A Proofs

Proof of Theorem 1: As the set BV gy (G) is uncountably infinite, we cannot simply apply the standard techniques
for PAC-learning a finite hypothesis set. We can, however, partition this uncountable space into a finite number
L = L(K,~,¢) of sets, such that any two BNs within a partition have similar conditional log-likelihood scores. We
can then, in essense, simultaneously estimate the scores of all members of BN g, (G) if we collect enough query
instances to estimate the score for one representative of each partition.

Now for the details: We prove below that, if the CPtables for two BNs @1, 02 € BN gy, (G) have similar
CPtables () = {02‘)& }iand ©?) = {egfﬂ }:, then they will have similar LCL-scores wrt any query; i.e.,

it (85, — 07| < T then Veye |In(Pow(c|e)) — In(Powm(cle))| < (1)
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This of course implies the same bound on the difference between their overall LCL-scores
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for any distribution LCLg (- ) — both for the “true” query distribution LCL
with any empirical sample ﬁ( -).

We therefore partition the BN o~ (G) space into L = (‘;—Ij)K disjoint sets (where any two BNs from any partition

will have similar CPtable values), then define the set R = {©;}; to contain one representative from each partition. We

prove below that a sample S of size
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is sufficient to estimate each of these single representatives to within €/6 of correct, with probability of error at most
0/L; i.e., such that, for each 4,

-), and for the distribution associated
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As there are L representatives, we have a total probability of at most L% = § that any of the representative’s scores
are mis-estimated by more than €/6.

This means we have, in effect, estimated the scores on any ® € BN gy~ (G) to within €/2: For any © €
BN es+(G), let ©' € R be the representative in s partition. Observe B

< |LCL(®)—-LCL(®')] + |LCL(®')—LCL(©®') + |LCL(®)—LCL(O)]
< €/6 + €/6 + €/6
= €/2.

ILCL(©) — LCL(©)

This means, in particular, that our estimate of the scores of both (:j and ©* are within €/2, and so

ILCL(8)—LCL(®)] + LCL(®)-LCL(©") + |LCL(©")—LCL(©*)|
€/2 + 0 + €/2

LCL(®) - LCL(©*) <
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To complete the proof, we need only prove Equations 1 and 2. For Equation 1: Consider the sequence of BNs

00, 01, ..., Ok where the first i of ©;’s CPtables come from @), and the remaining from 0 — je.,
o~ (1) (1) (2) (2)
9; {Hdl\ﬁ’ e Hdilfi7 9di+1|fi+17 e edKIfK}'

Now observe
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Figure 1: Belief Net structure corresponding to arbitrary SAT problem [Co090]

and each | In(Pg,(c|e)) — In(Pe,_,(c|e))|is based on changing a single CPtable entry. We therefore need only
show |In(Pe,(c|e)) —In(Pe,_,(c|e))| < g% Forany value of 2 = f;,¢,, let f(z) = In(Peg[;)(c|e)), where
O[2] be the BN whose first i — 1 CPtable entries come from @), whose final K — i — 1 entries come from ©(), and
whose it" CPtable entries is z; hence f(HL(;ffi) = In(Pe,(c|e)), and f(eé(ifl)fi) = In(Po,,,(c|e)). As this function
is continuous, we know that

9f(2)

f@ -l = ZZp-d
for some z € [a,b]. As f(z) = In(Por;)(c,e)) —In(Pg[;)(e)), we see that
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pe[zll(c’e)PG[z](C:e|diaf’i) X P@[z](fz) -
= L[Pg,(di,fi|c,e) — Popy(di,fi|e)]
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which means that |8’(;(z)| < 1/z < 1/4. (The second inequality follows from the assumption that we are only

considering © € B/\f@;y(G).) Hence,

| ( @1-+1(C | E)) ln(‘l ®z(c|e))| = |J (0(l2ff) f(ed(ff)|
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To prove Equation 2: Observe first that the probability of any event must be at least the product of N CPtable
entries, and hence Pg(c) > " for any ¢ and any © € BN gx~(G). This means the value of —In(Pg(c|e)), and
hence LCL, ( © ) for any distribution sg, is between 0 and —N In .

As the queries ¢ = P( ¢, e) are drawn at random from a stationary distribution, we can view the quantity In Pg (¢ )
as an iid random value, whose range is [0, —N In ] and whose expected value is LCL( © ). Hoeffding’s Inequality

— (S
bounds the chance that the empirical average score after M iid examples (here LCL( ) (©)) will be far away from the
true mean LCL(© ):
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Here, we want the right-hand-side to be under /L, which requires M = M (e, ) = 2 (%) In(2E). |

Proof of Theorem 2: We reduce 3SAT to our task, using a construction similar to the one in [Co090]: Given any
3-CNF formula ¢ = A C;, where each C; = \/ £X;;, we construct the network shown in Figure 1, with one node
for each variable X; and one for each clause C};, with an arc from X; to C; whenever C; involves X; — e.g., if



Table 1: Queries used in proof of Theorem 2

X1 X Xz X4 - X, | A
0 1 0 0
0 0 1 0
0 1 1 0

1

Ci =21 V22V x3and Cy = —x1 V —x3 V 24, then there are links to C; from each of X1, X5 and X3, and to Cs
from X, X3 and X. In addition, we include K — 1 other boolean nodes, {Ds, ..., Dg_1, A}, where D; is the child
of D;_; and C}, where D; is identified with C1, and A is used for D.

Here, we intend each Cj to be true if the assignment to the associated variables X1, X;2, X;3 satisfies C;; and A
corresponds is the conjunction of those C; variables. We do this using all-but-the-final instances in Table 1. (Note
only 3 of the X; variables are specified in each of these instances; the other n — 3 X;s are not, nor are any Cjs nor
Dys.) There is one such instance for each clause, with exactly the assignment (of the 3 relevant variables) that falsifies
this clause. Hence, the first line corresponds to C; = x1 V —z3 V x3. The final instance is just stating that the prior
value for A should P(+a) = 1.0. The “label” of each instance always corresponds to the single variable A.

We now prove, in particular, that

There is a set of parameters for the structure in Figure 1, producing the L/C\L( - )-score, over the queries in
Table 1, of 0

iff

there is a satisfying assignment for the associated ¢ formula.

<«: Just set the CPtable for each C; to be the disjunction of the associated X;1, X;2, X;3 variables (its parents), with
the appropriate & parity. E.g., using C1 = 21 V =23 V z3, then C;’s CPtable would be

z1 z2 z3 | P(+eci|z1,z2,23)
0 0 0 1.0
0 0 1 1.0
0 1 0 0.0
0 1 1 1.0
1 0 0 1.0
1 0 1 1.0
1 1 0 1.0
1 1 1 1.0

Similarly set the CPtables for the D; to correspond to the conjunction of its 2 parents D; = D;_1 A Cj; e.g.,

Dy Cs | P(+d5|D4,Cs)
0 0 0.0
0 1 0.0
1 0 0.0
1 1 1.0
Finally, set X; to correspond to the satisfying assignment; i.e., if X7 = 1, then —10 | andifie., if X4 =0,
P( +x4 ) . .
then —o00 | Note that these CPtable values satify all £ + 1 of the labeled instances.

=: Here, we assume there is no satisfying assignment. Towards a contradiction, we can assume that there is a 0-LCL
set of CPtable entries. This means, in particular, that P(4a | z;1, Zi2, Z;3 ) = 0, where x;1, T2, ;3 correspond to the
assignment that violates the ith constraint. (E.g., for C1 = z1 V —z2 V x3, this would be X1 =0, Xo =1, X3 =0.)



Now consider the final labeled instance, P( a ). As there is no satisfying assignment, we know that each assignment
x violates at least one constraint. For notation, let v* refer to one of these violations (say the one with the smallest
index). So if x = (0, 1,0,...), then y{®1.02 = (X; =0, Xy = 1, X3 = 0) corresponds to the violation of the first
constraint C. We also let 8* refer to the rest of the assignment.

Now observe

P(+a) = >, P(+a, x)
= Y. P(+al|y*)-P(y*)-P(p*| +a, v*)
= > 0 -P(y)-P(p*| +a,v*) = 0,

which shows that the final instance will be mislabeled. This proves that there can be no set of CPtable values that
produce 0 LCL-score when there are no satisfying assignments. [l

Proof of Proposition 3: Below, we will use P( x ) to refer to Pg( x ), the value the belief net with parameters © will
assign to the x event. In general, for any assignment Z,

P(zZ) = Y ) P(Z|D=d,F=f')P(D=d|F=f') P(F=f). 4)
£

As we assume the different CPtable rows are estimated independently, and F is the set of parents of D, this means

o P(Z) | O P(df)
P(Z|d,f) —————=P(f
9 Baie Z | 3 B ()
Recalling 05 = P(d|f) = ePair/ 3, ePaie, observe that %ﬁ:) = 0Oq¢(1 — bgj¢), and when d # d,
CRACSLY ’g&;fﬂ'f” = —04¢ 0| This means %ﬁ) = P(Z,d,f)—04¢P(Z,f).

Hence,as InP(c|le) = InP(c,e) — InP(e),

OdInP(cle) _ 9IlnP(ce) 0InP(e)
0 Bas B 0 Baje 0 Bas
B 1 0P(c,e) 1 0P(e)
~ P(ce) 0 Bar P(e) 0 Bar
1 1
= W[P(Caeadaf) _ed\fP(caeaf)] - W[P(ead;f) _0d|fP(eaf)]

[P(d,f|c,e)— P(d,f|e)] — 64¢[P(f|c,e)—P(fle)]. 1
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