!'_ Learning Bayes Net Structures

KF, Chapter 17

Some material taken from C Guesterin (CMU), K Murphy (UBC) 1
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‘_L Learning Bayes Nets

Data

Structure
Known Unknown

complte) Gasy —
Missing M Very hard!!

CPTs :
= % _I_ P(Xi| Pay:)

structure parameters




Learning the structure of a BN

Data . Constraint-based approach
= BN encodes conditional independencies
= Test conditional independencies in data
»« Find an I-map (?P-map?)

= Score-based approach
« Finding structure + parameters is

sJaloweled
uB 8JNjoNJ1S UJea

v density estimation
> = Evaluate model/ as we evaluated
>}
parameters
« Maximum likelihood
= Bayesian

= etc. 4



i Outline

= Constraint-based
= Learn PDAG

= Score Based (Frequentist)
= Score Based (Bayesian)




i Remember: Obtaining a P-map?

= Given J(P) = { (X,Y; Z) : P(X,Y|Z) = P(X|Z) P(Y|Z) }
= independence assertions that are true for P
1. Obtain skeleton
2. Obtain immoralities

3. Using skeleton and immoralities,
obtain every (and only) BN structures from the
equivalence class

m Constraint-based approach:
Use Learn_PDAG algorithm

Key question: Independence test




Independence tests

= Statistically difficult task!
= Intuitive approach: Mutual information

_ . P(z,y)
I(X,Y) = %P( ,y) 109 )P ()
= Mutual information and independence:
= X and Y independent if and only if I(X,Y)=0
= X1Y = P(x,y) =P(x)P(y) = log[ P(x,y)/P(x)P(y) ] =0

= Conditional mutual information:

i o o P(x,y|z)
I(X,Y|Z) = E4[I[X,Y|Z = 2] g%P( ,y|2) 109 P(z|2)P(y|2)

X1Y|Z iff PXY|2) =P(X[2) P(Y[Z) iff I(X,Y|Z)=0



Independence tests and the
Constraint-based approach

= Using the data D A Count(z;, ;)
« Empirical distribution: 7% = m

= Mutual information: I(Xi, X;) = > Plaizj)log P(x;)P(z;)

:l?z',ajj

= Similarly for conditional MI

= Use Learn_PDAG algorithm:
When algorithm asks: (X_LY|U) ?

«Use IX,Y|U)=07?

= No... doesn’t happen

«Use I(X,Y|U)<t forsomet>0?

= ... based on some statistical text “t s.t. p<0.05”

= Many other types of independence tests ...



Independence Tests — II

= For discrete data: 2 statistic

= measures how far the counts are,
from expectation given independence:

— 2 N (o o Nl D)2
7D — (Ozy Ty _ (N (. .W_ NP(x)Ply))
Z E. Z NP(x)Ply)
T,y T,y

» p-value requires averaging over all datasets of size N:
p(t) = P({D : d(D) > t} | Hy,N)
= Expensive... = approximation

= consider the expected distribution of d(D)
(under the null hypothesis)
as N — oo

= ... to define thresholds for a given significance



i Ex of classical hypothesis testing

= Spin Belgian one-euro coin
= N =250... headsY = 140; tails 110.

= Distinguish two models,

= H, = coin is unbiased: so p = 0.5)

= H, = coin is biased: p=#0.5
= p-value is “less than 7%"

= p = P(Y > 140) + P(Y < 110) = 0.066:

n=250; p = 0.5; y = 140;
= (1-binocdf(y-1,n,p)) + binocdf(n-y,n,p)

= IfY =141: p = 0.0497

= reject the null hypothesis at significance level 0.05.

= But is the coin really biased?
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Also called IC or PC algorithm

i Build-PDAG Algorithm

Build-PDAG can recover the true structure
= up to I-equivalence

in O(N\P27) time
if
= maximum number of parents over nodes is d

= independence test oracle can handle < 2d + 2
variables

= 3G =a J-map of P
= underlying distribution P is 7faithfu/to G
= —d spurious independencies not sanctioned by G

11



i Eval of IC / PC alg

= Good

= PC algorithm is less dumb than local search

= Bad

= Faithfulness assumption rules out certain CPDs
= (noisy) XOR

= Independence test typically unreliable
= ... especially given small data sets
= make many errors

= One misleading independence test result can result in
multiple errors in the resulting PDAG
— overall the approach is not robust to noise

12



i Outline

. Constraint-based

. Score Based (Frequentist)
= Use MLE parameters
= Best parents are very informative
= Best Tree Structure
= Overfitting

= Score Based (Bayesian)

13



Score-based Approach

Possible DAG structures W Score of each Structure
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‘_L Just use MLE parameters

m Max QL(< ,9>:.(D_)=
max4_maxe, L((G, 6,) : D )|=
max, L( (G, ﬂ) D )

= S0...
seek the structure @ that achieves

highest likelihood,
given its MLE parameters 6

= Score(@, D) =log L((¢, 6°) : D)
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‘.h Comparing Models c;o% c;%

= D= {X[1Ly[1]), ..., X[MLY[MD)}

= Score(Gy, D) =2, log 8y + 109 8y
N SCOre(gp -(l)) = Zm |Og 0 xim] T |Og 0 y[m] | x[m]

s Score(@,, D) — Score(G,, D)
= Zx,y M[Xsy] IOg e*y[m] _ Zy M[y] IOg e*Y[m]
=M 2, p'(xy) log[p’(ylx) / p(y)
=M L.(X,Y)

= [«(X,Y) = mutual information between X and Y in P’
= ... higher mutual info = stronger X—Y dependency

16



of maximum likelihood Q 5=

‘L Information-theoretic interpretation

) G
= Given structure G, parameters 6,, log likelihood of data 9:

log P(D | 6g,G) = log P (X =20 | Pay, = x(¥) [PaXiD

_ ; i"j P (x; =2 | Pay, =x[Pay))

= iZ#(X :‘.—u)logP gaxzu

0
— 7Pa —
Y o R

=1 Z;,u

P(X — a:Z,PaX — u)

n
— m

’L:l R R

Z p(XZ = x;, PaXZ. :11) |OgP(X7; = x; | PaXi =u

17



‘_L Entropy

= Entropy of V = [p(V = 1), p(V = 0)] :
H(V) = 'Zvi P(V=v;)log, P(V=yv,)
= # of bits needed to obtain full info

...average surprise of result of one “trial" of V
= Entropy ~ measure of uncertainty

A
1.0 +

H(X)




H{X)

‘_L Examples of Entropy

= Fair coin: KRNI
= H(Y2, V2) = — Y2 log,(Y2) — V2 log,(2) = 1 bit
= ie, need 1 bit to convey the outcome of coin flip)

s Biased coin:

H( 1/100, 99/100) =
~'1/100 log,(1/100) — 99/100 log,(99/100) = 0.08 bit

= As P( heads ) — 1, info of actual outcome — 0
H(0, 1) = H(1, 0) = 0 bits
ie, no uncertainty left in source

(0 x log,(0) = 0)
19



‘_L Entropy & Conditional Entropy

i

= Entropy of Distribution
« H(X) = - X, P(x)) log P(x)
= "How surprising’ variable is”
=« Entropy = 0 when know everything... eg P(+x)=1.0

= Conditional Entropy H(X | U) ...
= H(X|U) = -2, P(u) 2; P(x;/u) log P(x;|u)
= How much uncertainty is left in X, after observing U

H(X;|Pay,) - Y P(X; =1, Pay =u) IogP(Xi=x§j) | Pay. =u)

I,

20



Information-theoretic interpretation of
i maximum likelihood ... 2

= Given structure G, parameters O,
log likelihood of data 9 is..

‘Iog P(D|6,G) = m> Y P(asl,,Pam ¢ =wlog P(z; | Pa,, g = u)

z -Ez l.].

= mZ—FI(XﬂPaxi’g)
1
= mY (XﬂPamij@ l
)

So log P(D| 0O, ¢) is LARGEST

when each H( X | PaX c) is SMALL..
..ie, when parents of X are very INFORMATIVE about X |

21




i Score for Bayesian Network

« I(X, U) = H(X) = H(X | U)
— H(X | Pay) = H(X) = J(X, Pay )

Doesn’t involve the structure, ¢!

= Log data likelihood J
log P(D | 6,G) = mZT(X’ivPaXi,Q)

= —(X L Pay) ... not very independent ©

= So use score: 2 I(X;, Pay; () 2



‘_L Decomposable Score

= Log data likelihood

= ... Or perhaps just score: Zi I(Xi, PaXi, q)

= Decomposable score:
= Decomposes over families in BN (node and its parents)

= Will lead to significant computational efficiency!!!
» Score(G D) = X, FamScore( X; | Pay, : D)

= For MLE: FamScore( X; | Pay; : D) = m[I(X, Pa,) — H(X) 1,



Using DeComposability

log P(D | 6,G) =m > I(x;,Pa,, g)—m > H(X;)

> S I(X, Pag o) +C |
= Compare

) )

1 2

006

LA A

m 6 2 (X, Pay o) =1 D+ I(Y, X) + I(Z, Y)

— (Y, X) + 1I(Z, Y) 0
" 6, 31X, Pay, o) = (YR + IZY) + 1(X, 2)
- 1(Z,Y) + I(X, 2) 0

m...sodiffis I(Y, X)=I(X, Z) .



i How many trees are there?

s |ree:
= 3 one path between any two nodes (in skeleton)
= Most nodes have 1 parent (+ root with 0 parents)

= How many:

= One: pick root
= pick children ... for each child ... another tree

A 0 6(n )
(2 ANh ~ 1

y
J\| |°
c 9

Nonetheless... 3 efficient optimal alg to find OPTIMAL tree

25



‘_L Best Tree Structure

log P(D | 60,G) =m ) I(z;,Pa, g)—m ) H(X;)

« Identify tree with set 3 = { Pa(X) }
= each Pa(X) is {}, or another variable
= Optimal tree, given data, is
argmax, m 2,; I( X, Pa(X;) ) —m 2; H(X))
= argmax; 2, I( X;, Pa(X)) )
= ...as 2 H(X) does not depend on structure
= 50 ... want parents § Ss.t.

s tree structure
= maximizes > I( X, Pa(X) )

26



iChow-Liu Tree Learning Alg

For each pair of variables X;, X,
=« Compute empirical distribution:

Pz xj) =

COUﬂt(CBi,QBj)

m
=« Compute mutual information:

Define a graph

= Nodes X,,...,X, R

= Edge (ij) gets weight 1 (X, X;)
Find Maximal Spanning Tree
Pick a node for root, dangle...




‘_L Chow-Liu Tree Learning Alg ... 2

log P(D | 60,G) =m ) I(z;,Pay g)—m ) H(X;)

= Optimal tree BN

=« Compute maximum weight
spanning tree

= Directions in BN:

J-Equivalent!

= pick any node as root, ©
...doesn’t matter which!
= breadth-first-search defines
directions & — @ —
= Score Equivalence: I \ l \
If @ and @’ are J-equiv, © O © )

then scores are same

28




‘_L Chow-Liu (CL) Results

= If distribution P is tree-structured,
CL finds CORRECT one

= If distribution P is NOT tree-structured,
CL finds tree structured Q that
has min’l KL-divergence — argming KL(P; Q)

= Even though 2%(nlogn) trees,
CL finds BEST one in poly time O(r¥ /m + log n])

29



‘_L Extending Chow-Liu... #1

= Naive Bayes model @
= Ignores correlation between features / l \

= What if X; = X, ? Double count... QD\_'@ /@

= Avoid by conditioning features on one another

= [ree Augmented Naive bayes (TAN)
[Friedman et al. '97]

2 > P(SL‘Z,LU | C)
I(X;,X;|C) = P(c,x;, ;) 109 —= J
v c,a;mj v P(z; | C)P(mj | c)

All but ONE feature have 2 parents: C, X, 30




‘_L Extending Chow-Liu... #2

= (Approximately learning)
models with tree-width up to &

= [Narasimhan & Bilmes '04]

O BUt, O(nk+1)...
= and more subtleties

31



i Learning BN structures... so far

= Decomposable scores
= Maximum likelihood
= Information theoretic interpretation

= Best tree (Chow-Liu)
= Best TAN
= Nearly best k-treewidth (in O(Nk+1))

= ... all frequentist...

32



i Maximum likelihood score overfits!

[/

= Adding a parent never decreases score!!!
= Facts: H( X | Payg) = H(X) = I(X, Pay c)
H(X|AY=H(X|AUY)
(X Pay,gUY) > H(X) — H( X, | Pay g UY)
> H(X) — H( X | Paye)
= I( X, Pay; ¢)
= S0 score increases as we add edges!
= Best is COMPLETE Graph
= ... overfit !

33



‘_L Overfitting

s So far:

Find parameters/structure
that “fit” the training data

= If too many parameters,
will match TRAINING data well,

but NOT new instances

= Overfitting!

= Reqgularizing,
Bayesian approach, ...

Fir
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i Outline

= Constraint-based
= Score Based (Frequentist)

= Score Based (Bayesian)
=« Marginal posterior
= BIC approx'n
= Consistency
= BDE Priors
= Learning General DAGs
= Model Averaging

35



Bayesian Score

= Prior distributions:
= Over structures
= Over parameters of a structure
Goal: Prefer simpler structures... regularization ...

= Posterior over structures given data:

= P(9) o P(DIG) x P(G)

Posterior

Likelihood

Prior over Graphs

/ Prior over Parameters

« P(D|Q) = [, P(D | G, ©) P(B|Q) dO

log P(G | D) ~ log P(G)

l0g

[ P(D | 6.609)P(0]9)dog
g



Towards a decomposable
Bayesian score

0g P(G | D) ~ log P(G)+log | P(D | G,05)P(8g|9)ddg
g

= Local and global parameter independence 6, ., | 0

= Prior satisfies parameter modularity:

« If X. has same parents in G and G’, then parameters have same prior
C

A B A B
X X C ®(X; A,B) same in both structures

= Structure prior P(¢) satisfies structure modularity

= Product of terms over families
= Eg, P(Q) xx clél |GQ|=#edges; c<1

= ... then ... Bayesian score decomposes along families!

=« log P(¢Q|D) = X, ScoreFam( X | Pay : D) -



‘_L Factoring Marginal c;o%

P(Q)lgO) = j P('(l)l eXl 6Y|C}O) P( 6Xl 6Y | C}O) deX deY
= P(X[l]l Yy X[M]I Y[l]l Yy Y[M]I eXI eY|g0) P( eXI eY | QO) deX c:IOY

= | POILL, oy XIM] | iy, 6, BorGr) X
POYELT, - YIM] | 5, By Gn) P( Oy | B, Go) P(6y | Go) 6y B

s Asx[i] Ly[jl,x[1L6y, x[i(1LGyl6y, YI1LGyl6y, 6L 6y G

P(D|Gy) =

IHm P(x[m] | 65, x[1:m-1]) I, P(ylm] | 6, , y[1:m-1] ) P( 64 | Go) P(6y | Go) dB, d6y

<1 PC0y 1 @) T, POXIM] | 0, X[1:m-1]) dey

J'pCe, 1 o) I, PCyImI | 6, y[1:m-11) de,

38




Marginal Posterior

iven 6 ~ Beta(1,1),

what is probability of (H, T, T,H, H) ?
s P(f=H, f,=T, f5=T, f,=H, f-=H | 6 ~ Beta(1,1) )
= P(f,=H | 6 ~ Beta(1,1) ) x

P( f,=T, f;=T, f,=H, f.=H | f;=H, 6 ~ Beta(1,1) )
2 x P(f,=T, f5=T, f,=H, f-=H | 6 ~ Beta(2,1) )
2 x P(f,=T | 6 ~ Beta(2,1) ) x
P(f;=T, f,=H, f-=H | f,=T, 6 ~ Beta(2,1) )

2 x 1/3 x P(f;=T, f,=H, f-=H | 6 ~ Beta(2,2) )
12 x 1/3 x 2/4 x 2/5 x P(fs=H | 6 ~ Beta(2,3) )
12 x 1/3 x 2/4 x 2/5 x 3/6

=1 x 2 x 1 x 2 x 3 X4 x3D
3 heads 2 tails 5 flips 3




Marginal Posterior... con't

= Given 6 ~ Beta(a,b) , whatisP[ (H, T, T,H, H) ]?
s P( fi=H, f,=T, f5=T, f,=H, f-=H | 6 ~ Beta(a,b) )
= P(f;=H | 6 ~ Beta(a,b) ) x
P( f,=T, f5=T, f,=H, f.=H | f;=H, 6 ~ Beta(a,b) )

= a/(a+b) x
P( f,=T, f5=T, f,=H, fs=H | 6~Beta(a+1,b) )
a b b+1 a+l1 a+?2

a+b a+b+1 a+b+2 a+b+3 a+b+4
axX(a+D)Xx(a+2) X bx(b+1)
(a+b)a+b+D)(a+b+2)a+b+3)(a+b+4)

I'le, +my,) I'(a; +m;) I'le, +a,)
I'(},) I'(er;,) I(o,+o,+m, +m;) 40




i Marginal, vs Maximal, Likelihood

sData D=(H, T, T,H H)
= MLE: 6" = argmax, P(D | 6 ) = 3/5

= ... Here: P(D | 67 ) = (3/5)3 (2/5)% ~ 0.035

= Bayesian, ...from Beta(1,1),

Og(1 1) » ~ Beta(4, 3) 0.035 -

= Expected posterior: |

E[ 01,1y 9 1 = 4/7

= Marginal
ADIE) [A+3) T+  TU+])
) [ [A+1+3+2)

P E}P{G

= 0.017

A Iﬂ 0.6 0.8
4/7 = 0.57



‘_L Marginal Probability of Graph

0g P(D | G) = log | P(D|G,05)P(0g|9)ddg
g

= Given complete data, independent parameters, ...

e,,) [, +MLxu])
DIG)= U :
ano=|] 11 e, +1\4[u,-]))46£(£) Nt )

i ul-eVa(P@(i )

42



i Marginal Probability = Validation Set!

« P(D|¢)=]1.PCEmM]|E1], ..., E[m-1], Q)
= Each P( ¢[m] | E[1], ..., E[m-1], @)

is prob of m” instance using parameters
learned from first m-1 instances

= kinda like cross validation:
Evaluate each instance,
wrt previous instance

= Suggests...

ﬁlogP(DlG) ~ EP*[logP(flG,D)

43



Average Training Log Likelihood
‘L vs Expected Log Likelihood

€, [eaP(X1&,0)]
LY

55
jﬁlugaﬂ[ﬂ | &)

10000 instances
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i Approx'n of Bayesian Score

= In general, Bayesian has difficult integrals

n For Dirichlet prior over parameters,
can use simple Bayes information criterion (BIC)
approximation

= In the limit, we can forget prior!

= Theorem: Given Dirichlet priors for a BN with
Dim(@) independent parameters, as m— oo:

max likelihood estimate for 6

\A logm __.
log P(D | G) =log P(D | G,0g)— Dim(G)+0(1)
- AN /
e e
likelihood score... regularizer...

45

prefers fully-connected graph penalizes edges




BIC approximation

logm

m BIC:Scoregic(G: D) =log P(D | G,60g)— Dim(G)

» Dim[G] = #parameters
= 2 2 DIm[ 6y;pa 7] = 25 (k-1) kiPa
» | X| =K
= Scales exponentially with #parents — Bad!

= As m grows, -log m “compensates”
= ... SO complex models become ok...

- _ logm .
m Scoregic(G: D) = mz I(X;,Pax, g)—m Z H(X;)— > Z Dim(P(X; | Pay, g))
(3 1 (3

_ - _
ScoreFamg;( X; | Pay;, D)
= m I(X;, Pay; ) — m H(X;) — V2 log m Dim[ P(I(X;, Pay, ) | .




iConsistency of BIC, Bayesian scores

= A scoring function is consistent if, for true model ¢,
as m—oo, With probability 1,
= ¢ maximizes the score

= All structures not J-equivalent to G¢" have strictly lower
score

= Theorem: BIC score (with Dirichlet prior) IS consistent
= Corollary: the Bayesian score is consistent
= What about likelihood score?

NO' True, Likelihood of optimal is MAX.
But fully-connected graph (which is NOT J-equiv) also max’s score!

Consistency is limiting behavior...
says nothing wrt finite sample size!!! 47




i Priors for General Graphs

= For finite datasets, prior is important!

= Prior over structure satisfying prior modularity
= Eg, P(Q) xx clél |GQ|=#edges; c<1

= What is good prior over a// parameters?

= K2 prior. fix oe R*, set By pay; ~ Dirichlet(c, ..., o)

« Effective sample size, wrt X ?
= If O parents: kxot
= If 1 binary parent: 2 kxa
= If d k-ary parents: kd kxa

=« S0 X, "effective sample size”depends on #parental assignments
= More parents = strong prior... doesn’t make sense!

= K2 is “inconsistent”

48



i Priors for Parameters

G,

O

0, ~ Beta(1, 1)

Oypex ™ Beta(1, 1)
Oy« ~ Beta(1, 1)

s Does this make sense?
= EffectiveSampleSize(6y,,) = 2
= But only 1 example ~ “+x" ??

G,

O,
X

©
O,

Oy, ~ Beta(1, 1)
Oy, ~ Beta(1, 1)

0, ~ Beta(1, 1)

= J-Equivalent structure

= What happens after [+X, -y] ?

= Should be the same!!

49



i Priors for Parameters

G,

(0
O

0, ~ Beta(1, 1)

P, (+x) =

2/3

Oy.x ~ Beta(1, 1)
Oy« ~ Beta(1, 1)

[+X= _y]

G,

9X|+y ~ Beta(1, 1)

M L [ 4 4\

X
Y
_

o

A

Po(+X) = Py(+X,+Y) + Py(+X,-y)
=1/3x % +2/3x2/3 = 11/18 !l

O

0, ~ Beta(1, 1)

G,

O

0, ~ Beta(2, 1)

Oy« ~ Beta(1, 2)
Oy« ~ Beta(1, 1)

G,

O,
X

©
O,

Oy, ~ Beta(1, 1)
Oy, ~ Beta(2, 1)

0, ~ Beta(1, 2)

50



1

O

0, ~ Beta(2, 2)

Oypex ™ Beta(1, 1)
Oy« ~ Beta(1, 1)

i BDe Priors

= This makes more sense:
= EffectiveSampleSize(6y,, ) = 2
= Now =3 2 examples ~ “+x" ??

G,

O,
X

©
O,

Oy, ~ Beta(1, 1)
Oy, ~ Beta(1, 1)

0, ~ Beta(2, 2)

= [-Equivalent structure
= Now what happens after

[+Xl _Y] ?

51



i BDe Priors

G,

@ 0, ~ Beta(2, 2)

| P.(+X) = 3/5
@ 0y, ~ Beta(1, 1)
Oyix ~ Beta(1, 1)
[+X, -]

G,
()| =Bt 1

—

P,(+X) = Po(+X,+Y) + P,(+X,-y)
=2/5x1 +3/5%x2/3 = 3/5

O

0, ~ Beta(2, 2)

0, ~ Beta(3, 2)

Oy« ~ Beta(1, 2)
Oy« ~ Beta(1, 1)

Oy, ~ Beta(1, 1)
Oy, ~ Beta(2, 1)

0, ~ Beta(2, 3)

52



i BDe Prior

= View Dirichlet parameters as “fictitious samples”
— equivalent sample size

= Pick a fictitious sample size m’

= For each possible family,
define a prior distribution P(X;,Pay;)
= Represent with a BN
= Usually independent (product of marginals)
= P(X, Pay; ) = P’ (X)) Ilyepapa; P'(X))

= P(O[x | Pay; = u ) = Dir( m" P'(x=1, Pay, = u), ..., m" P(x;=k, Pay; = u) )
= Typically, P'(X)) = uniform

53



Score Equivalence

» If @and ¢’ are J-equivalent, then they have same score

= Theorem 1: Maximum likelihood score and BIC score satisfy
score equivalence.

= Theorem 2:
If
= P(¢) assigns same prior to J-equivalent structures
(eg, edge counting), and
= each parameter prior is Dirichlet

then

= Bayesian score satisfies score equivalence
if and only if
prior over parameters represented as a BDe prior! 54



iLearning General DAGS

= In a tree, every node only has <1 parent

= Theorem:

= The problem of learning a BN structure with at most ¢
parents that optimizes BDe is NP-hard for any (fixed) d>2

= Most structure learning approaches use heuristics
= Exploit score decomposition

= (Quickly) Describe two heuristics that exploit decomposition
in different ways
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Learn BN structure using local search

. Local search, Select using
Startlng_ from possible moves: favorite score
Chow-Liu tree Only if acyclic!!

- Add edge f cdol
» Delete edge >/ AJ‘Q
« Invert edge O—"i
5
/\ & Computed locally (= efficiently)
b o thanks to Score Decomposition...
y % \\, FamScore gklxl
0 O oA pf
6 6or 10
0/ / / A:/‘Il
(B G.
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Exploit score decomposition in
local search

= Add edge:

= Re-score only one family!

= Delete edge:
= Re-score only one family!

= Reverse edge
= Re-score only two families

57



KL Divergence
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i Order search versus Graph search

= Order search advantages

= For fixed order, optimal BN — more “globa
optimization

= Space of orders (n!) much smaller than space of
graphs o)

|II

= Graph search advantages

= Not restricted to k parents
= Especially if exploiting CPD structure, such as CSI
=« Cheaper per iteration

= Finer moves within a graph
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i Bayesian Model Averaging

= So far, we have selected a single structure

= But, if you are really Bayesian...
must average over structures

= Similar to averaging over parameters
0g P(D | G) = log [ P(D | ,05)P(6g]9)dbg
g

= P(G|D) — probability for each graph

= Inference for structure averaging is very hard!!!
= Clever tricks in KF text
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:LSummary wrt Learning BN Structure

= Decomposable scores
= Data likelihood
« Information theoretic interpretation
= Bayesian
= BIC approximation

s Priors
= Structure and parameter assumptions
= BDe if and only if score equivalence

= Best tree (Chow-Liu)
= Best TAN

= Nearly best k-treewidth (in O(Nk+1))
= Bayesian model averaging 61



