1.06     100.00 0.00   91.60 0.87 ± ±

18   pima                 74.25± 2.53     75.03± 2.25    75.16± 2.48     75.03± 2.45     74.38 2.58     74.38 2.81 ± ±
±19   shuttle-small    97.88 0.33     97.31± 0.37     99.12± 0.21     98.24± 0.30     99.22 0.20    99.12 0.21 ± ±

20   vote                 95.86± 0.78     96.32± 0.84     95.86± 0.78     90.34± 1.44     95.40 0.63    93.79 1.18 ± ±

±
 
21   *satimage         79.25 0.91     79.25± 0.91     85.40± 0.79     81.55± 0.87     88.30 0.72     88.30 0.72 ± ±
22   *segment          77.40 1.51     77.53 1.50     89.48± 1.11     85.32± 1.28     89.22 1.12     89.35 1.11 ± ± ± ±
23   *soybean-large 85.54± 0.99     82.50± 1.40     90.54± 0.54     90.89± 1.31     92.86 1.26     93.39 0.67 ± ±
24   *vehicle            51.95 1.32     48.52 2.13     64.14± 1.28     55.98± 0.93     66.39 1.22     65.21± ± 1.32 ± ±
25   *waveform-21  65.79 0.69     65.79 0.69     78.55± 0.60     75.91± 0.62     76.30 0.62     76.30 0.62 ± ± ± ±

 
* These benchmark datasets may not have sufficient data instances for CI-based algorithms to construct good GBN structures 
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vehicle and waveform-21 – e.g., the accuracy rate of 
GBN+OFE learning on waveform-21 is 0.658 compared 
to 0.759 from NB+OFE), which severely affected the 
statistical significance of the overall comparison results.  
Like all learners, CI-based structure learners are sensitive 
to the coverage of the sample over the underlying 
distribution of instances. We noticed that for those 5 
domains, GBN+OFE did not perform well, the 
classification statistics have large standard deviations and 
some of the median values are quite different from the 
mean values, which indicate the skewness of the 
underlying distributions of data. We suspect that this 
small quantity of instances is not sufficient for TPDA to 
produce good GBN structures. Therefore, all our 
comparisons involving GBN in the rest of the analyses 
will be based on the remaining 20 benchmark datasets.  
Our studies only related to NB and TAN still involve all 
the 25 benchmark datasets.  We also found the learned 
GBN structures have a slightly different number of edges 
from their NB counterparts for the 5 domains that 
GBN+OFE performed particularly poorly (Table 2). 
 

Table 2. GBN structures vs. NB structures 
(in terms of the number of edges) for 
satimage, segment, soybean-large, vehicle 
and waveform-21 domains 
 
 
 
 
 
 
 
 
 
GBN+OFE consistently outperforms NB+OFE in 

classification error over the 20 benchmark datasets at 
significance p<0.036, which indicates GBN is a better 
structure for classification over NB whenever TPDA has 
produced a good GBN model; see Figure 3(a). Moreover, 
GBN+OFE performs about as well as TAN+OFE. (In all 
scatter plot figures, points below the y = x diagonal are 
datasets for which algorithm y achieved better 
classification results than x.  Moreover, the error-bars 
reflect the standard deviation of each dimension; see data 
in Table 1.)  

 
4.2 GBN+ELR vs. NB, TAN+ELR 

 
OFE parameter training produces better classifiers with 

better structures; can the same be said of ELR parameter 
training? Classification results from GBN+ELR, 
NB+ELR and TAN+ELR (Figure 3(b) and 3(c)) refute 
this over the 20 benchmark datasets, as we see that 
GBN+ELR, TAN+ELR and NB+ELR all perform 
comparably to each other. This suggests that a 

discriminative learner is more robust against degradation 
of structures, while structural improvements seems more 
beneficial to a generative learner. However, we suspect 
that these 20 benchmark datasets may not be sufficient for 
TPDA to learn a GBN that is accurate enough to make a 
difference for ELR parameter training. Of course, this 
learner was attempting to find a structure that optimized 
likelihood; it would be useful to instead use a learner that 
sought structures that optimized conditional likelihood, 
and then sought appropriate parameters for that structure, 
using either ELR or OFE [23]. 

We also notice the performance gaps in classification 
error between ELR and OFE shrink with better structural 
models. NB+ELR consistently yields better classification 
results over NB+OFE at significance p<0.005 (Figure 
4(a)), TAN+ELR performs a little better than TAN+OFE 
(but not significantly, as only p<0.12) (Figure 4(b)). 
However, GBN+ELR performs very much the same as 
GBN+OFE (Figure 4(c)). 

 
4.3 NB+ELR vs. GBN+OFE 
 

We next investigated how well discriminative 
parameter training on an incorrect structure competes with 
a generative parameter training on a more correct 
structure. Our empirical results show that they are just 
about the same, with NB+ELR very slightly better than 
GBN+OFE over the 20 benchmark datasets (Figure 4(d)). 
This suggests that ELR, even when given essentially no 
structural knowledge, can compete effectively with 
generative learner on a much better structure, which is 
finding the parameters that optimize likelihood. 

 
4.4 Correct Model+ELR vs. GBN, NB+ELR 

Data set / 
number of  BN edges 

GBN NB 

satimage 45 36 
segment 24 19 
soybean-large 27 35 
vehicle 24 18 
waveform-21 26 21 

 
Section 4.2 shows that GBN+ELR does not 

significantly outperform NB+ELR and TAN+ELR in 
classification accuracy over 20 benchmark datasets, which 
suggests that GBNs learned from this CI-based algorithm 
may not be a good model to improve ELR parameter 
learning for classification. We designed the following 
experiments to further evaluate how the ELR learner 
responds in classification performance given better 
structural knowledge of the data. 

We applied ELR to learn parameters of two correct 
structures: the ALARM network, a 37 variable (8 query 
variables, 16 evidence variables) BN for monitoring 
patients in the intensive care unit [10] and the 
INSURANCE network, a 27 variable (3 query variables, 
12 evidence variables) BN for evaluating car insurance 
risks [8]. Complete datasets with all variables are sampled 
from the original networks [24]. We generated queries 
from these datasets by fixing one query variable and 
including all the evidence variables (all the other variables 
were removed) – e.g., a query generated from the 
ALARM network will include 17 variables (one query 
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   (a)                                                                               (b) 

Figure 2. Average classification accuracy from various algorithms (a) results from 20 
benchmark datasets (b) results from satimage, segment, soybean-large, vehicle and waveform-21 

    
Figure 3. Comparing (a) GBN+OFE vs. NB+OFE over 20 benchmark datasets (b) GBN+ELR vs. 

NB+ELR over 20 benchmark datasets (c) TAN+ELR vs. NB+ELR over 25 benchmark datasets 

 (a)    (b) 

(c)      (d)    
Figure 4. Comparing (a) NB+ELR vs. NB+OFE over 25 benchmark datasets (b) TAN+ELR vs. 

TAN+OFE over 25 benchmark datasets (c) GBN+ELR vs. GBN+OFE over 20 benchmark datasets 
(d) NB+ELR vs. GBN+OFE over 20 benchmark datasets 
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                          (a)                                                       (b)                                                      (c) 

Figure 5. Comparing algorithms in learning correct structures (a) CorrectModel+ELR vs. 
NB+ELR (b) CorrectModel+ELR vs. CorrectModel+OFE (c) NB+ELR vs. NB+ OFE (from 
experimental results on 99 sample queries generated from 11 query forms – 8 on ALARM and 3 
on INSURANCE with sample size: 20, 30, 40, 50, 60, 70, 80, 90 and 100) 
 

variable and 16 evidence variables).  All query variables 
(8 from ALARM and 3 from INSURANCE) were 
considered in generating queries – for each query form 
corresponding to one query variable, 9 training sample 
queries were generated with sizes from 20 to 100 (step 
10); therefore, there were 99 training samples overall for 
experiments in each run here.  Using each training sample, 
we applied ELR and OFE to learn parameters  
of the true structure, and the NB, TAN, GBN constructed 
from the same sample. The resulting systems were then 
evaluated based on a 3000 tuple testing dataset computed 
analytically from the true model. Here the GBN was first 
learned from a 500 tuple training dataset (with all 
variables) sampled from the true model. When learning 
parameters of the GBN using the sample from a particular 
query form, the original GBN was truncated to exclude 
those variables that were not presented in that training 
sample, we are aware this truncated GBN is only an 
approximation of the original learned GBN. 

   
Figure 6. Alarm domain: Comparing 

competing algorithms among 
CorrectModel+ELR, CorrectModel+OFE, 
GBN+ELR, GBN+OFE, NB+ELR, NB+OFE, 
TAN+ELR, TAN+OFE 

    Figure 7. Insurance domain: Comparing 
competing algorithms among CorrectModel+ELR, 
CorrectModel+OFE, GBN+ELR, GBN+OFE, 
NB+ELR, NB+OFE, TAN+ELR, TAN+OFE 

Figure 5(a) shows CorrectModel+ELR outperforms 
NB+ELR consistently at significance p<0.02. With a 
correct structure, ELR still produces better classification 
accuracies than OFE at p<0.001 (Figure 5(b) in Alarm 
domain), while NB+ELR has an even better performance 
than NB+OFE at p<0.000001 here, indicating better 
structures will lower the advantage of ELR over OFE in 
classification tasks. 

Figure 6 and 7 show that not only the correct 
structures, but also the GBNs help ELR find better 
parameters for classification tasks. It is important to note 
GBNs here were constructed from the data that accurately 
represented the underlying distribution as they were 
generated from the true models and sampled uniformly.  

 
5. Conclusions and Future Work 

 
These results suggest it would be helpful to find 

structures that maximize classification accuracy or 
conditional likelihood [25], especially when the data are 
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insufficient for generative structure learning. While our 
experiments dealt with complete data cases, further 
studies are needed to learn GBN+ELR on 
incomplete/partial training datasets. 
Contributions: This paper demonstrates how the 
classification performance of discriminative parameter 
learning responds to a better structural model – here the 
GBN structure learned using a CI-based algorithm that 
identifies the independence relationships, which 
corresponds to the generative task of directly modeling 
the underlying probability distribution. We compared 
classification results on GBN, NB and TAN structures 
using both ELR and OFE parameter estimators. We 
showed that as the structure improves, in terms of better 
modeling of the underlying probability distribution, a 
generative parameter learner such as OFE will produce 
better classifiers; and OFE becomes more competitive 
compared to ELR for classification purposes. Our 
empirical studies of ELR learning on correct models 
reveal ELR can be greatly enhanced in classification 
performance given true structures or GBNs constructed 
from the training data that are good representation of the 
underlying distribution; considering in the real world, 
often the data obtained for classification do not cover the 
good portion of the true distribution, this suggests with 
insufficient training data, a structure optimizing CL rather 
than likelihood may have better chances to improve ELR 
parameter learning for classification purposes. Therefore, 
we also suspect one of the reasons why GBN is not 
helping ELR much in classification tasks under many 
circumstances is that ELR and CI-based algorithms are 
trying to optimize different objective functions. 

Most of datasets and experimental results for this paper 
can be downloaded from: 

 http://www.cs.ualberta.ca/~bshen/elr.htm.  
More comparative study results for evaluating 

classifiers based on probability estimation in terms of 
conditional likelihood and area-under-ROC-curve AUC 
[26] will be posted onto the above website.  
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