
4 ELR Learning Algorithm
Given the intractability of computing the optimal CPtable entries in general, we defined a simple gradient-ascent algo-
rithm, ELR, that attempts to improve the empirical score

�
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�����
by changing the values of each CPtable entry ���	� 
 .

(Of course, this will only find, at best, a local optimum.) To incorporate the constraints ���	� 
��� and � � ���	� 
���� , we
used the different set of parameters, “ ���	� 
 ”, where each
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As the �"! s sweep over the reals, the corresponding ����#$� 
 ’s will satisfy the appropriate constraints. (In the naı̈ve-bayes
case, this corresponds to what many logistic regression algorithms would do, albeit with different parameters [Jor95]:
Find %'&)( that optimize *,+.- / �10 �3254$63�87 � � � +�9$:;/�<>= ?A@ �CB � +�DE:F/HG)= ? .1 Recall that our goal is a more general
algorithm — one that can deal with arbitrary structures; see Equation 2.)

Like all such algorithms, ELR is basically

Initialize �5IKJ�L
For MN�O� �P� Q�,IPR :TS L UV� �5IPRWLYXZ%5I[RWL]\_^'IPRWL

(2)

where �,IPRHL represents the set of parameters at iteration M . In a simple gradient ascent approach, we would set ^�IPRHL to

be the total derivative with respect to the given set of labeled queries, ` �a 0 a �cbed
�
LCL fKgeh I�ijLd � �W� � k � - 
 , which is the sum

of the individual derivatives from each labeled training case bl7"m)2 k :
n �
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 � qr ?s- tvuxw o
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This requires. . .

Proposition 1 For the labeled training case by7"&)2 k and each “softmax” parameter �F�	� 
 ,
n �

LCL I r ?s- tvu L �����n �z�	� 
 �|{ * i ��} &)~]4$7"&�2 �T� * i ��} &�~�4E7 �v��� ���	� 
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Recall * i �A� 4$� � refers to conditional probability of
�

given a particular value of � , for the parameter setting corre-
sponding to

��� b��z�	� 
 k . Notice this expression is well-defined for any set of evidence variables 6 — which can be all
“non-

0
” variables (corresponding to a complete data tuple), or any subset, including the empty 6��O�1� .

To work effectively, ELR incorporates four instantiations/modifications to the basic gradient ascent idea, dealing
with

1. the initial values �5IKJ�L (“plug-in parameters”),
2. the direction of the modification ^�IPRHL (conjugate gradient),
3. the magnitude of the change % I[RWL (line search) and
4. the stopping criteria Q (“cross tuning”).

Minka [Min01] has shown that the middle two ideas, conjugate gradient and line-search [PFTV02], are effective
for the standard logistic regression task.
Begin with Plug-In Parameters: We must first initialize the parameters, �'I�J�L . One common approach is to set�,IKJ�L to small, randomly selected, values; another is to begin with the values specified by the generative approach
— i.e., using frequency estimates (OFE; Equation 12) in the complete data case, and a simple variant otherwise.2

1While the obvious tabular representation of the CPtables involves more parameters than appear in this logistic regression model, these extra
BN-parameters are redundant.

2To compute the value for the ���>� � parameter, use frequency estimates but only over the training instances that specify the values of all �����p�,�
variables.
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Figure 1: Comparing Training-Set Error with Test-Set Error, as function of Iteration

Our empirical evidence shows that this second approach works better, especially for small samples. These easy-to-
compute generative starting values are often used to initialize parameters for discriminative tasks, and called “plug-in
parameters” [Rip96].
Conjugate Gradient: Standard gradient ascent algorithms may require a great many iterations, especially for func-
tions that have long, narrow valley structures. The conjugate gradient method addresses this problem by ascending
along conjugate directions, rather than simply the local gradient. As this means that the directions that have already
been optimized, stay optimized, this method often requires far fewer steps uphill to reach the local optimum [HDB96].

In particular, ELR uses the Polak-Rebiere formula to update its search direction. The initial search direction is
given by: ^ IKJ�L � ` �a 0 a IKJ�L
On subsequent iterations,

^ IPRWL � ` �a 0 a IPRWL �
� ` �a 0 a IPRWL � `

�a 0 a I[Rs� S L ��� `
�a 0 a IPRHL` �a 0 a IPRs� S L � `

�a 0 a IPRs� S L
^ I[Rs� S L

where the “
�
” is the vector dot-product. Hence, the current update direction is formed by “subtracting off” the previous

direction from the current derivative.
Line Search: ELR will ascend in the ^ IPRWL direction; the next challenge is deciding how far to move — i.e., in
computing the %'IPRHL�� � : from Equation 2.

The good news is, as �����'IPRWL and ^¡�O^'IPRHL are fixed, this is a one-dimensional search: first %5¢ that maximizes£ � % � � �
LCL I[o�L � �ZX¤% ! \ ^ � . ELR therefore uses a standard technique, Brent’s iterative line search procedure (a

hybrid combination of the linear Golden Section search [HDB96] and a quadratic interpolation), which has proven to
be very effective at finding the optimal value for % IPRWL [Bis98]. In essense, this method first finds three % ! values, and
computes the associated function values bTbl% ! & £ � % ! � kTk !P¥�SW- ¦H- § . It then assumes the

£ �$�V�
function is (locally) quadratic,

and so fits this trio of points to a second degree polynomial. It then finds the %�¢ value that minimizes this quadratic,
replaces one of the three original %,! values with this by%,¢1& £ � %,¢ � k pair, and iterates using the new trio of points. See
[Bis98] for details.
Cross tuning (stopping time): The final issue is deciding when to stop; i.e., determining the value of Q for Equation 2.
A naı̈ve algorithm would just compute the training-set error (Equation 9) at each iteration, and stop when that error
measure appears at a local optimum — i.e., when the error appears to be going up. The graph in Figure 1 shows both
training-set and test-set error on a particular dataset (here “CLEVE”; see next section), at each iteration. If we used this
simple approach, we would stop on the third iteration; the generalization error shows that these parameters are very
bad — in fact, they seem almost the worst values!

To avoid this, we use a variant of cross validation, which we call “cross tuning”, to estimate the optimal number
of iterations. Here, we divide the training data into ¨N�ª© partitions, then for each fold, run the gradient ascent for
remaining « @ © of the data, but evaluating the quality of the result (on each iteration) on the fold. (This produces a graph
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like the “Generalization Error” line in Figure 1.) We then determine, for each fold, when we should have stopped —
here, it would be on MN�¬© , as that is the global optimum for this fold. We then set Q to be the median values over these
folds. When using all of the data to produce the final �;�	� 
 values, we iterate exactly Q times. The website [Gre04,
#CrossTuning] presents empirical evidence that cross-tuning is important, especially for complex models.
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