
Structural Extension to Logistic Regression:
Discriminative Parameter Learning of Belief Net Classifiers

Russell Greiner (greiner@cs.ualberta.ca)
�

Dept of Computing Science, University of Alberta, Edmonton, AB T6G 2H1 Canada

Xiaoyuan Su (xiaoyuan@cs.ualberta.ca)
Electrical & Computer Engineering, University of Miami, Coral Gables, FL 33124, USA

Bin Shen (bshen@cs.ualberta.ca)
Dept of Computing Science, University of Alberta, Edmonton, AB T6G 2H1 Canada

Wei Zhou (w2zhou@math.uwaterloo.ca)
Dept of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract. Bayesian belief nets (BNs) are often used for classification tasks — typically to
return the most likely class label for each specified instance. Many BN-learners, however,
attempt to find the BN that maximizes a different objective function — viz., likelihood, rather
than classification accuracy — typically by first learning an appropriate graphical structure,
then finding the parameters for that structure that maximize the likelihood of the data. As
these parameters may not maximize the classification accuracy, “discriminative parameter
learners” follow the alternative approach of seeking the parameters that maximize conditional
likelihood (CL), over the distribution of instances the BN will have to classify. This paper first
formally specifies this task, shows how it extends standard logistic regression, and analyzes
its inherent sample and computational complexity. We then present a general algorithm for
this task, ELR, that applies to arbitrary BN structures and that works effectively even when
given incomplete training data. Unfortunately, ELR is not guaranteed to find the parameters
that optimize conditional likelihood; moreover, even the optimal-CL parameters need not
have minimal classification error. This paper therefore presents empirical evidence that ELR
produces effective classifiers, often superior to the ones produced by the standard “generative”
algorithms, especially in common situations where the given BN-structure is incorrect.

Keywords: (Bayesian) belief nets, Logistic regression, Classification, PAC-learning,
Computational/sample complexity

1. Introduction

Many tasks — including fault diagnosis, pattern recognition and forecast-
ing — can be viewed as classification, as each requires assigning the class
(“label”) to a given instance, which is specified by a set of attributes. An
increasing number of projects are using “(Bayesian) belief nets” (BN) to
represent the underlying distribution, and hence the stochastic mapping from
evidence to response.
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When this distribution is not known a priori, we can try to learn the model.
Our goal is an accurate BN — i.e., one that returns the correct answer as often
as possible. While a perfect model of the distribution will perform optimally
for any possible query, learners with limited training data are unlikely to
produce such a model; moreover, optimality may be impossible for learn-
ers constrained to a restricted range of possible distributions that excludes
the correct one (e.g., when only considering parameterizations of a given
BN-structure).

Here, it makes sense to find the parameters that do well with respect to the
queries posed. This “discriminative learning” task differs from the “genera-
tive learning” that is used to learn an overall model of the distribution (Rip96).
Following standard practice, our discriminative learner will seek the parame-
ters that maximize the log conditional likelihood (LCL) over the data, rather
than simple likehood — that is, given the data S � ���

ci � ei ��� (each class label
C � ci associated with evidence E � ei), a discriminative learner will try to
find parameters Θ that maximize

�
LCL

	
S 
��

Θ 
 � 1�
S
� ∑�

ci � ei ��� S

logPΘ
�
ci

�
ei 
 (1)

rather than the ones that maximize ∑ �
ci � ei ��� S logPΘ

�
ci � ei 
 (Rip96).

Optimizing the LCL of the root node (given the other attributes) of a naïve-
bayes structure can be formulated as a standard logistic regression prob-
lem (MN89; Jor95). General belief nets extend naïve-bayes-structures by
permitting additional dependencies among the attributes. This paper provides
a general discriminative learning tool ELR that can learn the parameters for an
arbitrary structure, completing the analogy:

NaïveBayes : General Belief Net :: Logistic Regression : ELR � (2)

Moreover, while most algorithms for learning logistic regression functions
require complete training data, the ELR algorithm can accept incomplete data.
We also present empirical evidence, from a large number of datasets, to demon-
strate that ELR works effectively.

Section 2 provides the foundations, overviewing belief nets then defin-
ing our task: discriminatively learning the parameters (for a fixed belief net
structure, G) that maximize CL. Section 3 formally analyses this task, provid-
ing both sample and computational complexity, and noting how these results
compare with corresponding results for generative learning. Seeing that our
task is NP-hard in general, Section 4 presents a gradient-descent discrimi-
native learning algorithm for general BNs, ELR. Section 5 reports empirical
results that demonstrate that our ELR often produces a classifier that is often
superior to ones produced by standard learning algorithms (which maximize
likelihood), over a variety of situations: In particular, when the learner has
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complete data, we show that ELR can be superior to the standard “observed
frequency estimate” (OFE) approach (CH92), and when given partial data,
we show ELR can be more effective than the EM and APN systems.1 As the
ELR behavior can depend on how the given BN-structure G relates to the true
structure T , we consider three regimes:

� when G is simpler than T — i.e., when G has too few links;
� when G is approximately equal to T (e.g., G is produced by a structure-

learning algorithm);
� when G is more complicated than T — i.e., when G has too many links.

Section 6 provides a brief survey of the relevant literature, and the appendix
provides the proofs of our theoretic claims. The webpage (Gre04) provides
more information about the experiments shown in Section 5, as well as other
experiments.

2. Framework

We assume there is a stationary underlying distribution P
� � 
 over N (dis-

crete) random variables V � �
V1 � ����� � Vn � ; For example, perhaps V1 is the

“Cancer” random variable, whose value ranges over
�
true � false � ; V2 is

“Gender” � �
male � female � , V3 is “Age” � �

0 � � � � 100 � , etc. We refer to this
joint distribution as the “underlying distribution” or the “event distribution”.

We can encode this as a “(Bayesian) belief net” (BN) — a directed acyclic
graph B � � V � A � Θ � , whose nodes V represent variables, and whose arcs
A represent dependencies. Each node Di

� V also includes a conditional-
probability-table (CPtable) θi

� Θ that specifies how Di’s values depend (stochas-
tically) on the values of its immediate parents. In particular, given a node
D � V with immediate parents F � V , the parameter θd � f represents the
network’s term for P

�
D � d

�
F � f 
 (Pea88).

The user interacts with the belief net by asking queries, each of the form
“What is P

�
C � c

�
E � e 
 ?” — e.g., What is P

�
Cancer = true

�
Gender=female, Smoke=true 
 ?

— where C � V is a single “query variable”, E � V is the subset of “evidence
variables”, and c (resp., e) is a legal assignment to C (resp., E). This paper fo-
cuses on the case where all queries involve the same variable; e.g., all queries
ask about Cancer. Moreover, we will follow standard practice by assuming
the distribution of conditioning events matches the underlying distribution.
This means there is a single distribution from which we can draw instances,
which correspond to a set of labeled instances (aka “labeled queries”).2 Note
this corresponds to the data sample used by standard learning algorithms.

1 Section 5 provides an overview of these systems.
2 See (GGS97) for an alternative position, and the challenges this requires solving.
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Given any unlabeled instance
�
Ei � ei � , the belief net3 Θ will produce a

distribution over the values of the query variable; perhaps PΘ
�
Cancer = true

�
E �

e 
 � 0 � 3 and PΘ
�
Cancer = false

�
E � e 
 � 0 � 7. In general, the associated

HΘ classifier system will then return the value HΘ
�
e 
 � argmaxc

�
PΘ

�
C �

c
�
E � e 
 � with the largest posterior probability — here return HΘ

�
E � e 
 �

false as PΘ
�
Cancer = false

�
E � e 
�� PΘ

�
Cancer = true

�
E � e 
 .

A good belief net classifier is one that produces the appropriate answers
to these unlabeled queries. We will use “classification error” (aka “0/1” loss)
to evaluate the resulting Θ-based classifier HΘ

err
�
Θ 
 � ∑�

e � c �
P
�
e � c 
�� I �

HΘ
�
e 
��� c 
 (3)

where I �
a �� b 
 � 1 if a �� b, and � 0 otherwise.

Our goal is a belief net Θ
�

that minimizes this score, with respect to the
true distribution P

� � 
 . While we do not know this distribution a priori, we
can use a sample drawn from this distribution, to help determine which belief
net is optimal. This paper focuses on the task of learning the optimal CPtable
Θ for a given BN-structure G � � V � A � .
Conditional Likelihood: In earlier work (Zho02, Sections 3.1.3 and 3.2.2),
we compared learners that optimized err

�
Θ 
 versus ones that optimized the

“log conditional likelihood” of a belief net Θ

LCLP
�
Θ 
 � ∑�

e � c �
P
�
e � c 
�� log

�
PΘ

�
c
�
e 
�
 (4)

(as approximated by Equation 1), and found no significant difference in clas-
sification performance; this is consistent with (MN89; FGG97; BKRK97).
Our work therefore focuses on learners that attempt to maximize LCLP

�
Θ 
 .

While Equation 1’s
�
LCL

	
S 
��

Θ 
 formula closely resembles the (empirical)
“log likelihood” function�

LL
	
S 
 �

Θ 
 � 1�
S
� ∑�

e � c ��� S

log
�
PΘ

�
c � e 
 
 (5)

used by many BN-learning algorithms, there are some critical differences. As
shown in (FGG97),

�
LL

	
S 
 �

Θ 
 � 1�
S
�
�

∑�
c � e ��� S

log
�
PΘ

�
c
�
e 
 
	� ∑�

c � e ��� S

log
�
PΘ

�
e 
 
�


3 As we assume the structure G ��
 V � A � of the belief net B ��
 V � A � Θ � is fixed, we will
identify a belief net with its parameters Θ.
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where the first term resembles our
�
LCL

� � 
 score, which measures how well
our network will answer the relevant queries, while the second term is ir-
relevant to our task. This means a BN Θα that does poorly wrt the first
“
�
LCL

� � 
 -like” term may be preferred to a Θβ that does better — i.e., it is pos-
sible that

�
LL

�
Θα 
 � �LL

�
Θβ 
 , while

�
LCL

�
Θα 
 � �

LCL
�
Θβ 
 . (Section 5.4

provides other arguments explaining why our
�
LCL

� � 
 -based approach may
work better than the

�
LL

� � 
 -based approaches; and Section 6 surveys other
relevant literature.)

Finally, all of our algorithms are producing parameters for a given belief
net structure, G. We therefore define BN �

G 
 � ���
G � Θ ��� to be the set of all

belief nets that use the structure G; our goal is a setting for the CPtable pa-
rameters Θ ��� 0 � 1 � k , appropriate for this G structure, that produces the optimal
classification performance. We view BN �

G 
 as the set of these parameters.

3. Theoretical Analysis

How many “labeled instances” are enough — i.e., given any values ε � δ � 0,
how many labeled instances are needed to insure that, with probability at
least 1 � δ, an algorithm can produce a classifier that is within ε of optimal?
While we believe there are comprehensive general bounds, our specific results
require the relatively benign technical restriction that all CPtable entries must
be bounded away from 0. That is, for any γ � 0, let

BN Θ � γ
�
G 
 � �

Θ � BN �
G 
 ���

θd � f
� Θ � θd � f � γ � (6)

be the subset of BNs whose CPtable values are all at least γ.4 We now restrict
our attention to these belief nets, and in particular, let

Θ
�

G � Θ � γ � argmax 	 LCLP
�
Θ 
 � Θ � BN Θ � γ

�
G 
�
 (7)

be a BN with optimal score among BN Θ � γ
�
G 
 with respect to the true distri-

bution P
� � 
 .

THEOREM 1. Let G be any belief net structure with K CPtable entries
Θ � �

θdi � fi � i � 1 
 
 K , and let Θ̂ � BN Θ � γ
�
G 
 be the BN in BN Θ � γ

�
G 
 that

has maximum empirical log conditional likelihood score (Equation 1) with
respect to a sample of

Mγ � N � K
�
ε � δ 
 � 18 � N lnγ

ε � 2 �
ln 2

δ
� K ln 6K

γε � � O � N2 K
ε2 ln

� K
εδ


 ln3 � 1
γ

 �

(8)
4 This θd � f � γ constraint is trivially satisfied by any parameter learner that uses Laplacian

correction, or that produces the posterior distribution from uniform Dirichlet priors: These
system can use γ � 1 ��� m � 2 � where m is the number of training instances (Hec98).

elr.tex; 27/09/2004; 18:46; p.5



6

labeled queries drawn from P
� � 
 . Then, with probability at least 1 � δ, Θ̂ will

be no more than ε worse than Θ
�

G � Θ � γ — i.e., P
�
LCLP

�
Θ̂ 
 �

LCLP
�
Θ

�

G � Θ � γ 
 �
ε 
 � δ.

A virtually identical proof shows that this same result holds when dealing
with another approximation to the 0/1 error (err

�
Θ 
 ),

MSE
�
Θ 
 � ∑�

e � c �
P
�
e � c 
�� � PΘ

�
c
�
e 
 � P

�
c
�
e 
 � 2 (9)

rather than LCL
� � 
 .

This PAC-learning (Val84) result can be used to bound the learning rate
— i.e., for a fixed structure G and confidence term δ, it specifies how many
instances M are required to guarantee an additive error of at most ε — note
the O

� 1
ε2
� log 1

ε � 
 dependency.5
For comparison, Dasgupta (Das97, Section 5) proves that

288N2 K
ε2 ln2 � 1 � 3N

ε � ln 18N K ln
�
1 � 3N � ε 


εδ
� O � N2 K

ε2 ln
� K
εδ


 ln3 � N 
 ln2 � 1
ε

 �

(10)
complete tuples6 are sufficient to learn the parameters to a fixed structure that
are with ε of the optimal likelihood (Equation 5). While comparing upper
bounds is only suggestive, it is interesting to note that, ignoring the ln � � � 

terms for ��� 1, these bounds are asymptotically identical.

One asymmetry is that only our Equation 8 bound includes the γ term,
which corresponds to the smallest CPtable entry allowed. While (Das97)
(following (ATW91)) can avoid this term by “tilting” the empirical distribu-
tion, this trick does not apply in our discriminative task: Our task inherently
involves computing conditional likelihood, which requires dividing by some
CPtable values, which is problematic when these values are near 0. This ob-
servation also means our proof is not an immediate application of the standard
PAC-learning approaches. Of course, our sample complexity remains polyno-
mial in the size (N, K) of the belief net even if this γ is exponentially small,
γ � O

�
1 � 2N 
 .

Note finally that the parameters that optimize (or nearly optimize) likeli-
hood will not necessarily optimize our objective of conditional likelihood;
this means Equation 10 describes the convergence to parameters that are
typically inferior to the ones associated with Equation 1, especially when
the structure is wrong; see (NJ01).

5 These are still very pessimistic bounds. For example, using the modest ε � δ � λ � 0 � 05
setting, this would require � 4.77 billion training examples to deal with the VOTE dataset!

6 We say a tuple is “complete” if it specifies a value for every attribute; hence
“E1 � e1 ������� � En � en” is complete (where 	 E1 ������� � En 
 is the full set of evidence variables)
but “E2 � e2 � E7 � e7” is not.
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The second question is computational: How hard is it to find these best
parameters values, given this sufficiently large sample. Here, the news is
mixed.

On the positive side, Wettig et al. (WGR � 03) show this task corresponds
to a convex optimization problem when the data is complete and the structure
G satisfies certain specified properties; this implies a polynomial algorithm
can find the values of the CPtables of G whose (empirical) conditional like-
lihood (Equation 1) is within ε of optimal (NN94; BV04). They show that
these properties hold for NaïveBayes and TAN structures (defined in Section 5
below).

Unfortunately. . .

THEOREM 2. It is NP-hard to find the values for the CPtables of a fixed BN-
structure that produce the largest (empirical) conditional likelihood (Equa-
tion 1) for a given incomplete sample.

We do not know the complexity of this task for arbitrary structures, given
complete data.

4. ELR Learning Algorithm

Given the intractability of computing the optimal CPtable entries in general,
we defined a simple gradient-ascent algorithm, ELR, that attempts to improve
the empirical score

�
LCL

�
Θ 
 by changing the values of each CPtable entry

θd � f. (Of course, this will only find, at best, a local optimum.) To incorporate
the constraints θd � f � 0 and ∑d θd � f � 1, we used the different set of parame-
ters, “βd � f”, where each

θd � f � eβd � f

∑d � eβd � � f � (11)

As the βis sweep over the reals, the corresponding θdi � f’s will satisfy the
appropriate constraints. (In the naïve-bayes case, this corresponds to what
many logistic regression algorithms would do, albeit with different parame-
ters (Jor95): Find α � χ that optimize Pα � χ

�
C � c

�
E � e 
 � eαc � χc � e � ∑ j eα j � χj � e.7

Recall that our goal is a more general algorithm — one that can deal with
arbitrary structures; see Equation 2.)

Like all such algorithms, ELR is basically

Initialize β
	
0 


For k � 1 � � m
β
	
k � 1 
 : � β

	
k 
 � α

	
k 
 � d

	
k 


(12)

7 While the obvious tabular representation of the CPtables involves more parameters than
appear in this logistic regression model, these extra BN-parameters are redundant.

elr.tex; 27/09/2004; 18:46; p.7



8

where β
	
k 
 represents the set of parameters at iteration k. In a simple gradient

ascent approach, we would set d
	
k 
 to be the total derivative with respect to

the given set of labeled queries, ∇
�
LCL � � ∂

�
LCL

�
S � 	

Θ 

∂ βd � f � d � f, which is the sum

of the individual derivatives from each labeled training case
�
e;c � :

∂
�
LCL

	
S 
 �

Θ 

∂ βd � f

� ∑�
e � c ��� S

∂
�
LCL

	 �
e � c � 
�� Θ 


∂ βd � f
�

This requires. . .

PROPOSITION 3. For the labeled training case
�
e � c � and each “softmax”

parameter βd � f,

∂
�
LCL

	 �
e � c � 
 � Θ 


∂ βd � f
� �

PΘ
�
d � f � e � c 
 � PΘ

�
d � f � e 
 � � θd � f

�
PΘ

�
f
�
c � e 
 � PΘ

�
f
�
e 
 � �

Recall PΘ
�
x
�
y 
 refers to conditional probability of x given a particular value

of y, for the parameter setting corresponding to Θ �
�
βd � f � . Notice this ex-

pression is well-defined for any set of evidence variables E — which can be
all “non-C” variables (corresponding to a complete data tuple), or any subset,
including the empty E � � � .

To work effectively, ELR incorporates four instantiations/modifications to
the basic gradient ascent idea, dealing with
1. the initial values β

	
0 
 (“plug-in parameters”),

2. the direction of the modification d
	
k 
 (conjugate gradient),

3. the magnitude of the change α
	
k 
 (line search) and

4. the stopping criteria m (“cross tuning”).

Minka (Min01) has shown that the middle two ideas, conjugate gradient
and line-search (PFTV02), are effective for the standard logistic regression
task.
Begin with Plug-In Parameters: We must first initialize the parameters,
β
	
0 
 . One common approach is to set β

	
0 
 to small, randomly selected, val-

ues; another is to begin with the values specified by the generative approach
— i.e., using frequency estimates (OFE; Equation 13) in the complete data
case, and a simple variant otherwise.8 Our empirical evidence shows that this

8 To compute the value for the βd � f parameter, use frequency estimates but only over the
training instances that specify the values of all 	 D 
�� F variables.
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second approach works better, especially for small samples. These easy-to-
compute generative starting values are often used to initialize parameters for
discriminative tasks, and called “plug-in parameters” (Rip96).
Conjugate Gradient: Standard gradient ascent algorithms may require a
great many iterations, especially for functions that have long, narrow val-
ley structures. The conjugate gradient method addresses this problem by
ascending along conjugate directions, rather than simply the local gradient.
As this means that the directions that have already been optimized, stay op-
timized, this method often requires far fewer steps uphill to reach the local
optimum (HDB96).

In particular, ELR uses the Polak-Rebiere formula to update its search
direction. The initial search direction is given by:

d
	
0 
 � ∇

�
LCL 	

0 

On subsequent iterations,

d
	
k 
 � ∇

�
LCL 	

k 
 �
�
∇

�
LCL 	

k 
 � ∇
�
LCL 	

k � 1 
 
 � ∇
�
LCL 	

k 

∇

�
LCL 	

k � 1 
 � ∇
�
LCL 	

k � 1 

d
	
k � 1 


where the “ � ” is the vector dot-product. Hence, the current update direction is
formed by “subtracting off” the previous direction from the current derivative.
Line Search: ELR will ascend in the d

	
k 
 direction; the next challenge is de-

ciding how far to move — i.e., in computing the α
	
k 
 � ℜ � from Equation 12.

The good news is, as β � β
	
k 
 and d � d

	
k 
 are fixed, this is a one-dimensional

search: first α
�

that maximizes f
�
α 
 �

�
LCL

	
S 
��

β � αi � d 
 . ELR therefore
uses a standard technique, Brent’s iterative line search procedure (a hybrid
combination of the linear Golden Section search (HDB96) and a quadratic
interpolation), which has proven to be very effective at finding the optimal
value for α

	
k 
 (Bis98). In essense, this method first finds three αi values, and

computes the associated function values
� �

αi � f
�
αi 
 � � i � 1 � 2 � 3. It then assumes

the f
� � 
 function is (locally) quadratic, and so fits this trio of points to a

second degree polynomial. It then finds the α
�

value that minimizes this
quadratic, replaces one of the three original αi values with this

�
α

� � f
�
α

� 
 �
pair, and iterates using the new trio of points. See (Bis98) for details.
Cross tuning (stopping time): The final issue is deciding when to stop; i.e.,
determining the value of m for Equation 12. A naïve algorithm would just
compute the training-set error (Equation 3) at each iteration, and stop when
that error measure appears at a local optimum — i.e., when the error appears
to be going up. The graph in Figure 1 shows both training-set and test-set error
on a particular dataset (here “CLEVE”; see next section), at each iteration.
If we used this simple approach, we would stop on the third iteration; the
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Figure 1. Comparing Training-Set Error with Test-Set Error, as function of Iteration

generalization error shows that these parameters are very bad — in fact, they
seem almost the worst values!

To avoid this, we use a variant of cross validation, which we call “cross
tuning”, to estimate the optimal number of iterations. Here, we divide the
training data into � � 5 partitions, then for each fold, run the gradient ascent
for remaining 4 � 5 of the data, but evaluating the quality of the result (on each
iteration) on the fold. (This produces a graph like the “Generalization Error”
line in Figure 1.) We then determine, for each fold, when we should have
stopped — here, it would be on k � 5, as that is the global optimum for this
fold. We then set m to be the median values over these folds. When using all
of the data to produce the final βd � f values, we iterate exactly m times. The
website (Gre04, #CrossTuning) presents empirical evidence that cross-tuning
is important, especially for complex models.

5. Empirical Studies

The ELR algorithm takes, as arguments, a BN-structure G � � V � A � and a
dataset of labeled queries (aka instances) S � ���

ei � ci ��� i, and returns a value
for each CPtable parameter θd � f. To explore its effectiveness, we compared
the err

� � 
 performance of the resulting ΘELR parameters with the results of
other algorithms that similarly learn CPtable values for a given structure.

We say a data sample is “complete” if each instance is complete (see Foot-
note 6); otherwise it is incomplete. When the data is complete, we compare
ELR to the standard “observed frequency estimate” (OFE) approach, which is
known to produce the parameters that maximize likelihood (Equation 5) for
a given structure (CH92). For example, if 75 of the 100 C � 1 instances have
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X3 � 0, then OFE sets

θX3 � 0 � C � 1 � 75
100 (13)

(Some versions use a Laplacian correction to avoid the problems caused by
0 probability events.) When the data is incomplete, we compare ELR to the
standard Expectation Maximization algorithm EM (DLR77; Lau95; Hec98)
and to APN (BKRK97), which ascends to parameter values whose likelihood
is locally optimal.

Here we present only the results of the ELR � ELRβ algorithm, that used the
β terms (Equation 11), as we found its performance strictly dominated the
ELRθ version that used θ directly. Similarly, while the original APNθ (BKRK97)
climbed in the space of parameters Θ � �

θi � , we instead used a modified APNβ
system that uses the β � �

βi � values, as we found it worked better as well.
Traditional wisdom holds that discriminative learning (ELR) is most rele-

vant (i.e., better than generative learning: OFE, APN, EM) when this underlying
model G � � V � A � is “wrong”, that is, not an I-map of the true distribution T
— which here means the graph structure does not include some essential
arcs (Pea88). The situation, which we denote “G

� T”, is fairly common
as many learners consider only structures as simple as naïve-bayes, or the
class of TAN structures (defined below), which are typically much simpler
than T .9 Section 5.1 deals with this situation, considering both the complete
and incomplete data cases.

Section 5.2 then considers another standard situation: where we employ a
structure-learning algorithm to produce a structure that is similar to the truth;
i.e., where G � T . Here, we use the POWERCONSTRUCTOR system (CGK02;
CG99) for the first step (to learn the structure), then compare the relative
effectiveness of algorithms for finding parameters for this structure.

We next consider the uncommon situation where the model G is more
complicated than the truth T ; i.e., G � T . Section 5.3 uses artificial data to
compare ELR vs OFE, APN and EM, in this context.

Finally, Section 5.4 summarizes all of these empirical results.
Notation: The notation “NB+ELR” will refer to the NB structure, whose param-
eters are learned using ELR; in general, we will use x+y to refer to the system
produced when the y algorithm is used to produce the parameter for the x
structure. Below we will compare various pairs of learners, in each case over
a common dataset; we will therefore use a one-sided paired t-test (Mit97).
When this result is significant at the ρ � 0 � 05 level, we will write α � 	

p � ρ 
 β
— e.g., we will soon see NB+ELR � 	

p � 0 
 005 
 NB+OFE. For values larger than
0 � 05, we will use the notation α � 	

p � ρ 
 β. (That is, we regard p
� 0 � 05 as the

9 Note the G � T notation does not mean the arcs of G are a subset of T ’s, as G may also
include arcs that are not in T .
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Figure 2. (a) NaïveBayes structure (b) TAN structure (FGG97, Fig 3) (c) Arbitrary GBN
structure. (Note: all figures are numbered (a), (b), . . . from left to right.)

cut-off for statistical significance.) Note the arrow points to the learner that
appears to be better.10

While our main emphasis is comparing x+ELR to x+OFE (and to x+APN and
x+EM) for various structures x, where relevant we will also compare across
structure classes; e.g., comparing x+ELR to y+ELR for different structures x
and y.

5.1. MODEL IS SIMPLER THAN THE TRUTH (G � T )

Section 5.1.1 (resp., Section 5.1.2 ) compares algorithms for learning the
parameters for a naïve-bayes model (resp., a TAN model) given complete data;
Section 5.1.3 then considers learning these models given incomplete data.
Section 5.1.4 uses a simple controlled study, on artificial data, to further
investigate a specific claim.

5.1.1. NaïveBayes — Complete, Real World Data
Our first experiments deal with the simplest situation: learning the Naïve-
Bayes parameters from complete data. Recall that the NaïveBayes structure
requires that the attributes are independent given the class label; see Fig-
ure 2(a). It is well-known that ELR, with this structure, corresponds to stan-
dard logistic regression (NJ01).

We compared the relative effectiveness of ELR with various other classi-
fiers, over the same 25 datasets that (FGG97) used for their comparisons:
23 from UCIrvine repository (BM00), plus “MOFN-3-7-10” and “CORRAL”,
which were developed by (KJ97) to study feature selection; see Table I, which
also specifies how we computed our accuracy values — based on 5-fold cross
validation for small data, and holdout method for large data (Koh95). To deal
with continuous variables, we implemented supervised entropy discretiza-
tion (FI93). Table II summarizes the results.

We use the CHESS dataset (36 binary or ternary attributes) to illustrate
the basic behaviour of the algorithms. Figure 3(a) shows the performance,

10 This analysis makes the standard assumptions that the datapoints are identical and
independent, each normally distributed; see (NB03).
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Table I. Description of data sets used in the experiments (FGG97).

Dataset # Attributes # Classes # Instances
Train Test

1 AUSTRALIAN 14 2 690 CV-5
2 BREAST 10 2 683 CV-5
3 CHESS 36 2 2130 1066
4 CLEVE 13 2 296 CV-5
5 CORRAL 6 2 128 CV-5
6 CRX 15 2 653 CV-5
7 DIABETES 8 2 768 CV-5
8 FLARE 10 2 1066 CV-5
9 GERMAN 20 2 1000 CV-5

10 GLASS 9 7 214 CV-5
11 GLASS2 9 2 163 CV-5
12 HEART 13 2 270 CV-5
13 HEPATITIS 19 2 80 CV-5
14 IRIS 4 3 150 CV-5
15 LETTER 16 26 15000 5000
16 LYMPHOGRAPHY 18 4 148 CV-5
17 MOFN-3-7-10 10 2 300 1024
18 PIMA 8 2 768 CV-5
19 SATIMAGE 36 6 4435 2000
20 SEGMENT 19 7 1540 770
21 SHUTTLE-SMALL 9 7 3866 1934
22 SOYBEAN-LARGE 35 19 562 CV-5
23 VEHICLE 18 4 846 CV-5
24 VOTE 16 2 435 CV-5
25 WAVEFORM-21 21 3 300 4700

on this dataset, of our NB+ELR (a.k.a. “NaïveBayes structure + ELR instanti-
ation”) system, versus the “standard” NB+OFE, which uses OFE to instantiate
the parameters. We see that ELR is consistently more accurate than OFE, for
any size training sample. We also see how quickly ELR converges to the best
performance.

Figure 4(a) provides a more comprehensive comparison, across all 25
datasets. (Each point below the x � y line is a dataset where NB+ELR was better
than other approach — here NB+OFE. The lines also express the 1 standard-
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Figure 3. CHESS domain: (a) ELR vs OFE, complete data, structure is “incorrect”
(naïve-bayes); (b) ELR vs EM, APN on incomplete data, structure is “incorrect”
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Figure 4. Comparing NB+ELR with (a) NB+OFE (b) TAN+OFE

deviation error bars in each dimension.11) As suggested by this plot, NB+ELR
is significantly better than NB+OFE at the p � 0 � 005 level.

5.1.2. TAN — Complete, Real World Data
We next considered TAN (“tree augmented naïve-bayes”) structures (FGG97),
which include a link from the classification node down to each attribute and,
if we ignore those class-to-attribute links, the remaining links, connecting at-
tributes to each other, form a tree; see Figure 2(b). (Hence this representation
allows each attribute to have at most one “attribute parent”, and so this class of
structures strictly generalize NaïveBayes.) Friedman et al. (FGG97) provide
an efficient algorithm for learning such TAN structures given complete data,
based on (CL68): first compute the mutual information between each pair of
attributes, conditioned on the class variable, then find the minimum-weighted
spanning tree within this complete graph of the attributes. (Each mutual in-
formation quantity is based on the empirical sample.) They prove that the
resulting structure maximizes the likelihood of the data, over all possible TAN
structures — n.b., this is optimizing a generative measure.

11 When using 5-fold cross-validation, we computed the standard deviation using the 5
computed accuracy values. When dealing with a single split of the data, we used the standard
binomial formula, � p � � 1 � p � � n, where p is the accuracy and n is the size of the test set.
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Table II. Empirical accuracy of classifiers learned from complete data

Data set NB+OFE NB+ELR TAN+OFE TAN+ELR GBN+OFE GBN+ELR

1 AUSTRALIAN 86.81 � 0.84 84.93 � 1.06 84.93 � 1.03 84.93 � 1.03 86.38 � 0.98 86.81 � 1.11

2 BREAST 97.21 � 0.75 96.32 � 0.66 96.32 � 0.81 96.32 � 0.70 96.03 � 0.50 95.74 � 0.43

3 CHESS 87.34 � 1.02 95.40 � 0.64 92.40 � 0.81 97.19 � 0.51 90.06 � 0.92 90.06 � 0.92

4 CLEVE 82.03 � 2.66 81.36 � 2.46 80.68 � 1.75 81.36 � 1.78 84.07 � 1.48 82.03 � 1.83

5 CORRAL 86.40 � 5.31 86.40 � 3.25 93.60 � 3.25 100.00 � 0.00 100.00 � 0.00 100.00 � 0.00

6 CRX 86.15 � 1.29 86.46 � 1.85 86.15 � 1.70 86.15 � 1.70 86.00 � 1.94 85.69 � 1.30

7 DIABETES 74.77 � 1.05 75.16 � 1.39 74.38 � 1.35 73.33 � 1.97 75.42 � 0.61 76.34 � 1.30

8 FLARE 80.47 � 1.03 82.82 � 1.35 83.00 � 1.06 83.10 � 1.29 82.63 � 1.28 82.63 � 1.28

9 GERMAN 74.70 � 0.80 74.60 � 0.58 73.50 � 0.84 73.50 � 0.84 73.70 � 0.68 73.70 � 0.68

10 GLASS 47.62 � 3.61 44.76 � 4.22 47.62 � 3.61 44.76 � 4.22 47.62 � 3.61 44.76 � 4.22

11 GLASS2 81.25 � 2.21 81.88 � 3.62 80.63 � 3.34 80.00 � 3.90 80.63 � 3.75 78.75 � 3.34

12 HEART 78.89 � 4.08 78.52 � 3.44 78.52 � 4.29 78.15 � 3.86 79.63 � 3.75 78.89 � 4.17

13 HEPATITIS 83.75 � 4.24 86.25 � 5.38 88.75 � 4.15 85.00 � 5.08 90.00 � 4.24 90.00 � 4.24

14 IRIS 92.67 � 2.45 94.00 � 2.87 92.67 � 2.45 92.00 � 3.09 92.00 � 3.09 92.00 � 3.09

15 LETTER 72.40 � 0.63 83.02 � 0.53 83.22 � 0.53 88.90 � 0.44 79.78 � 0.57 81.21 � 0.55

16 LYMPHOGRAPHY 82.76 � 1.89 86.21 � 2.67 86.90 � 3.34 84.83 � 5.18 79.31 � 2.18 78.62 � 2.29

17 MOFN-3-7-10 86.72 � 1.06 100.00 � 0.00 91.60 � 0.87 100.00 � 0.00 86.72 � 1.06 100.00 � 0.00

18 PIMA 75.03 � 2.45 75.16 � 2.48 74.38 � 2.81 74.38 � 2.58 75.03 � 2.25 74.25 � 2.53

19 SATIMAGE 81.55 � 0.87 85.40 � 0.79 88.30 � 0.72 88.30 � 0.72 79.25 � 0.91 79.25 � 0.91

20 SEGMENT 85.32 � 1.28 89.48 � 1.11 89.35 � 1.11 89.22 � 1.12 77.53 � 1.50 77.40 � 1.51

21 SHUTTLE-SMALL 98.24 � 0.30 99.12 � 0.21 99.12 � 0.21 99.22 � 0.20 97.31 � 0.37 97.88 � 0.33

22 SOYBEAN-LARGE 90.89 � 1.31 90.54 � 0.54 93.39 � 0.67 92.86 � 1.26 82.50 � 1.40 85.54 � 0.99

23 VEHICLE 55.98 � 0.93 64.14 � 1.28 65.21 � 1.32 66.39 � 1.22 48.52 � 2.13 51.95 � 1.32

24 VOTE 90.34 � 1.44 95.86 � 0.78 93.79 � 1.18 95.40 � 0.63 96.32 � 0.84 95.86 � 0.78

25 WAVEFORM-21 75.91 � 0.62 78.55 � 0.60 76.30 � 0.62 76.30 � 0.62 65.79 � 0.69 65.79 � 0.69

Figure 4(b) compares NB+ELR to TAN+OFE. We see that ELR, even when
handicapped with the simple NB structure, performs about as well as OFE on
TAN structures. Of course, the limitations of the NB structure may explain
the poor performance of NB+ELR on some data. For example, in the COR-
RAL dataset, as the class is a function of four interrelated attributes, one
must connect these attributes to predict the class. As NaïveBayes permits
no such connection, NaïveBayes-based classifiers performed poorly on this
data. Of course, as TAN allows more expressive structures, it has a significant
advantage here. It is interesting to note that our NB+ELR is still comparable to
TAN+OFE, in general.

Would we do yet better by using ELR to instantiate TAN structures? While
Figure 5(a) suggests that TAN+ELR is slightly better than NB+ELR, this is
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Figure 5. Complete data: Comparing TAN+ELR vs (a) NB+ELR (b) TAN+OFE
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Figure 6. Incomplete data: NB+ELR vs (a) NB+APN; (b) NB+EM

not significant: only at the p
� 0 � 2 level. However, Figure 5(b) shows that

TAN+ELR does consistently better than TAN+OFE — at a p � 0 � 025 level. We
found that TAN+ELR did perfectly on the the CORRAL dataset, which NB+ELR
found problematic.

5.1.3. NB, TAN — Incomplete, Real World Data
All of the above studies used complete data. We next explored how well ELR
could instantiate the NaïveBayes structure, using incomplete data.

Here, we used the datasets investigated above, but modified by randomly
removing the value of each attribute, within each instance, with probability
0 � 25. (Hence, this data is “missing completely at random”, MCAR (LR87).)
We then compared ELR to the standard “missing-data” learning algorithms,
APN and EM. In each case — for ELR, APN and EM — we initialize the parame-
ters using the obvious variant of OFE that considers, for βd � f, only the records
that include values for the relevant node and all of its parents

�
D � �

F.
Here, we first learned the parameters for the NaïveBayes structure; Fig-

ure 3(b) shows the learning curve for the CHESS domain, comparing ELR to
APN and EM. We see that ELR does better for essentially every sample size.
We also compared these algorithms over the rest of the 25 datasets; see Fig-
ures 6(a) and 6(b) for ELR vs APN and ELR vs EM, respectively. As shown, ELR
does consistently better — in each case, at the p � 0 � 025 level.
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Figure 7. Incomplete data: Comparing TAN+ELR with (a) TAN+APN; (b) TAN+EM;
(c) NB+ELR

Table III. Empirical accuracy of classifiers learned from incomplete data

Data set NB+ELR NB+APN NB+EM TAN+ELR TAN+APN TAN+EM GBN+ELR GBN+APN GBN+EM

AUSTRA-LIAN 78.41 � 1.01 78.41 � 0.96 78.55 � 1.01 77.25 � 0.59 78.12 � 0.74 77.25 � 0.59 74.06 � 1.06 74.06 � 1.06 74.78 � 0.74

BREAST 95.59 � 1.32 96.03 � 1.20 96.03 � 1.20 96.03 � 1.13 95.88 � 0.95 96.18 � 1.02 94.12 � 1.63 94.85 � 1.36 94.85 � 1.36

CHESS 94.56 � 0.69 89.59 � 0.94 89.68 � 0.93 96.15 � 0.59 93.90 � 0.73 94.09 � 0.72 90.34 � 0.90 90.06 � 0.92 90.06 � 0.92

CLEVE 84.07 � 1.90 82.03 � 2.05 82.03 � 2.05 83.73 � 1.57 83.73 � 1.57 83.73 � 1.57 83.05 � 1.93 81.36 � 2.34 83.39 � 1.89

CORRAL 81.60 � 3.25 83.20 � 3.67 83.20 � 3.67 88.80 � 3.67 90.40 � 1.60 88.80 � 2.65 92.00 � 1.79 88.80 � 2.65 92.00 � 1.79

CRX 87.54 � 1.43 86.00 � 1.67 86.00 � 1.67 85.85 � 1.43 84.62 � 1.29 85.85 � 1.43 86.15 � 1.67 87.23 � 1.10 86.92 � 0.97

DIABETES 75.42 � 1.84 74.64 � 1.83 74.64 � 1.83 74.64 � 2.06 74.90 � 2.19 74.90 � 2.19 73.46 � 1.99 73.20 � 1.99 72.81 � 1.79

FLARE 83.00 � 1.42 82.35 � 1.21 82.44 � 1.24 82.54 � 0.86 82.35 � 1.90 82.54 � 1.52 82.63 � 1.28 82.63 � 1.28 82.63 � 1.28

GERMAN 74.50 � 0.89 74.10 � 1.09 74.00 � 1.05 72.70 � 0.54 74.00 � 0.97 72.90 � 0.40 73.70 � 0.68 73.40 � 0.86 73.70 � 0.68

GLASS 35.71 � 4.33 35.71 � 4.33 35.71 � 4.33 35.71 � 4.33 35.71 � 4.33 35.71 � 4.33 35.71 � 4.33 35.71 � 4.33 35.71 � 4.33

GLASS2 79.38 � 3.22 77.50 � 3.03 77.50 � 3.03 76.25 � 2.72 76.25 � 3.37 76.25 � 2.72 78.13 � 3.28 77.50 � 3.75 78.13 � 3.28

HEART 75.19 � 5.13 74.81 � 4.63 74.81 � 4.63 72.22 � 3.26 73.33 � 4.00 73.33 � 4.00 73.70 � 3.95 73.33 � 4.37 73.33 � 4.37

HEPATITIS 81.25 � 7.65 86.25 � 5.00 86.25 � 5.00 82.50 � 5.00 87.50 � 3.95 86.25 � 5.00 86.25 � 3.64 86.25 � 3.64 86.25 � 3.64

IRIS 94.67 � 0.82 94.67 � 0.82 94.67 � 0.82 94.67 � 0.82 94.67 � 0.82 94.67 � 0.82 94.67 � 0.82 94.67 � 0.82 94.67 � 0.82

LETTER 75.28 � 0.61 67.24 � 0.66 67.14 � 0.66 81.86 � 0.54 85.25 � 0.50 84.07 � 0.52 72.80 � 0.63 69.81 � 0.65 68.60 � 0.66

LYMPHO-
GRAPHY 84.83 � 2.80 84.14 � 1.38 83.45 � 1.29 82.07 � 3.84 78.62 � 2.01 81.38 � 3.87 78.62 � 2.29 78.62 � 2.29 79.31 � 2.18

MOFN-3-7-10 82.03 � 1.20 82.03 � 1.20 82.03 � 1.20 82.03 � 1.20 82.03 � 1.20 82.03 � 1.20 82.03 � 1.20 82.03 � 1.20 82.03 � 1.20

PIMA 74.90 � 2.85 74.90 � 2.85 74.90 � 2.85 74.25 � 2.45 73.99 � 2.28 73.99 � 2.28 73.99 � 2.06 74.64 � 2.25 74.77 � 2.31

SATIMAGE 84.90 � 0.80 81.85 � 0.86 81.90 � 0.86 87.70 � 0.73 87.80 � 0.73 87.70 � 0.73 73.95 � 0.98 76.35 � 0.95 76.30 � 0.95

SEGMENT 89.74 � 1.09 85.19 � 1.28 85.19 � 1.28 89.35 � 1.11 89.22 � 1.12 89.09 � 1.12 77.40 � 1.51 77.40 � 1.51 77.40 � 1.51

SHUTTLE-SMALL 99.17 � 0.21 99.07 � 0.22 99.07 � 0.22 99.28 � 0.19 99.17 � 0.21 99.17 � 0.21 99.22 � 0.20 98.04 � 0.32 98.04 � 0.32

SOYBEAN-LARGE 85.54 � 1.79 87.68 � 1.77 86.07 � 2.37 84.29 � 1.25 84.64 � 1.34 86.61 � 0.80 50.54 � 1.61 50.18 � 1.75 48.21 � 2.43

VEHICLE 62.72 � 1.69 57.28 � 1.25 57.51 � 1.38 64.85 � 1.29 62.49 � 1.28 62.60 � 1.44 49.94 � 0.91 44.73 � 1.94 44.73 � 1.94

VOTE 94.71 � 0.86 90.80 � 1.54 91.03 � 1.52 94.94 � 0.86 95.40 � 0.51 95.17 � 0.67 95.17 � 0.76 95.63 � 0.92 95.17 � 0.76

WAVEFORM-21 73.34 � 0.64 73.64 � 0.64 73.64 � 0.64 72.26 � 0.65 72.28 � 0.65 72.26 � 0.65 64.38 � 0.70 55.85 � 0.72 55.85 � 0.72

elr.tex; 27/09/2004; 18:46; p.17



18

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1 2 3 4

C
la

ss
ifi

ca
tio

n 
E

rr
or

Number of Missing Arcs

ELR
OFE

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0 0.5 1 1.5 2 2.5 3 3.5 4

C
la

ss
ifi

ca
tio

n 
E

rr
or

Number of Missing Arcs

ELR
EM

APN

Figure 8. “Correctness of Structure”: Comparing ELR to OFE, on increasingly incorrect
structures for (a) Complete Data; (b) Incomplete Data;

We next tried to learn the parameters for a TAN structure. Recall the
standard TAN-learning algorithm uses the mutual information between each
pair of attributes, conditioned on the class variable. This is straightforward
to compute when given complete information. Here, given incomplete data,
we approximate mutual information between attributes Ai and A j by simply
ignoring the records that do not have values for both of these attributes. Fig-
ures 7(a) and 7(b) compare TAN+ELR to TAN+APN and to TAN+EM. We see that
these systems are roughly equivalent: while TAN+ELR appears slightly better
than TAN+EM, this is not significant (only at p � 0 � 25); similarly there is no
significant difference between TAN+ELR and TAN+APN. Finally, we compared
NB+ELR to TAN+ELR (Figure 7(c)), but found no significant difference here
either.

Table III presents all of our empirical results related to missing data.
We also compared these parameter learners on 20 other UCIrvine datasets

that are already missing datapoints. Our results here were consistent: NB+ELR
was significantly better than NB+EM and NB+APN — NB+ELR � 	

p � 0 
 0056 
 NB+EM,
NB+ELR � 	

p � 0 
 026 
 NB+APN — but there was no statistical separation differ-
ence between TAN+ELR and either TAN+EM or TAN+APN — TAN+ELR � 	

p � 0 
 083 

TAN+EM, TAN+ELR � 	

p � 0 
 078 
 TAN+APN. We provide further details in (Gre04,
#MissingData).

5.1.4. “Correctness of Structure” Study
The NaïveBayes-assumption, that the attributes are independent given the
classification variable, is typically incorrect. This is known to handicap the
NaïveBayes classifier in the standard OFE situation; see above and (DP96).

We saw above that ELR is more robust than OFE, in that it is not as hand-
icapped by an incorrect structure. We designed the following simple experi-
ment to empirically investigate this claim.

We used synthesized data, to allow us to vary the “incorrectness” of the
structure. Here, we consider an underlying distribution P0 over the k � 1
binary variables

�
C � E1 � E2 � ����� � Ek � where (initially) we made NaïveBayes-
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assumptions and set12

P
� � c 
 � 0 � 9 P

� � ei
� � c 
 � 0 � 2 P

� � ei
� � c 
 � 0 � 8 (14)

and our queries were all complete; i.e., each instance of the form E � ���
e1 � � e2 � ����� � � ek � .

We then used OFE (resp., ELR) to learn the parameters for the NaïveBayes
structure from a data sample, then used the resulting BN to classify additional
data. As the structure was correct for this P0 distribution, both OFE and ELR
did quite well, efficiently converging to the optimal classification error.

We then tried to learn the CPtables for this NaïveBayes structure, but for
distributions that were not consistent with this structure. In particular, we
formed the m-th distribution Pm by asserting that E1 � E2 � ����� � Em (i.e.,
P
� � ei

� � e1 
 � 1 � 0, P
� � ei

� � e1 
 � 0 � 0 for each i � 2 � � m) in addition to
Equation 14. Hence, P0 corresponds to the m � 0 case. For m � 0, however,
the m-th distribution cannot be modeled as a NaïveBayes structure, but could
be modeled using that structure augmented with m � 1 links, connecting Ei � 1
to Ei for each i � 2 � � m.

Figure 8(a) shows the results, for k � 5, based on 400 instances. As pre-
dicted, ELR can produce reasonably accurate CPtables here, even for increas-
ingly wrong structures. However, OFE does progressively worse.
“Correctness of Structure”, Incomplete Data: We next degraded this train-
ing data by randomly removing the value of each attribute, within each in-
stance, with probability 0 � 5. Figure 8(b) compares ELR with the standard
systems APN and EM; again we see that ELR is more accurate, in each case.

5.2. MODEL APPROXIMATES THE TRUTH (G � T )

The previous section considered learners that were constrained to consider
only some limited class of structures, such as NB or TAN. Other learners are
allowed to first learn an arbitrary BN structure — seeking one that matches
the underlying distribution — before learning the parameters of that struc-
ture, using ELR or OFE, etc. There are a number of algorithms for learning
these BN structures, each of which will typically produce a structure that
is close to correct. This paper considers the POWERCONSTRUCTOR sys-
tem (CGK02; CG99), which uses mutual information tests to construct BN-
structures from complete tuples. This algorithm is guaranteed to converge to
the correct belief net structure, given enough data (and some other relatively
benign assumptions). We will refer to the resulting POWERCONSTRUCTOR-
produced structure as a “General Belief Net”, or GBN; see Figure 2(c). This
section explores the effectiveness of having such learned structures.

For each of the 25 datasets, we first used POWERCONSTRUCTOR to pro-
duce a structure for the given dataset, given all available (non–hold-out) data;

12 When dealing with binary variables, we let “ � c” represent c � True, and “ � c” represent
c � False.
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Figure 9. Comparing (a) GBN+ELR vs GBN+OFE; (b) GBN+ELR vs NB+ELR; (c) GBN+ELR vs
TAN+ELR

we then asked ELR (resp., OFE) to find best parameters for this (presumably
near optimal) structure using the same non-hold-out data, and observed how
well the resulting system performs on the held-out data.

Section 5.2.1 compares GBN+ELR to GBN+OFE; Section 5.2.2 compares
GBN+ELR to simpler models instantiated using ELR; and Section 5.2.3 com-
pares the OFE-instantiation of GBN to ELR-instantiations of simpler models.
Section 5.2.4 investigates different algorithms for learning parameters (for
these GBN structures) from incomplete data.

5.2.1. GBN+ELR vs GBN+OFE
Figure 9(a) shows that GBN+ELR is only insignificantly better than GBN+OFE:
GBN+ELR � 	

p � 0 
 2 
 GBN+OFE. Hence, when considering structures that match
the underlying distribution, there appears to be little difference between OFE
and ELR.

5.2.2. GBN+ELR vs NB+ELR, TAN+ELR
The main purpose of our studies was to see how y+ELR compares to y+OFE
(and y+EM/OFE), for various classes of commonly-used structures y. As a side
issue, we also considered some cross-structure comparisons. In particular,
given that POWERCONSTRUCTOR had no prior constraints on the structures
it can produce, it has the potential of producing classifiers superior to the ones
produced by the constrained NB or TAN systems. However, when we compared
GBN+ELR to NB+ELR (Figure 9(b)), and to TAN+ELR (Figure 9(c)), we found
that the simpler structures actually produced better classifiers than GBN did
— NB+ELR � 	

p � 0 
 01 
 GBN+ELR and TAN+ELR � 	
p � 0 
 008 
 GBN+ELR.

There are several possible reasons for this. First, the optimization task for
GBN (unlike the ones for NB and TAN) is not convex, meaning it could have
local, non-global maxima (WGR � 03). Of course, the fact that GBN+ELR is
comparable to GBN+OFE shows that this is not a major issue.

Another possibility is that the GBN structure might not be good for the clas-
sification task: POWERCONSTRUCTOR is seeking a good model of the under-
lying distribution, but might fail. (Recall its guarantee is asymptotic, and we
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Figure 10. Comparing (a) GBN+OFE vs NB+ELR; (b) GBN+OFE vs TAN+ELR

have only a finite sample). Moreover, even if it obtained a good approxima-
tion to the underlying distribution, this might not produce a good classifier;
see the arguments presented in Section 2. (As another illustration, imagine the
class node C depended on the variables,

�
Ei � . POWERCONSTRUCTOR would

be happy returning a structure that appeared to match the distribution, even
if that structure separated C from many of these relevant Ei’s. This cannot
happen with either NB or TAN, as these structure connect every variable to C.
(Of course, as our goal is to compare y+ELR to y+OFE over commonly used
classes y, it does not really matter whether POWERCONSTRUCTOR provided
a good structure y or not.)

5.2.3. GBN+OFE vs NB+ELR, TAN+ELR
One approach to learning a good belief net (classifier) is to first find a good
structure, then instantiate this structure using the trivial OFE algorithm. The
first step can be hard — e.g., NP-hard if seeking the structure that maximizes
the BIC score (CGH94).13 Another approach, suggested by our analysis, is
to use a simple structure, such as NB or TAN, but then spend resources finding
the best parameters, using ELR.

We therefore compared GBN+OFE to NB+ELR (Figure 10) and found NB+ELR
to be significantly better: NB+ELR � 	

p � 0 
 03 
 GBN+OFE. Moreover, TAN+ELR is
yet stronger: TAN+ELR � 	

p � 0 
 008 
 GBN+OFE.
Table IV presents a succinct summary of the results on the UCI data,

over all 25 datasets. (Note this repeats many of the results from the previous
sections.) The rows and columns are ordered based on our expectation that
most of the entries would be � ’s. (We see some exceptions, but only when
we cross structure classes; see above discussion.)

13 This BIC is a generative measure. We suspect finding the best “discriminative structure”
would be as difficult. See also the iterative methods used in (GD04) for this task.
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Table IV. Comparison of Different Parameter Learners — Complete (UCI) Data; all
25 datasets

GBN+ELR GBN+OFE TAN+ELR TAN+OFE NB+ELR
GBN+OFE � (0.2)
TAN+ELR � (0.008) � (0.008)
TAN+OFE � (0.04) � (0.02) � (0.12)
NB+ELR � (0.01) � (0.03) � (0.2) � (0.45)
NB+OFE � (0.36) � (0.46) � (0.006) � (0.002) � (0.005)

Legend: Each � i � j � entry consists of both an arrow that points to the superior learner
(using a double arrow � or � if this is significant, and a single arrow � or 	
otherwise); and the associated p-value in parentheses.

5.2.4. GBN+x vs other classifiers, with Incomplete data
This section investigates the effectiveness of learning the parameters for GBN
structures, from incomplete training data. As POWERCONSTRUCTOR is de-
signed for complete data, we actually built each of the structures using com-
plete data. We did this once, using all of the available data.14

To produce the data used for learning and evaluating the parameters, we
then removed the values of each evidence attribute for each tuple, with prob-
ability 0.25 — so again we are dealing with MCAR data (LR87).

The overall results appear in Table V, where again we expected the ma-
jority of the entries to be � ’s. Most importantly, for each class x, we see
that x+ELR is sometimes significantly better than x+APN and x+EM, and it
is never significantly worse. The fact that both TAN+x and NB+ELR appear
uniformly better than GBN+y, is consistent with the case for complete data;
see Section 5.2.2.

5.3. MODEL IS MORE COMPLEX THAN TRUTH (G � T )

Section 5.1 focused on the common situation where G (the BN-structure
being instantiated) is presumedly simpler than the “truth” — e.g., we used
naïve-bayes when there probably were dependencies between the attributes.
This section considers the opposite situation, where we allow the model “more
degrees of freedom” than the truth. As this is atypical, we could only consider
artificial data.

In our first experiment, we attempt to learn the parameters for a naïve-
bayes model, when the truth is C � E1 — i.e., the other attributes E2, . . . , Ek

are each irrelevant. We focus on k � 6 and k � 7 attributes, where all variables
14 As our goal was only to compare the effectiveness of the parameter-learners on reason-

able structures, the source of these structures is irrelevant, and in particular, it does not matter
that the structure was generated from all the data.
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Table V. Comparison of Different Parameter Learners — InComplete (UCI) Data; all 25 datasets

GBN+ELR GBN+APN GBN+EM TAN+ELR TAN+APN TAN+EM NB+ELR NB+APN
GBN+APN � (0.05)
GBN+EM � (0.09) � (0.25)
TAN+ELR � (0.015) � (0.007) � (0.012)
TAN+APN � (0.01) � (0.005) � (0.009) � (0.32)
TAN+EM � (0.015) � (0.006) � (0.01) � (0.25) � (0.5)
NB+ELR � (0.02) � (0.01) � (0.015) � (0.4) � (0.32) � (0.3)
NB+APN � (0.08) � (0.06) � (0.04) � (0.07) � (0.06) � (0.04) � (0.025)
NB+EM � (0.06) � (0.05) � (0.04) � (0.055) � (0.05) � (0.035) � (0.015) � (0.2)
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Figure 11. G � T situations, complete data. (a) Model is NB; Truth is C � E1; (b) Model is
TAN; Truth is NaïveBayes. (Each point is averaged over 10 runs)

are binary. When the data is complete, we used first OFE and then ELR to
instantiate the parameters of a given NaïveBayes model. Figure 11(a) shows
the learning curve as we increase the sample size, over 10 different runs.
(Each run used its own training sample.) We see that NB+OFE is consistently
slightly better than NB+ELR: averaged over all of the runs, this is significant
at p � 0 � 002.

We also weakened the C � E1 condition, to simply require C be highly
correlated with E1. Using the same set-up show above, when the correlation
is 0.96, we found NB+OFE � 	

p � 0 
 001 
 NB+ELR. When the correlation is 0.80,
the dominance is even more: NB+OFE � 	

p � 0 
 0001 
 NB+ELR.

The second experiment “reverses” the situations shown in Section 5.1.4 .
Here, the truth corresponds to a naïve-bayes structure (with no dependencies
between the evidence Ei variables, conditioned on the class variable), but
we attempt to find the parameters for a “Pm-based structure” — i.e., a TAN
structure that links E1 � E2 � ����� � Em. These results appear in Figure 11(b),
again this is averaged over 10 runs. (This difference is not significant.)

We next considered the same two situations, but in the incomplete data
case. In particular, here we blocked a value of any entry with probability 0.2.
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Figure 12. G � T situations, incomplete data. (a) Model is NB; Truth is C � E1; (b) Model
is TAN; Truth is NaïveBayes. (Each point is averaged over 10 runs.)

The results, shown in Figure 12, show that the generative measures (NB+APN
and NB+EM) dominated the discriminative NB+ELR: NB+APN � 	

p � 0 
 02 
 NB+ELR
and NB+EM � 	

p � 0 
 015 
 NB+ELR. (Moreover, NB+EM � 	
p � 0 
 025 
 NB+APN.) The gen-

erative approach is also superior in the other sitation (Figure 12(b)): TAN+APN � 	
p � 0 
 025 
 TAN+ELR,

and TAN+EM � 	
p � 0 
 05 
 TAN+ELR.

In a nutshell, we observed that discriminative ELR learning typically did
worse than the generative learners in this “model is more complex than truth”
situation, when dealing with either complete or incomplete data.

5.4. DISCUSSION

This section has presented a large number of empirical results, all in the
context of producing a good belief-net based classifiers for a fixed structure.
The main take-home messages are. . .

� In the unusual situation where the user is forced to use a model G that is
more complex than the truth T , it is better to use the generative learners
(OFE, APN, EM) — Section 5.3 .15 However. . .

� In essentially all other complete-data situations, the discriminative learner
ELR is at least as good, and often superior, to OFE. See in particular the
x+ELR vs x+OFE entries in Table IV.

� We see similar results in the incomplete data case; here, the discrimina-
tive learner ELR is at least as good as, and often superior to. APN and EM.
See Table V.

� While we typically found more expressive models produced better clas-
sifiers (i.e., for each parameter-learner z, GBN+z was better than TAN+z,
and TAN+z was better than NB+z), this was not universal; see discussion
in Section 5.2.2.

15 Here, both types of learner — both generative and discriminative — are learning clas-
sifiers that can represent the optimal parameters, by simply setting the CPtable entries of the
extra arcs to be uniform, which effectively ignores those arcs. As discriminative learners are
less constrained, they can overfit, especially as the structures become more complex.

elr.tex; 27/09/2004; 18:46; p.24



25

Why ELR Works Well: We found that ELR worked effectively in many sit-
uations, and it was especially advantageous (i.e., typically better than the
alternative ways to instantiate parameters) when the BN-structure was in-
correct — i.e., when it is not an I-map of the underlying distribution by
incorrectly claiming that two dependent variables are independent (Pea88).
This is a very common situation, as many BN-learners will produce incorrect
structures, either because they are conservative in adding new arcs (to avoid
overfitting the data (Hec98; VG00)), or because they are considering only
a restricted class of structures (e.g., NaïveBayes (DH73), poly-tree (CL68;
Pea88), TAN (FGG97), etc.) that is not guaranteed to contain the correct struc-
ture.

To understand why a bad structure is problematic for OFE, note that when
OFE is seeking the parameter θd � f, it is constrained to match the local empirical
distribution, corresponding to #

�
D � d � F � f 
 � #

�
F � f 
 . Hence, if the given

structure G is incorrect, the resulting instantiated belief net need not be a good
model of the true tuple distribution, and so may return incorrect values for the
queries. By contrast, the ELR algorithm is not as constrained by the specific
structure, and so may be able to produce parameters that yield fairly accurate
answers, even if the structure is sub-optimal. (See the standard comparison
between discriminative versus generative training, overviewed in Section 6.)
Computational Efficiency: ELR typically required a handful of iterations
to converge for the small datasets, and dozens of iterations for the larger
ones. APN and EM typically used slightly more iterations. Our current ELR
implementation is in unoptimized JAVA code. Its time per iteration varied,
from around 0.5 seconds per iteration for the smaller datasets through a few
minutes for larger datasets on a PentiumIII-800MHz. Again, this is roughly
comparable to the performance of the incomplete data algorithms, APN and
EM.

These times are, of course, considerable more than required by OFE, which
is arguably the most efficient possible algorithm. (Of course, OFE only applies
to complete data situations, while ELR applies in general.) We are currently
investigating whether there could be more efficient algorithms for our task;
see Section 7.1.
Tradeoff: Our results, in general, suggest an interesting tradeoff: Most BN-
learners spend most of their time learning a near-optimal structure (CGH94),
then use a simple algorithm (OFE) to fill in the CPtables. When the goal is clas-
sification accuracy, our empiricial studies suggest instead quickly producing
trivial structures — such as NaïveBayes — then spending time learning good
parameters, using ELR.
Other Learners: Finally, we compared ELR to various other learning algo-
rithms, including SVMs, over these datasets. We found that ELR was compa-
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rable with several other standard learning algorithms, and superior to some,
at least over these datasets. See (Gre04, #OtherLearners) for details, which
also repeats the results from Friedman et al. (FGG97) and Grossman and
Domingos (GD04). That webpage also provides other information about the
experiments; e.g., presenting the

�
LCL

� � 
 scores, etc.

6. Related Results

There are a number of other results related to learning belief nets. Much of
this work focuses on learning the best structure, either for a general belief
net, or within the context of some specific class of structures (e.g., TAN-
structures, or selective NaïveBayes); see (Hec98; Bun96) for extensive tu-
torials. By contrast, this paper suggests a way to learn the parameters for a
given structure.

Most of those structure-learning systems also learn the parameters. Essen-
tially all use the OFE algorithm here (Equation 13). This is well motivated in
the generative situation, as these parameter values do optimize the likelihood
of the data (CH92).

As noted earlier, however, our goal is different: as we are seeking the
optimal classifier — i.e., discriminative learning. While a perfect model of
the underlying distribution would also be the optimal classifier, the converse
is not true; i.e., we are happy with parameters that yield a good classifier,
even if those parameters do not reflect the true underlying distribution. We
are considering eventual performance systems that will be expected to ad-
dress a certain range of questions — e.g., about the probability of cancer
given gender, age and smoking habits. We consider our learner good if it pro-
duces parameters that provide appropriate answers to these questions, even
if the overall distribution would return completely wrong answers to other
(unasked) questions, e.g., about the conditional probability of smoking given
gender, etc.

There have been many other systems that also considered discriminative
learning of belief nets (KMST99; JMJ00; FGG97; CG99; GD04). This re-
search, like their generative counterparts, focused on learning structures; and
usually used OFE to instantiate the resulting parameters.

As we saw above, when the model is wrong, the OFE-based parameters can
produce inferior classifiers. Many researchers have employed tricks to im-
prove the parameters; e.g., tractable Bayesian model averaging of TAN (CdM03),
and exact model averaging of naïve-bayes (DC02). Our approach is differ-
ent, as we explicitly seek the parameters of the BN model that maximizing
conditional likelihood.

Our results also relate closely to the work on discriminant learning of
Hidden Markov Models (HMMs) (SMK � 97; CJL92). In particular, much of
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that work uses “Generalized Probabilistic Descent”, which resembles our ELR
system by descending along the derivative of the parameters, to maximize
the conditional likelihood of the hypothesis (which typically correspond to
specific words) given the observations — which they call “Maximimum Mu-
tual Information” criterion. We differ by considering arbitrary structures, and
evaluating based on classification error.

Edwards & Lauritzen (EL01) proposed the TM algorithm for maximizing
conditional likelihood function, when the corresponding uncondition likeli-
hood function is more easily maximized. They have found the algorithm is a
useful tool in complex CG-regression models, which are the building blocks
for graphical chain models, as well as in other situations (Sun02). Their TM
algorithm is similar to the EM algorithm as it also alternates between maxi-
mization of a function related to the true likelihood function, but differs by
being applied to the complete data case and by augmenting the parameters
rather than the data.

This relates directly to the large literature on discriminative learning in
general; see (CS89; Jor95; Rip96). One standard model is Linear Discrimi-
nant Analysis (LDA), which typically assumes P

�
E

�
C � c 
 is multivariate

normal — i.e., P
�
E

�
C � c 
 � N �

µc � Σ 
 where each µc mean can depend
on the class C � c, but the covariance matrix Σ is the same for all classes.
The LDA system then estimates the relevant

�
µc � Σ � P̂

�
C � c 
 � parameters

from a body of data, seeking the ones that maximize the likelihood of the
data relevant to those parameters. Given these parameters, we can then use
Bayes Rule to compute the conditional distribution of P

�
C

�
E � e

� 
 given
new evidence E � e

�

.
We can view LDA (like OFE/APN/EM) as being generative (aka “causal” or

“class-conditional” (Jor95), or “sampling” (Daw76)), as it is attempting to fit
parameters for the entire joint distribution, while our ELR is discriminative
(aka “diagnostic”, “predictive” (Jor95)), as it focuses only on the conditional
probabilities.

Our results echo the common wisdom obtained by the previous analyses
of discriminative systems. In particular,

�
1 
 accuracy: discriminative training

typically produces more accurate classifiers than generative training;
�
2 
 ro-

bustness: typically discriminative systems are more robust against incorrect
models than generative ones;

�
3 
 efficiency: generative can be more efficient

than discriminative (compare the efficient OFE with the iterative ELR). Due to
the final point, many discriminative learners initialize their parameters based
on generative (read “maximum-likelihood”) estimates, especially as the latter
are often “plug-in parameters” (Rip96). (As mentioned in Section 4, our ELR
algorithm incorporates this idea as well.)

The work reported in this paper has significant differences from those ear-
lier analyses. First, we are dealing with a different underlying model, based
on discrete variables (rather than continuous, say normally distributed, ones),
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in the context of a specified belief net structure, which corresponds to a given
set of independency claims. We also describe the inherent computational
complexity of this task, produce algorithms specific to our task, and provide
empirical studies to demonstrate that our algorithm works effectively, given
either complete or incomplete training data.

Finally, our companion paper (GGS97) also considers learning the param-
eters of a given structure towards optimizing performance on a distribution
of queries. Our results here differ, as we are considering a different learning
model: (GGS97) tries to minimize the squared-error score, a variant of Equa-
tion 9 that is based on two different types of samples — one over tuples, to
estimate P

�
C

�
E 
 , and the other over queries, to estimate the probability of

seeing each “What is P
�
C

�
E � e 
 ?” query. By contrast, the current paper

tries to minimize classification error (Equation 3) by seeking the optimal
“conditional likelihood” score (Equation 4), wrt a single sample of labeled
instances. Moreover, our current paper includes new theoretical results, a
different algorithm, and completely new empirical data.

7. Conclusions

7.1. FUTURE WORK

Section 3 notes that, in some situations (a specified class of structures, when
given complete data), interior point methods can find the parameters that
optimize conditional likelihood, in polynomial time. Of course, it is not clear
whether these LCL

� � 
 -optimal parameters will optimize error (Equation 3),
nor that the algorithm will necessarily be more efficient than ELR. We there-
fore plan to investigate these methods.

This paper explores the challenges of finding in the CPtables of a given
BN-structure. While this is an important subtask, a general learner should be
able to learn that structure as well — perhaps using conditional likelihood as
the selection criterion; see (KMST99; JMJ00). We plan to investigate ways
to synthesize these approaches; see (GD04).

There are now several other classes of graphical models, such as Con-
ditional Random Fields (LMP01), that may be better adapted to optimizing
conditional likelihood. (E.g., as they use undirected arcs, they require only
a single normalizing division, rather than one per CPtable row.) While this
paper has focused on Belief Nets (as it is typically easier to acquire mean-
ingful structures here, both because they allow users to express their prior
knowledge, and because there are a number of algorithms for learning belief
net structures), we plan to investigate these other models as well.

So far, the goal is classification accuracy. This measure is not as useful
when the dataset is imbalanced (i.e., many more instances of one class than
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Table VI. Summary of Known Complexity Results
Complete Data Incomplete Data

Likelihood in P: (OFE) Unknown (EM, APN)
ConditionalLikelihood

in P for simple structures (WGR
�

03)
Unknown in general NP-hard (Theorem 2)

another) or when different misclassifications have different penalties. Here,
it is common to seek the classifier (here, set of parameters) that maximize
the area-under-ROC-curve (AUC) measure (HT01). We plan to explore this
approach.

7.2. CONTRIBUTIONS

This paper overviews the task of discriminative learning of belief net param-
eters for general BN-structures. We first describe this task, and discuss how
it extends that standard logistic regression process by applying to arbitrary
structures, not just naïve-bayes — see Equation 2. It is well known that
discriminative learning can converge to a classifier superior to one learned
generatively (NJ01). Our formal analyses show that, in general, discrimina-
tive learners can converge to a classifier optimizing conditional likelihood
at essentially the same O

� � 
 sample rate (ignoring polylog terms) as a gen-
erative classifier that is optimizing likelihood. (This differs from the Ng &
Jordan (NJ01) result, which compared only the simplest form, NaïveBayes
vs logistic regression, and dealt with error itself.) We also found that the
computational complexities of these two tasks also appear fairly comparable;
see Table VI.

We next present an algorithm ELR for our task, and show that ELR works
effectively over a variety of situations: when dealing with structures that
range from trivial (NB), through less-trivial (TAN), to complex ( ones learned
by POWERCONSTRUCTOR). We also show that ELR works well when given
incomplete training data. Our empirical evidence suggests that ELR can be
inferior to the standard generative models only in the unusual situation where
the model is more complex than the truth. In essentially every other situation,
however, we see that ELR is at least as good, and often better, than the other
contenders. We also include a short study to explain why ELR can work effec-
tively, showing that it typically works better than generative methods when
dealing with models that are less complicated than the true distribution, which
is a very common situation.

While statisticians are quite familiar with the idea of discriminative learn-
ing (e.g., logistic regression), this idea, in the context of belief nets, is only
beginning to make in-roads into the general AI community. We hope this pa-
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per will help further introduce these ideas to this community, and demonstrate
that these algorithms should be used here, as they can work very effectively.

For more information, including all of the data used for the experiments,
see (Gre04).
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Appendix

A. Proofs

Proof of Theorem 1: As the set BN Θ � γ
�
G 
 is uncountably infinite, we can-

not simply apply the standard techniques for PAC-learning a finite hypothesis
set. We can, however, partition this uncountable space into a finite number
L � L

�
K � γ � ε 
 of sets, such that any two BNs within a partition have similar

conditional log-likelihood scores. We can then, in essense, simultaneously
estimate the scores of all members of BN Θ � γ

�
G 
 if we collect enough query

instances to estimate the score for one representative of each partition.
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Now for the details: We prove below that, if the CPtables for two BNs
Θ

	
1 
 � Θ

	
2 
 � BN Θ � γ

�
G 
 have similar CPtables Θ

	
1 
 � �

θ
	
1 


di � fi
� i and Θ

	
2 
 ��

θ
	
2 


di � fi
� i, then they will have similar LCL-scores wrt any query; i.e.,

if
��� θ

	
1 


di � fi
� θ

	
2 


di � fi

��� � γε
6K

then
�

c � e �
ln

�
PΘ

�
1 �
�
c
�
e 
�
 � ln

�
PΘ

�
2 �
�
c
�
e 
�
 � � ε

6 �
(15)

This of course implies the same bound on the difference between their overall
LCL-scores �

LCLk
�
Θ

	
1 
 
 � LCLk

�
Θ

	
2 
 
 � � ε

6
for any distribution LCLk

� � 
 — both for the “true” query distribution LCL
� � 
 ,

and for the distribution associated with any empirical sample
�
LCL

� � 
 .
We therefore partition the BN Θ � γ

�
G 
 space into L � � 6K

γε 
 K disjoint sets
(where any two BNs from any partition will have similar CPtable values),
then define the set R � �

Θi � i to contain one representative from each parti-
tion. We prove below that a sample S of size

M � ε
6 � δ

L � � 2 � 3N logγ
ε � 2

ln 2L
δ

(16)

is sufficient to estimate each of these single representatives to within ε � 6 of
correct, with probability of error at most δ � L; i.e., such that, for each i,

P
� ���� �LCL

	
S 
 �

Θi 
 � LCL
�
Bi 


���� � ε
6 � � δ

L
�

As there are L representatives, we have a total probability of at most L δ
L � δ

that any of the representative’s scores are mis-estimated by more than ε � 6.
This means we have, in effect, estimated the scores on any Θ � BN Θ � γ

�
G 


to within ε � 2: For any Θ � BN Θ � γ
�
G 
 , let Θ

� � R be the representative in Θs
partition. Observe
���
LCL � Θ ��� LCL � Θ � �	�
���

LCL � Θ ��� �LCL � Θ ��� ��
����
LCL � Θ ����� LCL � Θ ��� ��
��

LCL � Θ ����� LCL � Θ � ��
ε � 6 


ε � 6 

ε � 6� ε � 2 �

This means, in particular, that our estimate of the scores of both �Θ and Θ
�

are within ε � 2, and so

LCL ���Θ ��� LCL � Θ ��� �
�
LCL ���Θ ��� �LCL ���Θ � ��
 �

LCL ���Θ ��� �LCL � Θ ��� 
�� �
LCL � Θ ����� LCL � Θ ��� ��

ε � 2 

0



ε � 2
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To complete the proof, we need only prove Equations 15 and 16. For
Equation 15: Consider the sequence of BNs Θ0 � Θ1 � ����� � ΘK where the first
i of Θi’s CPtables come from Θ

	
1 
 , and the remaining from Θ

	
2 
 — i.e.,

Θi �
�
θ
	
1 


d1 � f1 � ����� � θ
	
1 


di � fi
� θ

	
2 


di � 1 � fi � 1 � ����� � θ
	
2 


dK � fK
� �

Now observe

�
ln

�
PΘ

�
1 �
�
c
�
e 
�
 � ln

�
PΘ

�
2 �
�
c
�
e 
�
 � � K

∑
i � 1

�
ln

�
PΘi

�
c
�
e 
�
 � ln

�
PΘi � 1

�
c
�
e 
�
 � �

and each
�
ln

�
PΘi

�
c
�
e 
�
 � ln

�
PΘi � 1

�
c
�
e 
�
 � is based on changing a single CPt-

able entry. We therefore need only show
�
ln

�
PΘi

�
c
�
e 
�
 � ln

�
PΘi � 1

�
c
�
e 
�
 � �

ε
6K . For any value of z � θdi � fi

, let f
�
z 
 � ln

�
PΘ

�
z � � c �

e 
�
 , where Θ � z � be the
BN whose first i � 1 CPtable entries come from Θ

	
1 
 , whose final K � i � 1

entries come from Θ
	
2 
 , and whose ith CPtable entries is z; hence f

�
θ
	
1 


di � fi

 �

ln
�
PΘi

�
c
�
e 
�
 , and f

�
θ
	
2 


di � fi

 � ln

�
PΘi � 1

�
c
�
e 
�
 . As this function is continuous,

we know that �
f
�
a 
 � f

�
b 
 � � ∂ f

�
z 


∂z
�
b � a �

for some z � � a � b � . As f
�
z 
 � ln

�
PΘ

�
z � � c � e 
�
 � ln

�
PΘ

�
z � � e 
�
 , we see that

∂ f
	
z 


∂z � 1
PΘ � z � 	 c � e 
 PΘ

�
z � � c � e �

di � fi 
 � PΘ
�
z � � fi 
 � 1

PΘ � z � 	 e 
 PΘ
�
z � � e �

di � fi 
 � PΘ
�
z � � fi 


� 1
z
� PΘ

�
z � � di � fi

�
c � e 
 � PΘ

�
z � � di � fi

�
e 
 �

which means that
� ∂ f

	
z 


∂z

� � 1 � z
� 1 � γ. (The second inequality follows from

the assumption that we are only considering Θ � BN Θ � γ
�
G 
 .) Hence,

�
ln

�
PΘi � 1

�
c
�
e 
�
 � ln

�
PΘi

�
c
�
e 
�
 � � �

f
�
θ
	
2 


di � fi

 � f

�
θ
	
1 


di � fi

 �

� 1
γ � �

θ
	
2 


di � fi
� θ

	
1 


di � fi

� � 1
γ � γε

6K � ε
6K �

To prove Equation 16: Observe first that the probability of any event must
be at least the product of N CPtable entries, and hence PΘ

�
c 
 � γN for any c

and any Θ � BN Θ � γ
�
G 
 . This means the value of � ln

�
PΘ

�
c
�
e 
�
 , and hence

LCLsq
�
Θ 
 for any distribution sq, is between 0 and � N lnγ.

As the queries q � P
�
c � e 
 are drawn at random from a stationary distribu-

tion, we can view the quantity lnPΘ
�
q 
 as an iid random value, whose range

is � 0 � � N lnγ � and whose expected value is LCL
�
Θ 
 . Hoeffding’s Inequality

bounds the chance that the empirical average score after M iid examples (here�
LCL

	
S 
��

Θ 
 ) will be far away from the true mean LCL
�
Θ 
 :

P
� � �

LCL
	
S 
 �

Θ 
 � LCL
�
Θ 
 � � ε

6

 � 2exp � � 2M

���
ε � 6 
 � N lnγ 
 2 � � (17)
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X1

�� � ����� � 	 ����� �� ���� � � � � � �	�

�
�
 ��
��

X j����� � 	
� ���� � � � � � �	� � � � ��



�
�
 ��
��
XN

���� � 	
������� �� ����

C1� ���

�����
C2

	

�����
C3

	


�
�
 �� ��
CK � 2

	

�� ��
CK � 1

	

��
��
CK

	

� ����
D2 � �����

D3 � �	� 
 
�
 � �	� �� ��
DK � 2

� �� ��
DK � 1

� � � ��
A

Figure 13. Belief Net structure corresponding to arbitrary SAT problem (Coo90)

Here, we want the right-hand-side to be under δ � L, which requires M �
M

�
ε � δ 
 � 2 � 3N lnγ

ε � 2
ln

� 2L
δ 
 .

Proof of Theorem 2: We reduce 3SAT to our task, using a construction
similar to the one in (Coo90): Given any 3-CNF formula ϕ ��� Ci, where
each Ci ��� �

Xi j, we construct the network shown in Figure 13, with one
node for each variable Xi and one for each clause C j, with an arc from Xi to C j

whenever C j involves Xi — e.g., if C1 � x1 ��� x2 � x3 and C2 � � x1 ��� x3 � x4,
then there are links to C1 from each of X1, X2 and X3, and to C2 from X1, X3
and X4. In addition, we include K � 1 other boolean nodes,

�
D2 � ����� � DK � 1 � A � ,

where D j is the child of D j � 1 and C j, where D1 is identified with C1, and A is
used for DK .

Here, we intend each Ci to be true if the assignment to the associated vari-
ables Xi1 � Xi2 � Xi3 satisfies Ci; and A corresponds is the conjunction of those
Ci variables. We do this using all-but-the-final instances in Table VII. (Note
only 3 of the Xi variables are specified in each of these instances; the other
n � 3 Xis are not, nor are any C js nor Dks.) There is one such instance for each
clause, with exactly the assignment (of the 3 relevant variables) that falsifies
this clause. Hence, the first line corresponds to C1 � x1 ��� x2 � x3. The final
instance is just stating that the prior value for A should P

� � a 
 � 1 � 0. The
“label” of each instance always corresponds to the single variable A.

We now prove, in particular, that

There is a set of parameters for the structure in Figure 13, producing the�
LCL

� � 
 -score, over the queries in Table VII, of 0
iff

there is a satisfying assignment for the associated ϕ formula.
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Table VII. Queries used in proof of Theorem 2
X1 X2 X3 X4 ����� Xn A
0 1 0 0
0 0 1 0

...
...

0 1 1 0
1

� : Just set the CPtable for each Ci to be the disjunction of the associated
Xi1, Xi2, Xi3 variables (its parents), with the appropriate

�
parity. E.g., using

C1 � x1 � � x2 � x3, then C1’s CPtable would be

x1 x2 x3 P � 
 c1
�
x1 � x2 � x3 �

0 0 0 1 � 0
0 0 1 1 � 0
0 1 0 0 � 0
0 1 1 1 � 0
1 0 0 1 � 0
1 0 1 1 � 0
1 1 0 1 � 0
1 1 1 1 � 0

Similarly set the CPtables for the D j to correspond to the conjunction of

its 2 parents D j � D j � 1
�

C j; e.g.,

D4 C5 P � 
 d5
�
D4 � C5 �

0 0 0 � 0
0 1 0 � 0
1 0 0 � 0
1 1 1 � 0

.

Finally, set Xi to correspond to the satisfying assignment; i.e., if X1 � 1,

then P � 
 x1 �
1 � 0 ; and if i.e., if X4 � 0, then P � 
 x4 �

0 � 0 . Note that these CPtable

values satify all k � 1 of the labeled instances.
� : Here, we assume there is no satisfying assignment. Towards a contradic-
tion, we can assume that there is a 0-LCL set of CPtable entries. This means,
in particular, that P

� � a
�
xi1 � xi2 � xi3 
 � 0, where xi1 � xi2 � xi3 correspond to the

assignment that violates the ith constraint. (E.g., for C1 � x1 ��� x2 � x3, this
would be X1 � 0, X2 � 1, X3 � 0.)

Now consider the final labeled instance, P
�
a 
 . As there is no satisfying

assignment, we know that each assignment x violates at least one constraint.
For notation, let γx refer to one of these violations (say the one with the small-
est index). So if x � �

0 � 1 � 0 � ����� � , then γ
�
0 � 1 � 0 � 
 
 
 � � �

X1 � 0 � X2 � 1 � X3 � 0 �
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corresponds to the violation of the first constraint C1. We also let βx refer to
the rest of the assignment.

Now observe

P
� � a 
 � ∑x P

� � a � x 

� ∑x P

� � a
�
γx 
 � P

�
γx 
 � P

�
βx � � a � γx 


� ∑x 0 � P
�
γx 
 � P

�
βx � � a � γx 
 � 0 �

which shows that the final instance will be mislabeled. This proves that there
can be no set of CPtable values that produce 0 LCL-score when there are no
satisfying assignments.
Proof of Proposition 3: Below, we will use P

�
χ 
 to refer to PΘ

�
χ 
 , the value

the belief net with parameters Θ will assign to the χ event. In general, for any
assignment Z,

P
�
Z 
 � ∑

f �
∑
d �

P
�
Z

�
D � d

�

� F � f
� 
 P

�
D � d

� �
F � f

� 
 P
�
F � f

� 
 � (18)

As we assume the different CPtable rows are estimated independently, and F
is the set of parents of D, this means

∂ P
�
Z 


∂ βd � f
� ∑

d �
P
�
Z

�
d

�

� f 
 ∂ P
�
d

� �
f 


∂ βd � f
P
�
f 
 �

Recalling θd � f � P
�
d
�
f 
 � eβd � f � ∑d � eβd � � f , observe that ∂ P

	
d � f 


∂ βd � f � θd � f
�
1 �

θd � f 
 , and when d �� d
�

, ∂ P
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