Research Summary
Russell Greiner

Essentially all real-world software systems — ranging from programs that interpret visual
information, to web-crawlers/data-miners that hunt for relevant information on the WWW,
to expert systems that attempt to isolate and repair faults, and including of course au-
tonomous agents performing such tasks — are expected to solve a sequence of tasks, each
based on input from users and other external sources. A good system/agent is one that
works effectively over the distribution of tasks encountered — e.g., an interpretation system
(resp., web-crawler, expert system) is good if it usually returns the appropriate labeling for
each image encountered (resp., the most relevant articles for each request received, the most
accurate diagnosis for each set of symptoms presented). Given that no system can work
perfectly for all tasks, it is very useful to know this distribution when building the system,
to construct the system best tuned to this set. Unfortunately, this distribution information
is seldom known a priori.

In these situations, one can use learning techniques, which acquire the required informa-
tion by observing the world, to build effective performance systems. Such learning techniques
may, for example, build an effective expert system by observing the set of problems that will
be posed to an expert system, and then incorporating (into the knowledge base) the infor-
mation required to solve these problems. Similarly, a learning algorithm could produce a
good interpretation system by assembling the vision modules found to be most effective at
addressing the observed set of interpretation tasks; etc.

Unfortunately, most standard learning algorithms are rather limited and fragile. Many of
my results extend these algorithms, and analyses, to produce more robust and more effective
learning systems. In the last few years, I have built and analyzed many learning algorithms
capable of handling realistic situations, including learners that can:

1. Find an effective performance system within a combinatorial space of systems
Exploit a given initial theory

Learn classifiers that can classify partially specified instances

Learn optimal active classifiers

Effectively use relevance information

6. Make very efficient use of training samples

A

The rest of this section overviews these contributions. Note that essentially all of these
results include both theoretical analyses and empirical confirmations, obtained by applying
implementations of the theories to real-world tasks.

1. Find an effective performance system within a Combinatorial Space of systems

As suggested above, we often measure the quality of a performance system /agent by how well
it performs on average — e.g., how often an expert system returns the appropriate diagnosis,
or a web crawler finds the most relevant articles, etc. A learner’s task is to find the best
such agent, often from a large space of possible agents (e.g., the learner may be seeking the
best parameter setting, or the most appropriate set of heuristics to use, etc.). As it is often
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difficult, or intractable, to find the globally optimal agent, many practical learning systems
instead hill-climb to a local optimum. Even this task is problematic, as the hill-climber must
know the distribution of tasks that will be encountered to decide whether to climb from one
agent to another; unfortunately, this information is typically not known a priori.

The paper [9]' (which extends the AlJ-Award winning [6]) presents the PALO algorithm,
which approximates this hill-climbing search when the “utility function” (used to evaluate
each agent’s performance) can only be estimated by sampling — and proves that PALO can
efficiently return an agent that is, with provably high probability, essentially a local opti-
mum. [t also demonstrates the generality of this algorithm by sketching three meaningful
applications, which provide concrete solutions to the utility problem from explanation-based
learning, the multiple extension problem from non-monotonic reasoning and the tractabil-
ity /completeness tradeofl problem from knowledge representation.

The subsequent papers [14, 15] show that a robot can use this same general idea, and
algorithm, on the very different task of learning the best set of landmarks to use for registering
its location. These papers also provide a large corpus of experiments that demonstrate that
PALO works very effectively in this context as well.

2. Exploit a given [nitial Theory

Most learning and data-mining algorithms build new classifiers “from scratch”. This is
clearly inefficient if one already has a good, but not completely correct, theory; here, a more
efficient learner would instead begin with that initial theory, and revise it as required to
accommodate new, more trusted information. This is the essence of the Machine Learning
area of “Theory Revision”.

In [20], we describe the (now deployed) DELTA theory revision system, and show empir-
ically that DELTA can effectively revise practical fielded theories, in realistic situations —
e.g., even when most training instances are missing many attribute values.

That system works by hill-climbing, rather than by directly seeking revisions whose
accuracy is globally optimal. We chose this approach after proving that this task, of finding
the globally optimal revision, is not just intractable, but is not even approzimatable (i.e.,
assuming P # NP, no efficient algorithm can find a revision that is even close to optimal)
8, 10, 7].

3. Learn classifiers that can classify Partially Specified instances

Most theoretical analyses assume that both training and performance examples are complete
— t.e., that the value of every attribute is known to both learner and classifier. As noted
above (and elsewhere throughout the learning and data-mining communities), real-world data
is usually incomplete. The papers [27, 23] address this discrepancy by formally analyzing
the task of learning to classify incompletely specified performance examples — considering,
for example, the questions

!Each [x] number below points into the bibli-
ography at the end of this summary; each “($GreinerFTP/xxx.ps)” pointer there expands to the URL
“ftp://scr.siemens.com/pub/learning/Papers/greiner/xxx.ps”.
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Q) : If the desired classification algorithm must classify partially-specified instances, which
learning algorithm should be used?

@ : Should this learning algorithm use partially-specified instances (exactly like the ones
its classifier will have to classify), or instances that have been “filled in” (i.e., which
have no missing values)? To be more concrete: will an intern learn more by (1) fol-
lowing a senior physician and seeing all-and-only what he sees, or (2) by reading a
textbook, which supplies complete information about each patient?

Our papers show that the answers to both questions depend critically on why the attributes
were missing: by a relatively benign process that simply flips coins to decide whether to block
an attribute’s value, or by a process that may base this decision on e.g., the attribute’s value.
(E.g., “bald men wear hats”.) We also analyze the sample complexity of these situations, and
provide empirical studies that validate our claims — e.g., showing that “maximum likelihood
estimation” works very well.

4. Learn optimal Active classifiers

Typical learners produce passive classifiers, which will simply return class labels, even if
given partial information. By contrast, an active classifier can — at some cost — obtain the
values of “blank” attributes. (F.g., a data-miner seeking information may have the option
of paying to use a restricted site.) Such an active classifier is evaluated based on both the
cost spent acquiring information and the penalty paid for each mis-classification. In [13],
we consider the task of learning the best such active classifier, and present a few important
situations where these classifiers can be learned efficiently. We then prove, however, that the
general task is often much more difficult — often significantly more complex than learning
the best passive classifier.

5. Use Relevance Information

Most analyses assume that missing values are harmful, as their omission can prevent both
learner and classifier from seeing essential information. In some realistic situations, however,
these omissions can be useful:

Suppose a doctor uses a decision tree to diagnose patients, and records only the
results from the tests actually run, along with the diagnosis reached — leaving
the other attribute values blank. Afterwards, the learner’s task is to reconstruct
that tree, using only these “sparsely filled” records.

Here, the omitted values are omitted because their values are irrelevant to the classification.
The papers [22, 11, 12] prove that that this “(ir)relevance” information significantly simpli-
fies the learning task, as it allows a learner to “probably approximately correct” PAC-learn
arbitrary decision trees, or even DNF formulae — two well-studied classes not known to be
PAC-learnable in the standard model!

We also show how to handle small amounts of “degradation” of this relevance information,
as well as (perhaps large) corruption in both the attribute values and the class labels; and
also provide efficient algorithms that can revise a given imperfect theory within this model.
(These positive results are in sharp contrast to the negative ones given in 2 above.)

6. Make Very Efficient Use of training samples
While the PAC-learning theory is very elegant, its sample complexity bounds — which bound
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the number of training samples required to learn effectively — are so weak that they are not
used in practice. The papers [26, 25] present new sequential learning procedures (which
observe training examples one-at-a-time, and decide autonomously whether to halt and re-
turn a hypothesis, or continue training) and prove that these algorithms require many fewer
training samples, while maintaining the exact same distribution-free worst-case guarantees.
In [24], we empirically demonstrate that their actual sample sizes are often orders of mag-
nitude less than required by standard analyses — and are small enough that practitioners
can actually use these algorithms for real applications! These results are therefore very im-
portant in typical learning and data-mining contexts, where labeled training examples are
either expensive, or simply unavailable.

Other Activities

Of course this summary mentions only some of my contributions. In particular, it does
not discuss my results in analogy [5], knowledge representation (satisficing strategies [16],
diagnosis [3], common sense reasoning [2, 4]), signal processing [21], or control theory [1].?
Let me close this section by mentioning some of my other activities. First, this summary
does not discuss any of the proprietary work I have done at Siemens Corporate Research,
which (broadly speaking) involves raising interest, and funds, to build large, fieldable sys-
tems that address real-world problems, spanning from adaptive decision support systems and
Bayesian networks to vision-based tracking systems; and includes several pending patents.
Second, I have maintained a very active service record outside of Siemens. In the last three
years, | organized and edited a volume of the influential CLNL series [17], and organized
a very successful symposium on the topic of Relevance [18], which included contributions
from many prominent researchers representing Knowledge Representation, Machine Learn-
ing, Learnability, Information Retrieval, Statistics, Operations Research, and other fields.
We are now producing a special issue of the Artificial Intelligence journal on this theme [19].
Over these years, I have also served, or am serving,
e as the Program Chair for the International Symposium on Artificial Intelligence and
Mathematics #5
e as Workshop Chair and Tutorial Chair for both the 17th Machine Learning Conference
and 7th Computational Learning Theory Conference,’
e on the thesis committee of 4 PhD and 1 MSc students in 5 universities (UofToronto,
CMU, UofPennsylvania, Rutgers, UofWaterloo)
e on the tenure committee of 2 researchers
e on 7 conference committees
e on 3 workshop/symposium committees

in addition to the usual reviewing for (over a dozen) journals.

?Here, I mention only the relevant journal articles; my CV lists a number of other papers in prominent
conferences, on these as well as other topics that range from solution caching, Horn approximations and the
utility problem to plan verification and database theory.

3In addition to organizing and co-ordinating these events, I also obtained over $6000 in funding — enough
to allow the entire community to attend for free.
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Summary

While my results are quite broad and diverse, there is a clear unifying theme: using learning
techniques to find practical solutions to realistic situations, often by exploiting (perhaps

very subtle) information. As shown above, these contributions are applicable to many areas,
including the exciting recent fields of autonomous agents and data-mining.
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