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Learning Markov nets

complete partial
data data
known not as easy hard
structure | as for Bayes
nets
unknown hard very hard
structure

t

This lecture

Learning Markov nets is expensive

- partition function couples all the factors
cannot separate parameter estimation into local groups
- no closed form solutions
- even for max. likelihood w/ complete data
(recall this is easy for Bayes nets)
- learning based on iteration
- inference required in each step -> expensive
- but convex (for complete data)
- structure learning also expensive

Markov factorization:  p,(x) :% H i (scope(¢;))
o, eF
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Outline

Parameter learning

Structure learning

Likelihood and the partition function (also see kF 19.2.1)

e
$2[B, C]
Log likelihood: 1In P(a,b,c) = In (%gbl[a,b]cbg[b, c])

= In¢1a,b] + Ingafb,c] —InZ

Log likelihood for data D with M instances:
He:D) = z (In ¢1[a[m], b[m]] + In ¢a[b[m], c[m]] —1In Z)

m

Y Ma,blngila,b] + > Mb, | Ingo[b,c] — MInZ(6)

a,b \ b,cf

Counts of various assignments in D 6




Cmput 651 - Learning Undirected Models {14,17}/11/2008

Likelihood and the partition function (also see kF 19.2.1)

(Continued from last slide)
Log likelihood for data D with M instances:
0e:D) = Z (In ¢1[a[m], b[m]] + In g2 [b[m], c[m]] —In Z)

e

= Y Mla,b|lnéifa,b] +> Mb,c]Ingsb,c] — M In Z(8)
a,b b.e

Counting terms involve only a single factor

Partition function term involves ALL factors:

a., b,

Maximum likelihood estimation (also see KF 19.2.1)

Bayes nets: estimate conditional distributions
separately for each node
-> likelihood decomposable
VS.
Markov nets: partition function involves all factors

changing ¢1 could change optimal value for ¢,
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Maximum likelihood estimation (also see KF 19.2.1)

Maximum Iike.l_i._hp___qd surface Max w.r.t. X
ol e, depends on
value of Y

Log-likelihood (also see KF 19.2.2)

k
. ) ) 1
Log linear model: P(Xi,...,X,:0)= EepoSir;bi[Di]
i=1

/

weight indicator
function

Log-likelihood: ~ 4(0:D) =30, (Z o [es[-mn) — Mnz(6)

§[m]=mt" data point

10
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Log-likelihood (also see kF 19.2.2)

Log-likelihood: £0:D) = Zﬁ (Z%&[m )—MIHZ 6)

Divide by M (no. data points)
1 (6:D)=> 6;Ep[d;[di]] —nZ(6)

M
Empirical expectation of ¢;
Partition function: mz(6) = exp {Z ﬁiaﬂi[&]}
£ 1

Sum over data points

11

Log-likelihood (also see kF 19.2.3)

1
M

(6:D) = Zempwdm ~nZ(6)

/

Linear in Ep[e¢;[di]]

Partition function: mz(g) = I exp {ZH@I-[E]}
- is convex ¢ '

= log-likelihood is concave

Convex function:
flaf+ (1 —a)y) <af(F)+ (1 —a)f(7)

0>a>1

12
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Log-likelihood (also see kF 19.2.3)

Log-likelihood is concave
- d global maximum

- A local maxima

- global maximum may not be unigue
- Markov net parameterization may be redundant
- i.e. multiple representations of same distribution

include simple
examples based on
diamond net if
there’s time

Maximum likelihood parameter estimation (kr 19.3.1)

Want to find parameters that maximize log-likelihood

Gradient = 0 at maximum

a 1 |
90, ﬁf(ﬁ D) = Zgif'v[@-e [d]] —InZ(6)

a1, |
55370 : D) = En[6:[X]] — Eo[4]

_ KF Proposition 19.2.3
-> @ maximum: Ep|¢;:[X]] = Eg[e:] a .
- InZ(6) = Eglo)]

BUT A closed form solution!
- use gradient ascent instead

14
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Maximum likelihood parameter estimation

a1, |
g6, 31 0 : D) = Ep[gild]] — Eo[¢4]

Show numerical example using A-B-C network

15

Maximum likelihood parameter estimation (kr 19.3.1)

Want to find parameters that maximize log-likelihood

Gradientascent 9 1 ;0. D) = Erlo X1 — Eulo.
go; 310 : D) = EpléilX]] — Eolod

Easy to compute

Expected counts over parameter space
- requires inference
- once at each step of gradient ascent
- typically expensive

16
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Conditionally-trained models (also see kF 19.3.2)

Discriminative (instead of generative)
Conditional random field (CRF)
encodes P(Y | X)
Maximize log conditional likelihood
lyix(0:D) = P(y[l,...,M]|=[1,...,M],0) = i In P(y[m] | =[m], 8)
m=1

- is concave
- use gradient ascent

17

Conditionally-trained models (also see kF 19.3.2)

Gradient ascent on log conditional likelihood

M
by x(0:D)=mP(y[l,...,M] | 2z[1,...,M],0) = Z In P(y[m] | [m], @)
m=1

Grqdient: "
2ty 1x(0:D) = 3 [pulylm), alm]) — ol | afm]]

‘dgi m=1 r
Counts on dataset YS

Expectation w.r.t. model conditioned on mt" data point
-> must run inference M times for each gradient step!

V. expensive
But, can be offset by simpler model (comp. to generative) **
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Conditionally-trained models (also see KF Example 19.3.3)

Evidence nodes w/
dense interconnectivity
(only partly shown)

Discriminative model conditioned on evidence nodes

G002 0020,

Inference on chain is much easier

19

Maximum entropy & maximum likelihood (kF 19.3.4)

Given some data D, find distribution Q that matches
it without a lot of extra structure / assumptions

Maximum-Entropy

Entropy

Find QX)
that maximize Hg(X) / high value -> little structure

subject to . _ ,
. Eoléd] = Eplg:] i=1,....k
\
expectatlon constraints

20
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Maximum entropy & maximum likelihood (kF 19.3.4)

Theorem: Max entropy solution Q* (to problem from
previous slide) satisfies

* = . :L . v X
Q Pg(Xj Z{é) EXp {ZI 91@1[1]}

(=B

= maximum likelihood solution relative to data set D

i.e. max likelihood and max entropy are related

21

Priors and regularization (also see kF 19.4)

Max. likelihood estimation prone to overfitting

Use priors to constrain 6 parameters .
from log linear model P(X,,....X,:6)= %epof?i@i[Di]
i=1

closed form like Bayes formula not available
use max. a posteriori (MAP) instead - maximize P(8)P(D | 6)

22
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Gaussian prior (also see KF 19.4.1)

L 62
P8 o?) = ex S
@10 =] —= p{ 202} -
2h ter f i | N
(0] yperparameter 1or variance ’5’/’%'0""0‘:‘\‘““

Amount of regularization
Can use different oj
Typically use Cov(8;, 6;)=0 for i#]
i.e. assume 0; independent
Predisposes 0’s to be small

23

Laplacian prior (also see KF 19.4.1)

1 6
PI.-.lg.lf.lc.i.m(ﬁ | 3} = %E‘XP {_%}

B hyperparameter
Can use different B;
Assume 0; independent

Also predisposes 6’s to be small

24
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Priors and regularization (also see KF 19.4.1)

P(6,D) = P(6)P(D | 6)

Prior Likelihood

Penalty term regularizes MLLE
Taking logarithms:

((0:D) = Za (Zq[g m]] ) — MInZ(6) + penalty term

E
53 Z 6?  Gaussian penalty -«
' L, regularization

3 > |6l Laplacian penalty  «—
o L, regularization

25

L1 vs L, regularization (also see KF 19.4.1)

—53 Z 62 L, regularization
' larger B values penalized more heavily

E
~3 Z |0;] L; regularization
o uniform penalty

-> better at driving O all the way to zero
-> sparser models learned (more 6;=0)

26
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Learning with approximation (also see kF 19.5)

How to learn when inference is hard?
eg: grid networks
Approach 1: approximate inference inside learning loop

generalized belief propagation
particle-based methods

Approach 2: approximate cost function
inference easier

In many cases, approaches 1 and 2 are formally equivalent.

27

Learning with belief propagation (also see kF 19.5.1)

Theorem: When using an approximate inference
algorithm on the trained model, it is best to do the
training with the same inference algorithm.

BUT: generalized belief propagation inside a gradient-
based learning loop can cause problems:

* marginals are only approximate -> noise in gradient

* possible non-convergence -> unstable gradient
* can use heuristics & manual testing to address these

e one solution on next slide

28
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Learning with belief propagation (also see kF 19.5.1.2)

Recall: Generalized belief propagation equivalent to
optimization on approximate factored energy
functional:

FIPr,Q =) Ec,pn¢]+ > Hs(Ci)— > Hu,(Siy)
i C;eT [

(C; C;)eT

which comes from KL-Divergence.

Can use similar approach for learning

(go to next slide)

29

Learning with belief propagation (also see kF 19.5.1.2)

Want tractable approximation to:

Maximum-Entropy

Find Q(X)
that maximize Hg(X)

subject to . . .
! Eqléd] = Epl¢] i=1,....k

(equivalent to max. likelihood)

Solution = constrained optimization of factored form of

entropy: .
Vol ~ Y Ha(Co— Y Hu(Si)
Ciek (C, C,)eK
30
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Learning with belief propagation (also see kF 19.5.1.2)

Constrained optimization of factored form of entropy:

Ho(X)=~ > Hs(Ci)— > Hyu,(Siy)

C;ek (Ci Cj)ek
valid objective function
- avoid (non)convergence issues
- use whatever optimization method you want
reformulation exact when cluster graph = tree
- approximate otherwise
e.g. generalized belief propagation

31

Alternate objective functions (also see kF 19.6)

Goals:

easier objective than likelihood
VALID objective

Nno convergence issues

32
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Alternate objective functions (also see kF 19.6)

Likelihood of one data point:
0e:g = Inﬁ(f |8) —InZ(#) = InP(¢|6)—In (Z P(¢" | 9))
g.l’
Want to make this large

Want to make this small

In 2" term, summation over all assignments to Val(X)
requires inference -> expensive

Approach:
in 2"9 term, use more tractable set than all of Val(X)

33

Pseudo-likelihood (also see KF 19.6.1)

Likelihood P(¢) =] P(z; | z1....,2,-1) (from chain rule)
j=1

P(&) ~ HP(;E'J' | :{"1?'"T;_Ej—lf;-cj+lf"'?:ci'?)

]
Pseudo-likelihood l
Cpsendo(0 : D) = i ZZIHP(:LJ[IT{ | x_;[m], @)

m

r—j means Ti1,---, 2 Lj—1; L4l +5Tm

Note: P(X,;|X_j) = P(X;|Neighboursx,)

34
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Pseudo-likelihood (also see KF 19.6.1)

Epseudr_} 9 D] M ZZlHP(lJ[FH] | B_R[HQ]

T—j means Ti,.-.,Lj—1,Lj4ls« -3 &n
Why do we care? _— " means unnormalized
P(zj,z—;) Plzj,x_;)
P(-Tj|3—”—j)=# = #
—J (.B_j}
Pz, xz_j)

Zm; ﬁ)(rj_} 'I__}')

-> no global partition function!

only local partition function
much cheaper to evaluate 35

Gradient of pseudo-likelihood (kF Definition 19.6.1)
o .
ﬁgpseudo(e : D) =
i 1 | !
Z (ﬁ Z @i [€[m]] — Ex;nuPB[X_., le_;[m]) [@g [SL‘J-._. ;r._j[;n.]”)

§:X; € Scope[di]
Much cheaper than likelihood’s gradient:

Ey: . po(X; 12 s m)) [ @il 2—;[ml]]
-> summation only over X; conditioned on its neighbours
(not over all of X as in partition function 2)
i.e. inference over only small part of graph (X; and neighbours)

36
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Pseudo-likelihood (also see KF 19.6.1)

Pseudo-likelihood is concave
-> unique, global maximum

37

Likelihood & pseudo-likelihood (kF Thoerem 19.6.2)

Theorem:
Assuming data generated by log-linear model Pe~,
as no. data points M—>eo, P(B, = 0%)->1,

where B, = global optimum of pseudo-likelihood
objective

i.e. pseudo-likelihood converges to likelihood with large M
BUT, this assumes sufficiently expressive model and large M
- these assumptions typically do not hold

38
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Likelihood & pseudo-likelihood (kF Example 19.6.3)

OmOR
' X1, X2 somewhat correlated with Y

Pseudo-likelihood will overestimate Xi-X;
parameters and underestimate X;-Y parameters.
Okay for P(Xz| X1) but not P(X2]Y)

In general, pseudo-likelihood assumes X’s neighbourhood is observed
“ignores” weaker or longer-ranger range dependencies

39

Contrastive optimization (also see KF 19.6.2)

log-likelihood:
0e:g = In}%(f |8) —InZ(0) = InP(¢|6)—In (Z P(¢ | 5‘))

N/

Want to maximize contrast between these
Similarly motivated methods:

contrastive divergence
max. margin training

40
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Outline

Parameter learning

Structure learning

41

Structure learning (also see KF 19.7)

constraint-based

constrain structure to reflect independencies in P(X)

score-based

score each structure, optimize score

42
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Constraint-based structure learning («kF 19.7.1)

Similar to case for Bayes net.

Want H* to factorize P*
assume: H* perfect map for P*, degree H < d”

Test for independencies:
Markov independence (X L X — {X} — Ny (X) | Ny= (X)) VX
Pairwise independence (X LY | X —{X,Y}) Y(X—Y)&H
BUT, testing Markov or pairwise involves all variables

-> exponential in num. nodes
see next slide

43

Testing for independencies

Independence testing using pairwise independence:
(X LY | X —{X,Y}) Y(X—Y)¢gH

Suppose N binary nodes:

= <];[ ) sets {X,Y} to test

for each of 4 assignments {x,y}, must check equality
under 2(N-2) agssignments to other nodes in X — {X,Y}

-> exponential!

(similar argument for Markov independence)

44




Cmput 651 - Learning Undirected Models {14,17}/11/2008

Independence testing (kF 19.7.1)

(Assuming degree (max # edges / node) H* < d* << N)
Consider XY
no edge -> Nu-(X) and Ny (Y) separate X and Y
i.e. dset Zwith |Z| < min(|Nx«(X)], [Nx=(Y)])
suchthat sepy. (XY | Z)
SO: X—Y ¢ H* ifandounlyif 3Z,|2| <d"&P " =(X LY | Z)

For each pair XY test for edge using 30— (":?) tests

Polynomial number of tests
Each test involves < d*+2 variables
< 292 3ssignments to check for binary nodes

Tractable for small d*

45

Constraint-based structure learning («kF 19.7.1)

Limitations:
assume H" perfect map for P*
assume bounded order for H*

assume enough data for reliable independence tests

Example

Correct H" unreachable
p* because X1Y|{}

-> discard X-Y edge
i.e. no Markov net is
perfect map for P

46
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Constraint-based structure learning («kF 19.7.1)

Limitations (cont’d):
For Markov nets, global independence structure not
necessarily useful

eg: fully connected network with pairwise potentials

-> complex connectivity but compact factorization
constraint-based learning does not help find factorization

47

Score-based learning (kF 19.7.2)

Hypothesis space

* |og-linear model
1 _ 1 .
PX|M.,0)= 7 &P | Z Oipil€] ¢ = 7 P {L;}TB}
1EB[M]
Also:
* basic graph structure
e factor graph

Ill

-> different levels of model “granularity”

48 strt
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Score-based learning (kF 19.7.2)

Hypothesis space

* |og-linear model
) 1 _ 1 .
P(X | M.6) = — exp | > H@E[g]} = Eexp{@’re}
1EB[M]

e Given set of features Q,

derive model M from features #[m] C 0

by setting 6; = 0 if ¢; ¢ ®[M]

(Also, optimize other 6; )

® Structure implicit in M
connect all X € scope(¢;),Vp; € ®[M] © st

Score function (also see KF 19.7.3.1)

log-likelihood

scorer, (M : D) = 9_1%5[1&54_ InP(D | M,8) = £((M,8,,) : D)

model data

Overfitting problem
P[M;] C ®[Ms] _> scorer(M; : D) < scorer(Ma : D)
more expressive model fits noise in D
must restrict factors’ expressiveness or regularize

50
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Greedy MN structure learning (also see KF Fig. 19.3)

Total feature set €2
Initial feature set @,
at all times: 0, = 0,V¢; ¢ ®
Iterate {
Optimize 04 (parameter optimization)
Iterate over modification operators O to structure {

O creates ®,,,4 (see next slide)
Ao =improvement in score

}

choose set of modifications (D based on A@
-> new structure ¢

Structure modification

Structure modification steps O :
l \ add / remove single edge

(no directionality!)

A

Then need score for each modification Ay

(see below)

52
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Structure scoring (also see KF 19.7.4.2)

Bayes nets:
structure score evaluation easy
closed form available

score decomposes based on structure
change to structure changes only one term in the score
changes to different parts of structure do not interact in the score

-> efficiency: dynamic programming, caching, etc.

53

Structure learning performance (also see KF 19.7.4.2)

Markov nets:

structure score evaluation harder

Score for each modification Ap

must optimize 63,
requires inferences inside gradient ascent loop
can start from 0g_, . , to speed things up
still expensive (& inside overall structure iteration loop)

Cheaper: rank order A (instead of full evaluation )

54
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Structure learning performance (also see KF 19.7.4.2)

Markov nets: structure score evaluation harder
partition function couples everything
computing likelihood score requires inference
structure score requires parameter estimation (no closed form)
structure score does not decompose
-> expensive!
Good news:
structure learning is convex (with fully observed data)

structure learning more expensive for Markov vs. Bayes

55

Regularization & structure learning (also see kKF 19.7.3.2)
Bayesian score scoreg(G : D) =log P(D | G) + log P(G)

P(D|G)=[P(D| M,60)P(6 | M)do
likelihood  prior
marginal likelihood
average based on parameter prior

regularizes parameters
avoids overfitting
efficient for Bayes nets
but too hard to evaluate for Markov nets

(because of partition function)
use BIC score instead (next slide) 56
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Regularization & structure learning (also see kF 19.7.3.2)

dim(M)

scoregrc(M : D) = £((M,B4) : D) — In M

Asymptotic approximation to marginal likelihood
dim(M) = dimension of model

degrees of freedom
-> penalizes more complex models (i.e. more D.O.F.)

57

Other regularizations for structure learning (kr 19.7.4)

MAP score

L, regularization
scorer,, (0 : D) ==£((M,0):D)— |6

58






