
NSERC Application: Russell Greiner 43325 1

Form 101, Part II: Research Proposal
Russell Greiner

Department of Computing Science University of Alberta Edmonton, Alberta T6G 2H1

1 Framework

Computers are renowned for their ability to do what they they are told. Unfortunately, sometimes
we humans cannot tell them what to do, perhaps because the relevant information is not known
(e.g., the information required to play world-class backgammon, or to identify gene sites), or be-
cause we have difficulty expressing the relevant information (e.g., safely driving a car), or because
it does not make sense for a person to hand-code a program for the task (e.g., to have programmers
build a huge set of individual interfaces, each honed to a different specific user, or to continually
re-program the control system for a plant each time the dynamics shift).

Fortunately, in many of these situations, it is possible to collect examples of “correct behavior”
versus “incorrect behavior” — e.g., examples of effective vs ineffective backgammon play, gene
(non)boundaries, or (in)appropriate driving actions. Here, we may be able to replace the hand-
coding chore with a machine learning (ML) algorithm, which can use these “training examples” to
produce a correctly functioning program [11].

I plan to continue designing and building effective learning algorithms for a wide variety of
tasks. Section 2 describes my on-going work that addresses the foundations of learning — provid-
ing new learning techniques that use the available information to produce effective performance
systems.

Machine learning is not an end in itself; it is a tool used to improve the performance of some
underlying system (e.g., computer game, diagnostic system, web-browser, interface, . . . ). As such,
the field of ML advances by addressing the new challenges that come from considering new needs
and tasks. Section 3 describes some “application pull” activities I plan to pursue.1

2 Theoretical Foundation (Technology Push)

Learning and using probabilistic models: Bayesian belief nets (BNs), which are compact encod-
ings of joint probability distributions, are now used by many major companies and organizations
(Microsoft, GE, US Army, . . . [1]), for a variety of tasks ranging from classification and diagnosis
to control and prediction, including recent work in genomics and proteomics [13]. One challenge
is acquiring these probabilistic models. My group (including A. Grove [Netli], D. Schuurmans
[UofWaterloo], former postdoc J. Cheng and students, T. Van Allen and W. Zhou) are currently de-
veloping a suite of algorithms that learn BNs that give accurate answers, over the range of questions
that are likely to be posed [C13], [C3], [C11]2. As these algorithms exploit this prior knowledge
about queries, they can be more (sample) efficient than other approaches, even when they must
learn about the query distribution as well. We plan a number of further improvements to these
“discriminant learning” algorithms [12], to be yet more efficient, and also to deal with “decision
nets”, which extend BNs by including the capability of making appropriate decisions, rather than
just computing posterior probabilities.

1Of course, many of the theoretical results will have fairly direct applications, and most of the applied activities
will require theoretical analysis. This dichotomy is more to indicate the original motivation for these work described.

2Each [Jx], [Cx] and [Px] reference refers to an entry in my personal bibliography included in the “Form 100, Part
II (Contributions)” portion of this proposal. Those references also list my collaborators on these projects.



NSERC Application: Russell Greiner 43325 2

We also plan to continue investigating better ways to learn Belief Nets, in general — providing
better selection criteria [C6] and learning algorithms [J3].

We will also provide effective3 ways to determine which types of additional instances will be
most helpful in producing more effective belief-net based classifiers, using our existing work on
computing the posterior distribution of a response from a belief net [C1]. (E.g., we will be able to
determine which type of instances will best shift the posterior distribution to one side of a decision
boundary.) This will be especially useful when dealing with situations where data, while available,
is difficult (e.g., expensive) to obtain.
Techniques that help programs run faster: My PALO system [J10][J9] was designed to learn
the optimal values for a program’s parameters, for a wide range of programs, and various measures
of “optimality” — e.g., efficiency, accuracy, etc. P van Beek (UWaterloo) and I plan to use this
system to improve the efficiency of various generic problems solvers (scheduling, planning, and
constraint satisfaction algorithms), by identifying which heuristics work best for a class of specific
problems. We will then use the resulting “optimized” system for a variety of real-world tasks.
Techniques that allow learners to scale up: Learning involves collecting a body of data that is
sufficient to reliably evaluate competing performance systems. To scale up, learners will have to
do well with less data: Here, I would like to extend my results (with D Schuurmans [UofWaterloo],
A Grove [Netli], A Kogan [Rutgers]) to help learners work with fewer training instances [C16];
to be able to accomodate degraded training instances [C15]; and to exploit prior knowledge [J7],
[J5], [J8].

3 Practical Learners (Application Pull)

Producing programs that learn to interact better with users: Today there are a wide variety
of interactive computer applications, ranging from web-browsers and searchers, through spread-
sheets and database management systems, to editors, as well as games. While these systems may
be very complicated, it is important that their human interface be simple, to accommodate the user.
However, every user has his own idiosyncrasies and preferences; this means an interface that is
honed for one user may be problematic for another. While most interfaces can be individually cus-
tomized by hand (e.g., by adjusting parameters, or defining macros), this is a tedious process that
requires the user to be aware of his personal preferences. We are therefore building autonomous
adaptive interfaces, that watch the user interact with the (performance) program, then use these
observations to “learn” a better interface.

My students (B Korvemaker, C Thompson) and I designed and implemented a system [C5]
that first predicts the user’s next Unix command, then fills the buffer with that command, allowing
the user to run that command by simply entering “return”. We plan to extend this system to be
more general and more accurate, and also to learn “macros” — i.e., sequences of commands that
frequently occur together. We hope to apply the resulting general ideas to other programs and
operating systems.

One important class of programs are commercial electronic games. I plan to work with J Scha-
effer and other members of his “Games Group” [7], as well as Electronic Arts ([4], the world’s
largest producer of computer games) on a tool to hone game interfaces: For example, if a player
repeatedly uses the some sequence of commands (e.g., “forward, turn, shoot, turn, back”), the
adaptive system will first figure out why the player did this (here, to sneak around the corner and

3Throughout, we will use term “effective” in the decision theoretic sense (with respect to a cost function that may
involve accuracy and efficiency), as opposed to the “computable” sense.



NSERC Application: Russell Greiner 43325 3

fire where his opponent is likely to be), then map this general “plan” to a single key. To do this
effectively, our system will need to first recognize the human agent’s plan, to know how to repeat
those actions [8].
Other Game-Related Learning: We also plan to investigate other ways learning can enhance the
play of an electronic game. One approach is “Trainable Agents”. Here, the human player will first
show his “computer agents” what s/he would do, over a range of situations and instructions (e.g.,
“attack this specific opponent”, or “fortify this specific position”). That agent will then generalize
from these observations, to be able to act as the player would, in new situations. After the player
has built up an army of “clone” agents, s/he can then deploy them during the game.

Another idea is building a “worth adversary”: People do not want to lose to a program, nor do
we enjoy winning by large scores. An ideal computer adversary is one that we can just barely beat,
in a tight competition. (Think of scoring the winning run in last inning of the seventh game of the
world series.) To do this, of course, our computer player must first understand the abilities of its
human opponent, and then find ways to be just slightly inferior. Last summer we (B. Stafford and
I) began to address this challenge, identifying reinforcement learning [15] as an appropriate tool
here. We plan to continue this exploration.

We also anticipate being able to use this technology to address another problem plaguing the
computer game industry: sweet spots — i.e., situations where the human player can win too eas-
ily, by using some simple trick that was overlooked by the game designers. We will consider
ways to use reinforcement learning techniques to first identify these weaknesses, and then provide
reasonable patches.
Adaptive Web (Re)Configuration: We (several professors in both computing science and the
business school, together with several of our students) have begun working on a system that ob-
serves where clients tend to go within a web-site and extracts the common usage patterns. We are
now considering various ways to use this information to enable future users to reach their target
webpages more efficiently, and thereby increase the effectiveness of the web-site. One approach is
a global re-structuring of the web-site (by adding or removing links between pages, and perhaps
copying some information to new pages), with the goal of minimizing the expected number of
“hops” each user will require to reach his/her destination. Another approach is to leave the static
structure unchanged, but to add a “suggestion” button to the various pages, which (when clicked)
first classifies the user into some “community” (based on IPaddress, previous click history, time of
day, etc.) then suggests one or more pages — the pages that other users in this community have
wanted to go. The first step in any of these activities is determining accurately where users really
want to go. (Notice this is different from the pages that similar users have gone before as many
of those pages are simply intermediate points en route to some useful page. Moreover, the actual
target pages need not be “hub pages”, using the Clever notation [2].) As this will require additional
feedback from users, we are currently beginning a study to collect this data from subjects, using a
carefully engineered browser and a set of well-defined user tasks.
Automatic construction of effective interpretation systems: Many imaging systems seek a good
interpretation of the scene presented — i.e., a plausible (perhaps optimal) mapping from aspects
of the scene to real-world objects. These systems are typically built by hand, by an imaging ex-
pert who assembles various “imaging operators” (which can range from low-level edge-detectors
and region-growers through high-level token-combination–rules and expectation-driven object-
detectors) into an interpretation system. We can view this system as a policy, which specifies
when to apply which operator, with which parameters. We are currently investigating ways to au-
tomate the process of producing good policies: That is, given the costs of these operators and the



NSERC Application: Russell Greiner 43325 4

distribution of possible images, we can determine both the expected cost and expected accuracy of
any such policy. Our task is to find a maximally effective policy — typically one with sufficient
accuracy, whose cost is minimal. Our earlier papers provided simple myopic systems that worked
effectively in various real-world tasks, including a classical approach to recognizing car types [C4]
and an eigenface-based approach to recognizing faces [C2].

I plan to continue working with both R. Isukapalli and V. Bulitko to further scale up these ideas,
to produce a system that can deal with larger tasks. First, our system will need to deal with more
complex interactions between the operators — e.g., because one operator requires, as input, the
output of another operator (e.g., a line-segmenter produces a set of tokens, which are then used by
a line-grower) or because the actual data obtained from one operator may be critical in deciding
which next operator � parameters to consider next: e.g., finding that the fuselage is at some position
may help determine where to look for the airplane’s wings.

The earlier work also assumes we know initially the distribution of scenes we will have to
interpret; a realistic system will also need to deal with the challenges of learning this information
as well — while we can word this within our “active classifier” framework [J2], we anticipate a
real system will require significant extensions.
BioInformatics: I plan to continue working on a number of projects in the exciting area of com-
putational biology — which involve using computational tools to address molecular biology chal-
lenges. One projects is the Whole Proteome Analysis (with D Szafron), which is attempting to
determine the function for each protein within an organism’s entire proteome. Our current system
uses a simple naive-bayes model to learn the functionality of individual proteins, based on proper-
ties of their homologues. We plan to extend this system in several ways: learning a more general
belief net structure (such as TAN [6], or even more general [C3],[C11]), selecting the relevant
subset of features [10], and using discriminant learning techniques [C13]. Our next sub-project —
also for identifying the function of a protein — will also exploit properties of the set of proteins
within a proteome; e.g., using that fact that proteins produced by consecutive regions within a
genome typically have similar functions, etc.

Another project (with B Zanke, Alberta Cancer Board) is trying to determine which therapy
is most likely to be effective for each specific patient. There are many treatments for a specific
disease (here breast cancer); and the one that is most effective for one patient may be unsuccessful,
or even fatal, to another. This project is attempting to determine which patient features best predict
whether some treatment will be effective, and then find some cost-effective tests for these features.
We are now in the process of building a vast database that extensively characterizes the conditions
for hundreds of patients — including urinanlysis, SNP data, and gene expression data from DNA
microarray analysis — together with their subsequent response to various treatments. We will then
mine this data to identify which type of test(s) to run on the patient, whose outcome will help us
identify which treatment will work best for each specific patient.

Here we plan to use the “Probabilistic Relational Model” (PRM [14, 9], an extension to belief
net models that allows relational information) to represent this heterogenous knowledge base; we
anticipate needing to extend the emerging body of tools for learning these models.

A third project is CyberCell [3] (with M Ellison, Biochemistry) which is attempting to map all
the structures of the approximately 4,000 E. coli proteins and then simulate them on a computer.
In addition to helping us understand how this organism is self-managed, this will also enable us
to predict the effects of new stimuli (e.g., an antibiotic, or a temperature change, etc.) within the
cell’s environment.



NSERC Application: Russell Greiner 43325 5

In addition to the biological and biochemical issues, there are also huge computational chal-
lenges here. I plan to work (again) in the datamining area: e.g., learning models describing the
reactions and interactions, based on observations of the cell’s behaviours. I anticipate needing a
language as rich as PRMs here as well.

Finally, as evidence of our emerging stature in this area of bioinformatics, please note that
some colleages and I are chairing the most-prestigious conference on Computational Biology, “In-
telligent Systems for Molecular Biology” (ISMB) in 2002. (This is one of 8 major conferences in
Edmonton this summer; see [5].)

4 Conclusions

While the list of activies appearing above may seem diverse, there are a number of commonalities:
First, each of these tasks will lead (often immediately) to a clearly useful application. Second, each
of these tasks inherently involves some interesting type of learning — i.e., using some experience
to improve performance. Finally, we have already produced results (technical publications and/or
patents, typically accompanied by an implementation) for most of these tasks; and in every case
have (at least) identified the type of learning tools that will be required. For these reasons, we are
extremely confident that we will be able to obtain, in the next few years, results that are innovative,
publishable, and practical.

References
[1] http://www.cs.ualberta.ca/˜greiner/bn.html.
[2] Chakrabarti, Dom, Kumar, Raghavan, Rajagopalan, Tomkins, Kleinberg, and Gibson. Hy-

persearching the web. Scientific American, 280, 1999.
[3] http://www.synthesystems.net/cybercell/html/.html.
[4] http://www.EA.com.
[5] http://www.cs.ualberta.ca/Edmonton2002.
[6] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classifiers. Machine

Leaning, 29:131–163, 1997.
[7] http://www.cs.ualberta.ca/˜games.
[8] Henry Kautz. A formal theory of plan recognition and its implementation. In Reasoning

About Plans, pages 69–126. Morgan Kaufmann, 1991.
[9] Daphne Koller. Probabilistic relational models. In Inductive Logic Programming, 9th Inter-

national Workshop (ILP-99), pages 3–13. Springer Verlag, 1999.
[10] Pat Langley and Stephanie Sage. Induction of selective bayesian classifiers. In Proceedings

of the Tenth Conference on Uncertainty in Artificial Intelligence, pages 399–406, 1994.
[11] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[12] B. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.
[13] S. Salzberg, D. Searls, and S. Kasif. Computational Methods in Molecular Biology. Elsevier,

1998.
[14] E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller. Rich probabilistic models for

gene expression. In ISMB-01, pages 243–252, 2001.
[15] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT

Press, 1998.


