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Probabilistic Graphical Models (Cmput 651):
Clique Trees

Matthew Brown
{20,24}/10/2008

Reading: Koller-Friedman Ch. 9
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Outline

Clique trees and chordal graphs
Variable elimination -> clique tree

Clique tree -> variable elimination]
Calibration

Belief update message passing
General queries

Building clique trees

Clique trees

(a) (w) {AB,C}

Each edge represents a sepset. The sepset S, , between two
cliques C, and C, is the intersection of C, and C, ({C,D} in the
example above).
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Clique trees (Also see KF Definition 4.5.15.)

15t Definition: A tree T is a clique tree for a graph H if
i) each node in T corresponds to a clique in H

ii) each maximal clique in H corresponds to a node in T
iii) each sepset Si'j cuts H into two pieces

(variables on different sides of cut are not connected
by a path)

Example of cut by sepset
Cliques

(a) (w) {AB,C}
(x) {8,c,D}

= (v) {cDE}

e {D,E,F}

sepset S,y between cliques C, and C, cuts the graph
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Chordal graphs and clique trees

Theorem: Every undirected chordal graph has a
cligue tree. (See KF Theorem 4.5.16)

Outline

Clique trees and chordal graphs
Variable elimination -> clique tree
Clique tree -> variable elimination
Calibration

Belief update message passing
General queries

Building clique trees
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Variable elimination example (see kr example 8.3.3)

Caherenid
1 _/ P(C,D,I,G,S,L,J, H)
itfiey>  Geligrcs — P(C)P(D | C)P(I)P(G | I,D)P(S | I)
o> /| o P(L|G)P( | L,S)P(H | G, J)
(Eeﬁe% = GC(C){:DD(D C)GI(I)OG(GID)@S(SI)
Ton ¢L(L,G)ps(J, L, S)ou(H, G, J).

Y My
(_Hapey

Summary of variable elimination steps to marginalize out J:

Step Variable Factors Variables New
eliminated used involved factor
1 C 6c(C). op(D,C) C.D 71(D)
2 D 6c(G.1,D). 71 (D) G.I1.D | 7(G]I)
3 I é1(1). ¢s(S,1), 72(G, 1) G,S.1 | 73(G.9)
4 H ou(H,G,.J) H.G,J | 74(G..J)
5 G 74(G. J). 73(G, S). 1.(L.G) | G.J,L.S | 75(J,L,5)
6 S 5(J, L, S). ¢5(J.L,S) JL.S | 7(J,L)
7 L 76(J, L) JL () .
Cluster graph for variable elimination (see kr9.1.1)
herence Step | Variable Factors Variables New
@9&7’;29) eliminated used involved factor
—— — 1 C e (C), ¢p(D,C C, D D
Coifficulty > (Tntelligence> 2 D @if(((?,)f,%j),(ﬁ(];) G, 1,D TZEE? 1)*)
~ ~ 3 I or(I), ¢s(S,I). 72(G,I) G, 5.1 | m3(G.9)
Grade ) (SAT O 4 H on(H,G,J) H,G,J | 74(G,J)
1 5 G m4(G, ). 13(G, S), ¢r(L.G) | G, T L,S | 15(J,L,5)
CLetter 6 s s(J,L,S). ¢5(J, L, S) JL,S 76(J, L)
TN 7 L To(J, L) J, L T7(J)
Job .
CHappy —7 * Each node in cluster graph
represents a factor ¢,’s scope.
5 . * Each edge represents a message
‘ 1: C,DHz: G,I,DHS: G,S, factor t/’s scope.
HGs

Cluster Graph

10
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Cluster graph for variable elimination (see kr9.1.1)

Step Variable Factors Variables New
eliminated used involved factor
1 C $c(C). é0(D,C) C.D (D)
2 D 6c(G,1,D), T1(D) G.I1,D T2(G,I)
3 I or(I). ¢s(S, 1), 72(G,I) G,8,1 73(G, )
Cluster Graph | o on(H,G..J) HG,J | (6 J)
5 G (G, J), 3(G,S). ¢L(L,G) | G,J,L,S | 75(J.L,S)
D G, ; g (J, L, S), ¢5(J, L, S) LL,S | 7(J L)
1:CDf==2: GID[==3:GS) | & 1) )
G,

S

In variable elimination, each node generates a new factor t (called
a message) which is passed to the next node. The next node takes
in all T messages, multiplies them with its own ¢ factor, eliminates

>1 variable to produce a new t message, and passes T on.
11

Cluster graph (see K Definition 9.1.1)

Definition: Given set F of factors over X,
a cluster graph K is an undirected graph such that:
- node i represents a cluster (set) C, € x
- family-preserving: for each factor ¢ in F,
exists 2 1 node(s) i witHcope(9) C ¢,
- edge Ci-CJ. represents sepset C ﬂcj

12
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Running intersection property

Definition:
Given cluster tree T over factors F,

T has the running intersection property means:
If variable X is in two clusters C. and Cj,

then X is in every cluster in (unique) path from C. to

C,

(See KF Definition 9.1.3.)

13

Running intersection property

Cluster Graph

D G/
RE c,DHz: G,I,DHS: GS,
G,

|
S

Cluster tree satisfies running intersection property.
eg: Gisin clusters 2 and 4, as well as the intervening clusters 3 and
5.

14
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Running intersection property and
variable elimination

Theorem:
If T is a cluster tree induced by variable elimination,
then T satisfies the running intersection property.

(and therefore T is a clique tree, see next slide).

(See KF Theorem 9.1.15 for proof.)

15

Clique trees (2" definition) (aiso see kF 9.1.2)

2nd Definition:

A clique tree is
i) a cluster tree
ii) that satisfies running intersection property

Def’n 2 equivalent to earlier def’n 1:
A tree Tis a clique tree for a graph H if
i) each node in T corresponds to a clique in H
ii) each maximal clique in H corresponds to a node in T

iii) each sepset Sij cuts H into two pieces
’ 16
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Cligue trees: Two equivalent definitions

Goherence> Note extra edges to
(o.ff.cuw—@eulge@ make this chordal.

Gmde Clique tree satisfies:
j def’n 1) based on chordal

< def’n 2) based on variable elimination

Lt

Cligue Tree

17

Outline

Clique trees and chordal graphs
Variable elimination -> clique tree

Clique tree -> variable elimination

Calibration
Belief update message passing
General queries

Building clique trees

18
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Variable elimination based on clique trees
(See KF 9.2.1)

Use cligue trees to perform variable elimination via
sum product message passing

substantial performance benefits

19

Cligue tree message passing
(see KF9.2.1.2)

Cligue tree sum-product upward pass algorithm:

Pass messages up to root clique C..

Final clique potential B [C ] represents Pr(C;)= JIE
X-C. ¢

(i.e. marginal probability over root clique)

upstream vs. downstream 20
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Cligue tree message passing (also see KF9.2.1.1, 9.2.1.2)

Coherence Example task: Given the clique tree below
Coifficuty —Inteligenc  (based on network at left), compute P(J).
\/\

(SAT D

21

Cligue tree message passing
(see KF9.2.1.1,9.2.1.2)

Clique tree sum-product upward pass setup:

Given clique tree T with cliques C,...C,

1. Decides for which variable(s) X you want to compute
the marginal (for now, we assume all X are in one clique,
but see later slides as well as KF 9.3.4).

2. Select root clique C. to be a clique containing X.

3. Assign initial factors to cliques such that factor
scopes are contained in the cliques.

22
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Cligue tree message passing (aiso see KF9.2.1.1,9.2.1.2)

Ceoherence >
P
Coifficulty >—Tntelligence>

AT

root clique

initial

“factors

P(D|C) P(l) PL|G)

P( C) P(S|1) P(J|L,S)

23

Cligue tree message passing
(see KF9.2.1.2)

Cligue tree sum-product upward pass (cont’d):

5. Perform sum-product variable elimination
start at leaf cliques
pass messages toward the root.

Message computation:

1. factor product of incoming messages (from all
neighbours except C ) and C/'s own initial potential

2. sum out all variables in C. except sepset (intersection)

between C;and C,
(Cor=upstream neighbour)

24
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Cligue tree message passing (aiso see KF9.2.1.1,9.2.1.2)

1. In clique C,, eliminate C: ). ¢1[C, D] ; send resulting factor
d1—2(D) as a message to C,

2.In C,, define 3;[G, I, D] = §1_.2(D) -4 [G, I, D]. Eliminate D to
produce factor 4, .3(G,I), which is sent to C,.

3.In C,, define 33(G, S, I] = 02.3(G, I) - ¥3|G, S, I]. Eliminate | ro
produce §3 .5(G, S), which is sent to 5 for use in Step 5.

Clique Tree

initial

“factors

P(D|C) P(l) PL|G)

P( C) P(S|1) P(J|L,S)

25

Cligue tree message passing (see kF9.2.1.1,9.2.1.2)

4.InC,, eliminate H: )", ¥4[H, G, J], send resulting d1_s5(G,J)

to C..

5. In C,, based on messages from Steps 3 and 4, we define
BslG,J, S, L] = 03.5(G, S) - 64-5(G, J) - ¢¥5[G, J, S, L]

Clique Tree

initial

“factors

P(D|C) P(l) PL|G)

P( C) P(S|1) P(J|L,S)

26
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Cligue tree message passing
(see KF9.2.1.1,9.2.1.2)

Cligue tree sum-product upward pass (cont’d):
6. With final clique potential B,[C ]

if necessary sum out C -X

if necessary normalize

. L= C
partition function ;ﬁ’[ .

In example, B encodes the joint P(G,J,L,S). To get P
(J), sumoutG, L, S.

27

> 1 elimination order (see kF9.2.1.1)

A clique is ready once it’s received all of its incoming message
(“downstream” messages). Then it can compute its own message
and send it “upstream” (toward the root node).

Elimination can proceed in any order that respects readiness
requirements.

28
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Outline

Clique trees and chordal graphs
Variable elimination -> clique tree
Clique tree -> variable elimination
Calibration

Belief update message passing
General queries

Building clique trees

29

Cligue tree calibration (Also see KF 9.2.2)

Want all marginals P(Xj):

naive #1: clique tree inference for each X
cost: const*num_X;

naive #2: clique tree inference for each clique C.
cost: const*num_C,

better: upward sweep, then backward sweep
2*(num_nodes-1) message computations

cost: 2*const

30
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Edge C-D:
Root is on left or right

Only 2 different message per edge

E

@@@:EO

Only switch (left<->right) changes incoming messages
=> 2 unique messages possible for each edge
=>2*(num_nodes — 1) messages total

31

Upward then downward (Also see KF 9.2.2)

8;_,(G,9):

8,.5(G,D:

D (€)X 3,

>, 7o (C)X00 s / root

8,.:(G,9):
Z,?ru (C3)%8, 5

8,,(G,D:
Zsﬁu(cs)xas—ﬂ

3G, 9):
Z,‘L?Fu (Cs5)X0y s

3,.-(G,9):
z,?ru (C)%0, 4

32
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Readiness

A clique i is ready to compute message to neighbour j after
receiving the messages from all it’s non-j neighbours.

33

Messages and message passing

Cligue node 4
Upward pass:
receives 2 (reddish) messages
sends 1 (purple) message toward root
Downward pass:
receives 1 (orange) message from root branch
sends 2 different (blue) messages downward

34
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Upward then downward (Also see KF 9.2.2)

After single upward then single downward pass:

Each clique C, has all messages
=> final factor B,[C] for all i

=> can compute any marginal P(X;)

35

Calibration

Definition: A clique tree with clique potentials Bi[Ci]
is calibrated if for all neighbouring cliques C;, C;

> silcl= ) 50

36
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Calibration

Theorem: Sum-product message passing produces a
calibrated clique tree.

Proof:
After sum-product (variable elimination!) belief updating

BilCil = ) Pr(X)=Pr(Cy)
X—C;
(note: Px(C;) can be un-normalized)

For neighbours Ciand G, with S; ; = C; N C;

Y. BilCl=Pr(Si))= Y 50

61_317‘7 C]_Sl,] 37

Calibrated cligue tree = alternative
parameterization (also see kF 9.2.3)

91[A, B] $2[B, C] ¢3[C, D] $4[D, A]

a® 8° 30 ® < 100 A d° 1 d® a® 100
a® b 5 B et 1 c® db 100 d® a' 1
at B° 1 ot P 1 ¢t d® 100 d' a° 1
at b 10 ot et 100 ¢t dl 1 d' a' 100
Assignment maxe Assignment max 4
a’ T [d° 600000 B0 [0 [d° 300100
a® [ 1° | d' || 300030 | | Assignment | maxac | |50 |¢® |4 | 1300000
a’ | bt | d° || 5000500 B0 [ db 600200 B0 et | d° 300100
a’ | bt | dt 1000 B’ | dt 1300130 B0 | et | adt 130
at | b | d° 200 bt | d° 5100510 bt c® | d° 510
al | B0 | dt 1000100 bt dt 201000 bl el | dt 100500
at | bt | d° 100010 bt | et | d” || 5100000
al | bt | db 200000 bl et | dt 100500

B1[A, B, D] t1,2(B; D) B2[B, C, D]

38
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Calibration

Belief update message passing
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39

Belief update message passing (also see kF 9.3.1)

Sum-product message passing
inspired by variable elimination
Belief update message passing:

equivalent to sum-product message passing
offers different perspective

40
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Final clique potential

Final clique potential: 8i = ¢; - || x—

keN;

¢i = initial potential, dx-i = message, Ni = neighbours of i

41

Two ways to compute messages (also see kF 9.3.1)

Sum-product §i—;= Y ¢+ || Ok
Ci—Si,J ke(N:—{j})
)
All in-coming messages except ;i

Belief-update 5 = 25, Pi
! 5]—)1
Final clique potential divided by §;-i

Note: B3; = ¢; - H Ok—i

keN;

42
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Factor division (also see KF Definition 9.3.1)

Definition: Given disjoint variable sets X and Y and
factors @1(X,Y) and d,(Y), factor division produces a

factor , _ n1(X,Y)
VX Y) = $2(Y)
where
0/0=0

(x#0)/0 is undefined

43

Belief update message passing (also see kF 9.3.1)

- _ = = —>

Belief update message passing <—<—l e

(aka Lauritzen-Spiegelhalter algorithm):
Iterative process:
Node maintains belief potential
product of initial potential and ALL messages so far
Edge stores previous message (regardless of direction)
next message is divided by stored message (and then stored)
Keep passing messages until all nodes have all messages
and can compute 3; = ¢; - H Ok
keN;

44
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Belief update message passing example

(also seek KF example 9.3.3) O_O_O_O

Bi: W1 $2 UE!

C:={A,B}, C,={B,C}, C3={B,D}

» L§ 0o_.3 _Z ‘L"'g[B C]
~ &) 2—3 — . L
U 2 oy 3 B

1 M2-3 B

Ho—3 = 0253

45

Belief update message passing example

(also seek KF example 9.3.3) O_O_O_O

Bi: W1 P2 UE!

C:={A,B}, C,={B,C}, C3={B,D}

L. & 000)=> slCD
D

7

Y1 lllzb_'\')Sf:’

@_@_@ Update to C;.
1 H2-3 03 .2(C) o ZD 33[C, D]

1 pa,3(C) 12.3(C)
NUPE _ 2 p¥slC, Dlpas(C)
Y1 &ivfi &”’LV p2,3(C)

D

1 H32

5
b
I
5[]
q
S
Il
=[]
/""_"“\
%
S
V]
=
Q
S—

46
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Clique tree measure (also see KF definition 9.2.11)

Definition:
The clique tree measure of a calibrated tree T is:

HC‘,;ET Bi [Ci]

Br = :
[c.—c;er #i5(Sis)
where
pig= Y. BlCl= Y BIlCjl

C;‘—Si_jﬁ G}'—Sa}'

Note Pr(X)=0r

47

Cligue tree invariant (aiso see kr 9.3.2)
Definition:
Clique tree invariance means that

B ) - — HoerCH
H[ci cj)e‘rﬂi.;‘(si,ﬂ

at each point in belief update calibration.

48
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Proof of clique tree invariance (also see KF Theorem 9.3.4)

Br() [lc,c7 Bi(Ci) holds during
FlA) =
[lic.—cyer 1ii(Sii)  pelief update message

passing
Proof:
Message oisj changes only Bjand wijto B’;and W's;.
Want: Fi _ ‘3_3
Hi, 5 au;__j

But belief update message passing was defined so that

49

Message passing equivalence (also see kF 9.3.3)

Theorem:
sum-product message passing (variable elimination)
is equivalent to

belief-update message passing

(See KF 9.3.3 for proof.)

50
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51

General queries on clique trees (also see kF 9.3.4.1)

Conditioning via factor reduction within a clique:

C1={AB}, C2=1{B,C}, C3={C,D}

Conditioning on D: factor reduction on s
=I{D = d} - 35[C, D]

where I{D = d} is an indicator function

(Note: Pr is un-normalized.)
52
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General queries on clique trees (also see kF 9.3.4.1)

Propagating conditioning to entire tree:
Cl = {A)B} ’ CZ = {B)C} ’ C3 = {CID}

W want

Pr(A,B,C,D =d)=1{D =d}- [e,er BilCil

I, c;yer Hii(Si;)

1st step: pass message from Cs to Cy:

03-2(C) = S LD = d} - B5[C, D)

D
(remember proper belief updating - go to next slide)

53

General queries on clique trees (also see kF 9.3.4.1)

Propagating conditioning to entire tree:
Cl = {A)B} ’ CZ = {B)C} ’ C3 = {CID}

Belief updating at C, (divide message by sepset

potential):
>_p {D =dj - 55|C, D]

 93-2(C)
62[B7C] 2D53[OaD]

M2,3(C) - 62[B7C] )

54
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General queries on clique trees (also see kF 9.3.4.1)

Propagating conditioning to entire tree:
* can propagate conditioning to whole tree
e or a subset of the tree (if that’s all you need)
e cannot easily retract evidence
¢ have to store original tree (before conditioning)

e approach not limited just to indicator factors

55

General queries on clique trees (also see kF 9.3.4.2)

Conditional reasoning across different cliques:
P(Y|e), whereY @ G Vi

Naive: rebuild clique tree so that Y € C; for some i

(Better approach on next slide.)

56
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General queries on clique trees: example
(also see KF 9.3.4.2)

Conditional reasoning across different cliques:

C= {AIB} ’ C= {B,C} , C3 = {C'D}
Want Pr(B, D)

Pr(B,C,D) = 1 T = Cy—C4

Pr(B,D) = Y Pr(B,C.D) Do variable

C _ elimination on
_y 32[B, C)B5[C, D]

new factors
o p2,3(C) /

= Y Pr(B|C)PF(C, D)

57

General queries (also see KF 9.3.4.3)

Multiple queries across different cliques:
Want P(Y|e), where Y & C; Vi for n different Y’s

Naive 1: for each Y, rebuild clique tree so that Y € G

for some i -> SILLY!

Naive 2: Variable elimination approach (from previous
slide) (Z) times -> expensive!
Better:

Dynamic programming: start with neighbour cliques,
build outward, caching as we go

58




Cmput 651 - Clique Trees {20,24}/10/2008

Outline

Clique trees and chordal graphs
Variable elimination -> clique tree
Clique tree -> variable elimination
Calibration

Belief update message passing

General queries
Building clique trees

59

Cligue trees from variable elimination
(also see KF9.4.1, 8.4.2.3)

Definition:
The induced graph for a variable elimination

* undirected graph

* edge between all pairs of variables that appear in some
intermediate factor ¢
(also see KF definition 8.4.3)

Qoherenca @_h:r:rrc_a
1 1
C leflcul'ry> G‘rellrgenc) /—Drffrculfy — In'rellrgenc\)

Gr‘ade SAT) I[: Gmde SAT D)
Lejter Lm I nduced graph
J'ob Job

HGPP \HﬂPW/ 60
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Cligue trees from variable elimination
(also see KF9.4.1, 8.4.2.3)

Theorem: Induced graph is chordal.

(For proof see KF Theorem 8.4.7).

Caherens

@_h:r':r;:_e)
1
C D'ff'C”HY> GT"-'”’QEHCD /—Drffrculfyr)—@nfellrgencb
Grude SAT) I[: Gmde s,-wr D)
Lejter Lm Ind uced graph
J'ob Job
HGPP \HﬂPW/ 61

Cligue trees from variable elimination
(also see KF 9.4.1)

Build clique tree from induced graph

—
\-CJ‘J—_> Induced graph
/—Drffrculfyr)—@nfellrgencb

= m) Typically use only
/\Lm maximal cliques
J°b in clique tree.

Hﬂpw _/

Clique Tree Note: we saw this earlier
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Cligue trees from variable elimination
(also see KF 9.4.1)

Build clique tree from induced graph - example 2
@%@ (Not induced graph)
Coifficulty > Intelligence)
Grade ) | (CSATD
e
Qe”ef{(‘! No job -> happy edge

7Job7

CHappy >
. J L Note: we saw this earlier
Clique Tree
c,D | I G,,D IG,S,II } G,S,.L I L,S,J
D "Gl —qp G,S G.L
o

(za] :

Cligue trees from variable elimination
(also see KF 9.4.1)

Building clique trees from induced graphs is formally
well-grounded (see KF 9.4.1, 8.4.2.3).

64
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Cligue trees from chordal graphs (aiso see kF 9.4.2)

Theorem: Every chordal graph has a clique tree. (see
KF Theorem 4.5.16)

65

Cligue trees from chordal graphs (aiso see kr 9.4.2)

Given factors F which factorize based on H~
1. build chordal graph H* from H£ (triangulation)
2. find maximal cliques in H*

3. build clique tree 7 from H*‘s maximal cliques

66
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Triangulation (also see kF 9.4.2)

* finding minimum triangulation is NP-hard

e minimum triangulation = one in which largest clique has min size

* exist exact algorithms

¢ exponential in size of largest clique

* heuristic algorithms typically used

67

Heuristic triangulation
(also see KF9.4.2, 8.4.3.2)

Recall: induced graph from variable elimination is chordal
So, do variable elimination to triangulate

do not do actual sum and product computations

just keep track of intermediate factors’ scopes

connect all sets of nodes within a given scope

see example two slides below

Variable elimination requires an elimination order
* see next slide

68
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Heuristic elimination ordering algorithm
(also see KF9.4.2, 8.4.3.2)

Want an ordering that produces a small chordal graph.
Define cost function (also see KF 8.4.3.2)
* eg: cost(node_X) = #neighbours
Use greedy ordering method (also see KF Figure 8.17)
all nodes start unmarked
for k=1...#nodes
select unmarked node X with min cost
(X) =k
mark X
return ordering 1t
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Heuristic triangulation via variable elimination
example (also see KF 9.4.2, 8.4.3.2)

o Factors:
$1(A,B), d2(A,C), d3(B,D),
G 0 &4(C,E), ds(D,F), ds(E,F)

OO P(A,B,C,D,E,F):% I ¢

(7) Ordering: ABCDEF '

Example continues over next six slides.
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Heuristic triangulation via variable elimination
example (cont’d) (also see kF 9.4.2, 8.4.3.2)

o o Factors:

$1(A,B), d2(A,C), d3(B,D),

Q O G CI>4CE &s(D,F), cbsEF

O (2 M:ABCDEF =

Eliminate A: A,B,Cin {1’s scope -> add edge B-C
¢3(B, D)pa(C, E)¢s(D, F)¢s(E, F) EAj $1(A, B)$2(A,C)
= ¢3(B, D)4 (C, E)¢5(D, F)g(E, F) > 41 (A, B,C)

= ¢3(B, D)¢4(C, E)¢5(D, F)¢6(%,F)71(B, C)
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> P(A,B,C,D,E,F) =

Heuristic triangulation via variable elimination
example (cont’d) (also see kF 9.4.2, 8.4.3.2)

o o Factors:
‘&‘ 1) d1(A,B), d2(A,C), ds(B,D),
S ¢4CE bs(D/F), <I>6EF

O (2 M: ABCDEF = °

Eliminate B: B,C,D in {»,’s scope -> add edge C-D
64(C, E)5(D, F)s(E, F) Y ¢3(B, D)1 (B,C)
B

= 64(C, E)p5(D, F)p6(E,F) Y 4s(B,C, D)

= ¢4(07E)¢5(D>F)¢6(E3 F)7_2(C>D)

> P(B,C,D,E,F) =
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Heuristic triangulation via variable elimination
example (cont’d) (also see kF 9.4.2, 8.4.3.2)

o Factors:
m (I)l(A,B), ¢2(A)C)I ¢3(BID)I
G R 0 b4(C,E), ds(D,F), CIDsEF
Q e P(A,B,C,D,E,F) H b;
(F) Ordering: ABCDEF ' °

Eliminate C: C,D,E in {3’s scope already connected
Y P(C,D,E,F) = ¢5(D, F)¢s(E, F) Y ¢4(C, E)72(C, D)
C
= ¢5(D7F)¢6(E7F)Zw3(C7DaE)
C

= ¢5(D7 F>¢6(E7 F)T?;(D?E)
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Heuristic triangulation via variable elimination
example (cont’d) (also see kF 9.4.2, 8.4.3.2)

Factors:

m m d1(A,B), d2(A,C), ds(B,D),
Q O G CI>4CE &s(D,F), cbsEF
Q e Q e P(A,B,C,D,E,F) H b

Ordering: ABCDEF "

Eliminate D: D,E,F in l.|)4S scope -> add edge D-E

ZP(DaEvF) :¢6(E7F)Z¢5(D7F)T3(D7E)
D

:¢6(E’F)Zw4(D>E7F)

= ¢6(E, F)T4(E,F)
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Heuristic triangulation via variable elimination
example (cont’d) (also see kF 9.4.2, 8.4.3.2)

o Factors:
m (I)l(A,B), ¢2(A)C)I ¢3(BID)I
‘@2‘9 @CE%DF¢&F
3 P(A,B,C,D,E,F) ;
OswO " -7 I
o Ordering: ABCDEF

Eliminate E: E,F in {5’s scope already connected
ZP(E>F) = Z¢6(EaF)T4(E7F)
E E
:Zﬂ%(EvF)

= T5(F)
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Heuristic triangulation via variable elimination
example (cont’d) (also see kF 9.4.2, 8.4.3.2)

o Factors:
m (I)l(A,B), ¢2(A)C)I ¢3(BID)I
‘@2‘9 @CE%DF¢&F
3 P(A,B,C,D,E,F) .
OswO " -7 I
o Ordering: ABCDEF

Eliminate F: F = last variable, so we stop

S P(F) =37 (F)
F F
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Heuristic triangulation via variable elimination
(also see KF9.4.2, 8.4.3.2)

oYV oSN O SN O\
ORRCROS= GRORROROWRO

Ordering: ABCDEF Ordering: ADEBCF
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Find maximal cliques
(also see KF9.4.2, 8.4.3.2)

Task: given chordal graph, find maximal cliques

® NP-hard for general graphs
® BUT easy with chordal graphs
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Find maximal cliques
(also see KF9.4.2, 8.4.3.1)

Maximum cardinality search (also see KF Fig 8.16):
clique_list = {}, current_clique = {}
while still unmarked nodes:
select (unmarked) X with max # marked neighbours
if X fully connected to current_clique:
add X to current_clique
else:
add current_clique to clique_list
current_clique = {X and X’s marked neighbours}
mark X
return cligue_list
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Find maximal cliques
(also see KF9.4.2, 8.4.3.2)

() Nodess D B C A E F
°~° current_clique: {D} {BD} {BCD} {ABC} {CDE} {DEF}
addition to clique_list: f 1

g

° Nodes: D B F C A E
-o current_clique: {D} {BD} {BDF} {BCF} {ABC} {CEF}
addition to clique_list: 1 1

£
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Find clique tree edges
(also see KF 9.4.2)

Task: given cliques, connect them to build clique tree
Use maximum spanning tree algorithm:

® start with complete clique graph

® assign edge weights: |C; N (]

® remove edges to produce tree with max sum of

edge weights

= edges represent sepsets
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Build clique tree
(also see KF9.4.2, 8.4.3.2)

(A) (") {ABC)
—O 5 O o
o= (v) {CDE}

I (z) {DEF}

L5

o (ABC) (x) {BDF}
= () (cF)
(2) {CEF}
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Cligue trees from chordal graphs (aiso see kF 9.4.2)

Summary:

Given factors F which factorize based on H
1. build chordal graph ‘H* from Hr (triangulation)
2. find maximal cliques in H*

3. build clique tree 7 from +*‘s maximal cliques

Do inference on clique tree.
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