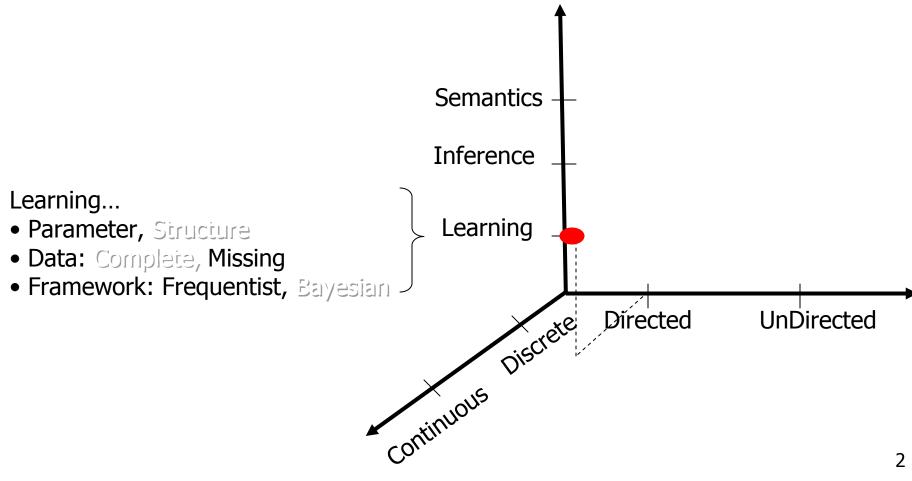


Learning Bayesian Nets Parameters from Partial Data

KF, Chapter 18-18.2

Space of Topics



Learning Belief Net Parameters from Partial Data

- Framework
 - Why is the data missing? ... MCAR, MAR, ...
 - Why more challenging?
- Approaches
 - Gradient Ascent
 - EM
 - Gibbs

Learning from Missing data

- To find good Θ , need to compute $P(\Theta, S \mid G)$
- Easy if ...

$$S = \left\{ \begin{array}{cccc} c_1 \colon & \langle & & \cdots & c_{1N} \rangle \\ c_2 \colon & \langle c_{21} & \cdots & & \rangle \\ \vdots & \langle \colon & c_{ij} & \vdots \rangle \\ c_m \colon & \langle c_{m1} & \cdots & c_{mN} \rangle \end{array} \right\} \quad \text{incomplete}$$

- What if S is incomplete
 - Some $c_{ij} = *$
 - "Hidden variables" (X_{K} never seen: $C_{iK} = * \forall i$)
- Here:
 - Given fixed structure
 - Missing (Completely) At Random:
 Omission not correlated with value, etc.
- Approaches:
 - Gradient Ascent, EM, Gibbs sampling, ...

Why is the data missing?

- Estimating $P(Heads) = \theta$
 - Earlier: data = [H, T, H, H, ..., T]
 - Now: data = [H, T, ?, ?, H, ..., T]
- Thumbtack falls off table, ...not recorded
 - No information in "?"

VS

- Recorder doesn't like "Tails", and so omits those values
 - Here, "?" means "Tails" lots of info!

tails

heads

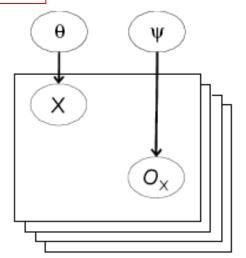
Formal Model

- X = {X₁, X₂, ..., X_n} : set of r.v.s
 O_X = {O₁, O₂, ..., O_n} : corresponding set of *observability variables*
- $P_{\text{miss}}(\mathbf{X}, \mathbf{O}_{\mathbf{X}}) = P(\mathbf{X}) \cdot P_{\text{miss}}(\mathbf{O}_{\mathbf{X}} \mid \mathbf{X})$
- P(X) parameterized by θ
 P_{miss}(O_X | X) parameterized by ψ
- $Y = \{Y_1, Y_2, ..., Y_n\} \quad Val(Y_i) = Val(X_i) \cup \{?\}$ $Y_i = \begin{cases} X_i & \text{if } + o_i \\ ? & \text{if } o_i \end{cases}$

Uncorrelated Missingness

Thumbtack falls off table, ...not recorded

- Here, $\mathbf{X} \perp \mathbf{O}_{\mathbf{X}}$; $\theta \perp \psi \mid D$
 - P(Y= H) = θ ψ P(Y= T) = $(1 - \theta)$ ψ P(Y= ?) = $1 - \psi$



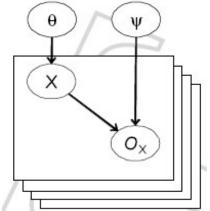
- Assuming D contains #[H], #[T], #[?]
 - $L[\theta, \psi : D] = \theta^{\#[H]} (1-\theta)^{\#[T]} \psi^{\#[H]+\#[T]} (1-\psi)^{\#[?]}$
 - $\theta^{(MLE)} = \#[H] / (\#[H] + \#[T])$
 - $\psi^{(MLE)} = (\#[H] + \#[T]) / (\#[H] + \#[T] + \#[?])$

Simple frequencies!!

Correlated Missingness

Recorder doesn't like "Tails", and so omits those values

- Here, $\neg [\theta \perp \psi \mid D]$
 - $\psi_{Ox|H}$ = prob of seeing output, if heads = P(Y=H | X=H) $\psi_{Ox|T}$ = P(Y=T | X=T)



• P(Y= H) =
$$\theta \psi_{Ox|H}$$

P(Y= T) = $(1 - \theta) \psi_{Ox|T}$
P(Y= ?) = $\theta (1 - \psi_{Ox|H}) + (1 - \theta) (1 - \psi_{Ox|T})$

- Assuming D contains #[H], #[T], #[?]
 - $L[\theta, \psi : D] = \theta^{\#[H]} (1-\theta)^{\#[T]} \psi_{Ox|H}^{\#[H]} \psi_{Ox|T}^{\#[T]} (\theta (1-\psi_{Ox|H}) + (1-\theta) (1-\psi_{Ox|T}))^{\#[?]}$

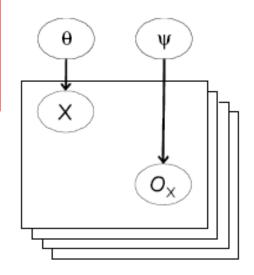
What a mess! Does not factor, so no easy MLE values...

Missing Completely At Random

A missing data model P_{missing} is missing completely at random (MCAR) if

$$P \models \mathbf{X} \perp \mathbf{O}_{\mathbf{X}}$$

- Plausible ...
 - Coffee spills on paper
 - Flecks of dusts in images
- Here, can solve separately for
 - θ (for P(**X**))
 - ψ (for $P_{miss}(O_X | X)$)

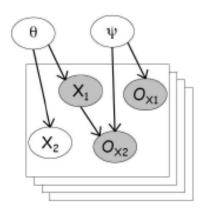


MCAR is ... too strong!

- Not MCAR:
 - test results are missing if not ordered... perhaps as patient too sick or too healthy
 - ⇒ Missingness-of-test is correlated with test-outcome
- MCAR is sufficient for decomposition of likelihood...
 - but NOT necessary
- Just need

Observation mechanism is CONDITIONALLY INDEPENDENT of variables, GIVEN OTHER OBSERVATIONS

Weaker Condition



- Flip coin X1, X2
- If X1=Heads, reveal outcome of X2
- Here, $P \models O_{X2} \perp X_2 \mid X_1$
 - Outcomes of both coins INDEPENDENT of whether hidden, given observations
- Use $\theta_{X1} \theta_{X2} \quad \psi_{Ox2|H} \quad \psi_{Ox2|T}$ (where $\theta_{X1} \perp \theta_{X2}$)

$$\begin{split} L(\theta:\mathcal{D}) &= \theta_{X_1}^{M[Y_1 = Heads]} (1 - \theta_{X_1})^{M[Y_1 = Tails]} \\ &= \theta_{X^2}^{M[Y_2 = Heads]} (1 - \theta_{X_2})^{M[Y_2 Tails]} \\ &= \psi_{O_{X_2}|H}^{M[Y_1 = Heads, Y_2 = Heads] + M[Y_1 = Heads, Y_2 = Tails]} (1 - \psi_{O_{X_2}|H})^{M[Y_1 = Heads, Y_2 = \mathcal{I}]} \\ &= \psi_{O_{X_2}|Tails}^{M[Y_1 = Tails, Y_2 = Heads] + M[Y_1 = Tails, Y_2 = Tails]} (1 - \psi_{O_{X_2}|Tails})^{M[Y_1 = Tails, Y_2 = \mathcal{I}]} \end{split}$$

- Four factors, each w/ just 1 parameter
 - ⇒ can solve independently!

Missing At Random

- Given tuple of observations y, partition variables X into
 - observed $X_{obs}^y = \{ X_i \mid y_i \neq ? \}$
 - hidden $X_{hid}^y = \{ X_i \mid y_i = ? \}$
- Missing data model P_{miss} is missing at random (MAR) if
 ∀ y w/ P_{miss} (y)>0 and ∀ x^y_{hid} ∈ Val(X^y_{hid})

$$P_{\text{miss}} \models o_X \perp x^y_{\text{hid}} \mid x^y_{\text{obs}}$$

$$P_{\text{miss}}(x^{y}_{\text{hid}} \mid x^{y}_{\text{obs}}, O_{X}) = P_{\text{miss}}(x^{y}_{\text{hid}} \mid x^{y}_{\text{obs}})$$

Meaning of MAR...

 \blacksquare MAR \Rightarrow

$$P_{\text{miss}}(x^{y}_{\text{hid}} \mid x^{y}_{\text{obs}}, O_{X}) = P_{\text{miss}}(x^{y}_{\text{hid}} \mid x^{y}_{\text{obs}})$$

 \Rightarrow

$$P_{\text{miss}}(y) = P_{\text{miss}}(O_X \mid x^{y}_{\text{obs}}) P(x^{y}_{\text{obs}})$$

Depends on ψ

Depends on θ

If
$$P_{miss}$$
 is MAR, then $L(\theta, \psi; D) = L(\theta; D) L(\psi; D)$

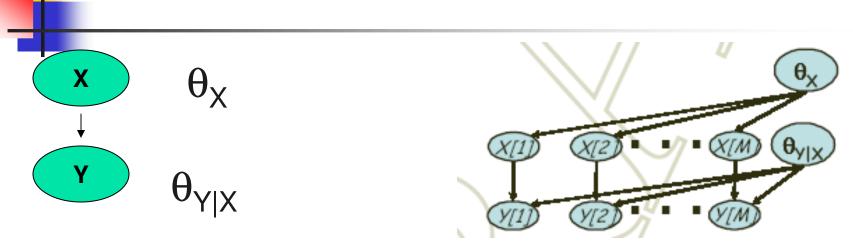
 $MAR \Rightarrow$

Can ignore observation model when learning model parameters!

Comments on MAR...

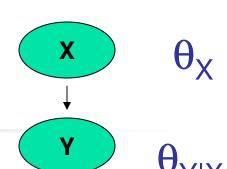
- There are many MAR situations but ...
- BP_Sensor measures blood pressure
 - BP_Sensor can fail if patient is overweight
 - Obesity is relevant to blood pressure
 - So... "non-observation" is informative not MAR
 - (But if we know Weight & Height, then O_B ⊥ B | {W,H})
- Probably no X-ray X if no broken bones,
 - So $\neg (O_x \perp X)$, not MAR
 - But if "primary complaint" C known, O_x ⊥ X | C ... MAR!
- We will assume MAR from now on...

Bayesian Learning for 2-node BN



- Every path between $\theta_X \theta_{YIX}$ is:
 - $\theta_X \to X[m] \to Y[m] \leftarrow \theta_{Y|X}$ Partial
- Complete data
 - \Rightarrow values for **D** = {X[1],..., X[M], Y[1], ..., Y[M]}
 - ⇒ path is NOT active

Example ...



- Complete data:
- Likelihood:

$$\bullet_{\mathsf{x}}^{29} (1-\theta_{\mathsf{x}})^{14} \, \theta_{\mathsf{v}|+\mathsf{x}}^{10} \, (1-\theta_{\mathsf{v}|+\mathsf{x}})^{4} \, \theta_{\mathsf{v}|-\mathsf{x}}^{13} \, (1-\theta_{\mathsf{v}|-\mathsf{x}})^{16}$$

+x, +y: 13

+x, -y: 16

-x, +y: 10

-x, -y: 4

- Easy to solve
- What if don't know X[1]
 - (Assume Y[1]=+)
 - Likelihood:

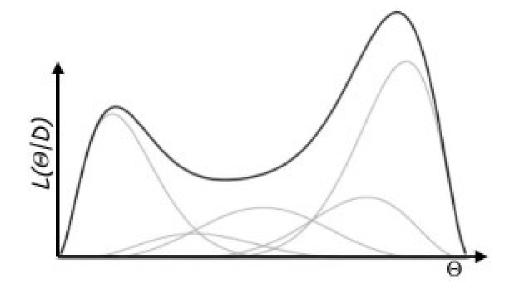
$$\theta_{x}^{29}(1-\theta_{x})^{13}\,\theta_{y|+x}^{10}\,(1-\theta_{y|+x})^{4}\,\theta_{y|-x}^{12}\,[\theta_{x}\,\theta_{y|+x}^{12}+(1-\theta_{x})\,\theta_{y|-x}^{12}]$$

- Not as nice...
- If k missing values, L(...; D) could have many terms...

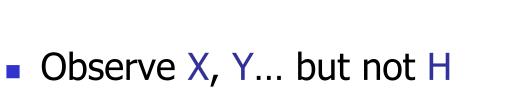
Geometric Visualization

- Complete data: unimodal
- Incomplete data:

... sum of unimodals... which is *multimodal*!



Problems with Hidden Variables



•
$$P(+x, -y) = \sum_{h} P(h) P(+x|h) P(-y|h)$$

Likelihood

$$L(\theta : D) = \prod_{x,y} [\sum_{h} P(h) P(x|h) P(y|h)]^{\#(x,y)}$$

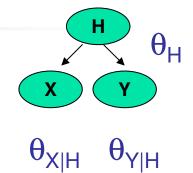
Cannot decouple estimate of P(x|h) from P(y|h)

Н

 θ_{XIH}

 θ_{H}

Problems with Partial Data



In general, likelihood over iid data:

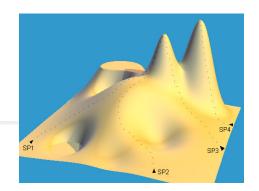
$$L(\theta : D) = \prod_{m} (\sum_{h \mid m} P(o[m], h[m] \mid \theta)$$

- Involves evaluating likelihood function ... can be arbitrary BN inference ⇒INTRACTABLE!
- More bad news: Likelihood function is...
 - not unimodal
 - does not have closed form representation
 - is not decomposable as product of likelihoods for diff parameters

Learning Belief Net Parameters from Partial Data

- Framework
 - Why is the data missing? ... MCAR, MAR, ...
 - Why more challenging?
- Approaches
 - Gradient Descent
 - EM
 - Gibbs

Gradient Ascent



- Want to maximize likelihood
 - $\theta^{(MLE)} = \operatorname{argmax}_{\theta} L(\theta : D)$
- Unfortunately...
 - **L**(θ : D) is nasty, non-linear, multimodal fn
 - So...
- Gradient-Ascent
 - ... 1st-order Taylor series

$$f_{\mathrm{obj}}(\theta^{\text{\tiny{o}}}) \approx f_{\mathrm{obj}}(\theta^{0}) + (\theta - \theta^{0})^{T} \nabla f_{\mathrm{obj}}(\theta^{0})$$

Need derivative!

```
Procedure Gradient-Ascent ( \theta^1, // Initial starting point f_{\mathrm{obj}}, // Function to be optimized \delta // Convergence threshold ) 1 \quad t \leftarrow 1 \\ 2 \quad \mathrm{do} \\ 3 \quad \theta^{t+1} \leftarrow \theta^t + |\nabla f_{\mathrm{obj}}(\theta^t)| \\ 4 \quad t \leftarrow t+1 \\ 5 \quad \mathrm{while} \ \|\theta^t - \theta^{t-1}\| > \delta \\ 6 \quad \mathrm{return} \ (\theta^t)
```

Gradient Ascent [APN]

View:
$$P_{\Theta}(S) = P(S | \Theta, G)$$
 as fn of Θ

$$\frac{\partial \ln P_{\Theta}(S)}{\partial \theta_{ijk}} = \sum_{\ell=1}^{m} \frac{\partial \ln P_{\Theta}(c_{\ell})}{\partial \theta_{ijk}} = \sum_{\ell=1}^{m} \frac{\partial P_{\Theta}(c_{\ell})/\partial \theta_{ijk}}{P_{\Theta}(c_{\ell})}$$

$$\frac{\partial P_{\Theta}(c_{\ell})/\partial \theta_{ijk}}{P_{\Theta}(c_{\ell})} = \frac{P_{\Theta}(c_{\ell} | v_{ik}, pa_{ij})P_{\Theta}(pa_{ij})}{P_{\Theta}(c_{\ell})} = \frac{P_{\Theta}(v_{ik}, pa_{ij} | c_{\ell})}{\theta_{ijk}}$$

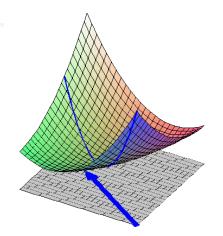
```
Alg: fn Basic-APN( BN = \langle G, \Theta \rangle, S ): (modified) CPtables
     inputs: BN, a Belief net with CPT entries
                 D, a set of data cases
  repeat until \Delta\Theta \approx 0
                                                          Note: Computed P(v_{ik_r} pa<sub>ij</sub> | c_r) to deal with c_r
     \Lambda\Theta \leftarrow 0
                                                                        ⇒ can "piggyback" computation
    for each c_r \in S
        Set evidence in BN to c<sub>r</sub>
        For each X<sub>i</sub> w/ value v<sub>ik</sub>, parents w/ j<sup>th</sup> value pa<sub>ii</sub>
        \Delta\Theta_{ijk} += P( v_{ik}, pa_{ij} | c_r ) / \theta_{ijk}
      \Theta += \alpha \Delta \Theta

    ⊕ ← project    ⊕ onto constraint region

return(⊕)
```


- Lots of Tricks for efficient ascent
 - Line Search
 - Conjugate Gradient
 - · ...

Take Cmput551, or optimization



Constraints

- $\Theta_{ijk} \in [0,1]$
- But ... Θ_{ijk} += $\alpha \Delta \Theta_{ijk}$ could violate
- Use $\Theta_{ijk} = \exp(\lambda_{ijk}) / \sum_{r} \exp(\lambda_{ijr})$
- Find best λ_{ijk} ... unconstrained ...

Expectation Maximization (EM)

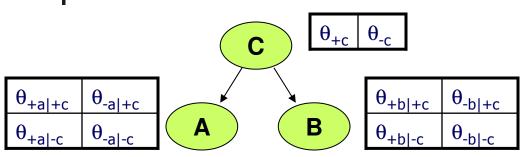
- EM is designed to find most likely θ, given incomplete data!
- Recall simple Maximization needs counts:

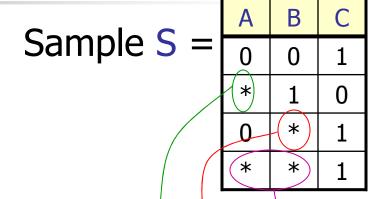
$$\#(+x, +y), ...$$

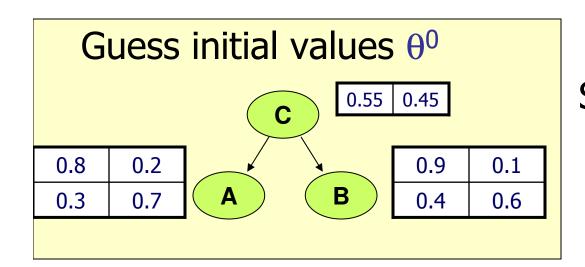
But is instance [?, +y] in ... #(+x, +y)? ... #(-x, +y)?

- $\theta_{\mathsf{Y}|\mathsf{X}}$
- Why not put it in BOTH... fractionally?
 - What is weight of #(+x, +y)?
 - $P_{\theta}(+x + y)$, based on current value of θ

EM Approach – E Step





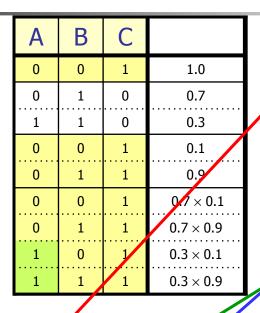


Set S(0) =
$$\begin{vmatrix} A & B & C \\ 0 & 0 & 1 & 1.0 \\ 0 & 1 & 0 & 0.7 \\ 1 & 1 & 0 & 0.3 \\ 0 & 0 & 1 & 0.1 \\ 0 & 1 & 1 & 0.9 \\ \hline 0 & 0 & 1 & 0.7 \times 0.1 \\ 0 & 1 & 1 & 0.7 \times 0.9 \\ 1 & 0 & 1 & 0.3 \times 0.1 \\ 1 & 1 & 1 & 0.3 \times 0.9$$

EM Approach – M Step

•Use fractional data:

$$S^{(0)} =$$



		ı	1		$\theta_{+b +c}$	$\theta_{-b +c}$
	$\theta_{+a +c}$	$\theta_{-a +c}$	A	В	$\theta_{+b -c}$	$\theta_{-b -c}$
`	$\theta_{+a -c}$	θ _{-a -c}				
			/ /			
		//				

•New estimates:

$$\hat{\theta}_{+a|+c}^{(1)} = \frac{\#(+a,+c)}{\#(+c)} = \frac{(0.3 \times 0.1) + (0.3 \times 0.9)}{1 + 0.1 + 0.9 + (0.7 \times 0.1) + (0.7 \times 0.9) + (0.3 \times 0.1) + (0.3 \times 0.9)} = 0.1$$

$$\theta_{+b|+c}^{(1)} = \frac{\#(+b,+c)}{\#(+c)} = \frac{0.1 + (0.7 \times 0.9) + (0.3 \times 0.9)}{3} = 0.33$$

$$\widehat{\theta}_{+c}^{(1)} = \frac{\#(+c)}{\#(\{\})} = \frac{1.0 + (1.0) + (1.0)}{4} = 0.75$$

EM Approach – M Step

•Use fractional data:

$$S^{(0)} =$$

Α	В	С	
0	0	1	
0	1	0	
1	1	0	
0	0	1	
0	1	1	
0	0	1	
0	1	1	
1	0	1/	
1	1	1	

	1	1		
1	0	1		
1	1	1		
_ /				
) _	#(+a	(a,+c)		$(0.3 \times 0.1) + (0.3 \times 0.9) = 0.1$
1+c	# (4		$\frac{1}{1+0}\frac{1+0}{1+0}$	$\frac{10+(0.7\times0.1)+(0.7\times0.0)+(0.3\times0.1)+(0.3\times0.0)}{10+(0.7\times0.1)+(0.3\times0.0)}=0.1$

 $\theta_{\text{-a}|\text{+c}}$

 $\theta_{\text{+a}|\text{+c}}$

•New estimates:

$$\widehat{\theta}_{+b|+c}^{(1)} = \frac{\#(+b)}{\#(+c)}$$
Then
$$\mathbb{E}$$

• E-step: re-estimate distributions over the missing values based on these new $\theta^{(1)}$ values

$$\hat{\theta}_{+c}^{(1)} = \frac{\#(+c)}{\#(\{\})} =$$

M-step: compute new $\theta^{(2)}$ values, using statistics based on these new distribution

 $\theta_{+b\underline{|+c}}$

 $\theta_{-b|+c}$

 θ_{-bl-c}

EM Steps

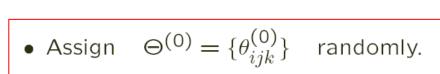
E step:

- Given parameters θ ,
- find probability of each missing value
 - ... so get E[N_{ijk}]

M step:

- Given completed (fractional) data
 - based on E[N_{ijk}]
- find max-likely parameters θ

EM Approach



• Iteratively, $k = 0, \dots$

E step: Compute EXPECTED value of N_{ijk} , given $\langle \mathsf{G}, \Theta^k \rangle$

$$\widehat{N}_{ijk} = E_{P(x|S,\Theta^k,G)}(N_{ijk}) = \sum_{c_{\ell} \in S} P(x_i^k, \mathbf{pa}_i^j | c_{\ell}, \Theta^k, S)$$

M step: Update values of Θ^{k+1} , based on \hat{N}_{ijk}

$$\theta_{ijk}^{k+1} = \frac{\hat{N}_{ijk} + 0}{\sum_{k=1}^{r_i} (\hat{N}_{ijk} + 0)}$$

... until
$$\|\Theta^{k+1} - \Theta^k\| \approx 0$$
.

• Return Θ^k

1. This is ML computation; MAP is similar

$$-"0" \rightarrow \alpha_{ijk}$$

- 2. Finds local optimum
- 4. Views each tuple with k "*"s as $O(2^k)$ partial-tuples 3. Used for HMM

Facts about EM ...

- Always converges
- Always improve likelihood
 - L($\theta^{(t+1)}$: D) > L($\theta^{(t)}$: D)
 - ... except at stationary points...
- For CPtable for Belief net:
 - Need to perform general BN inference
 - Use Click-tree or ClusterGraph
 ... just needs one pass
 (as N_{ijk} depends on node+parents)

Gibbs Sampling

ullet Let $S^{(0)}$ be COMPLETED version of S, randomly filling-in each missing c_{ii}

Let
$$d_{ij}^{(0)}=c_{ij}$$
 If $c_{ij}=*$, then $d_{ij}^{(0)}=\mathrm{Random}[\;\mathrm{Domaln}(X_i)\;]$

- For k = 0...
 - Compute $\Theta^{(k)}$ from $S^{(k)}$ [frequencies]
 - Form $S^{(k+1)}$ by...
 - $* d_{ij}^{k+1} = c_{ij}$
 - * If $c_{ij}=*$ then

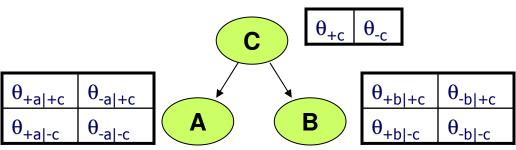
Let d_{ij}^{k+1} be random value for X_i , based on current distr Θ^k over $Z-X_i$

• Return average of these $\Theta^{(k)}$'s

Note: As $\Theta^{(k)}$ based on COMPLETE DATA $S^{(k)}$ $\Rightarrow \Theta^{(k)}$ can be computed efficiently!

"Multiple Imputation"

Gibbs Sampling – Example



New

$$S^{(1)} =$$

Flip 0.3-coin:

Flip 0.9-coin:

Flip 0.8-coin:

Flip 0.9-coin:

Α	В	С
0	0	1
0	1	0
0	1	1
1	1	1

Guess initial values θ^0						
	0.55 0.45					
0.8	0.2			0.9	0.1	
0.3	0.7	A	B	0.4	0.6	

Then

- Use $S^{(1)}$ to get new $\theta^{(2)}$ parameters
- Form new $S^{(2)}$ by drawing new values from $\Theta^{(2)}$

Gibbs Sampling (con't)

- Algorithm: Repeat
 - Given COMPLETE data $S^{(i)}$, compute new ML values for $\{\theta_{iik}^{(i+1)}\}$
 - Using NEW parameters, impute (new) missing values S(i+1)
- Q: What to return?

AVERAGE over separated ⊕(i)'s

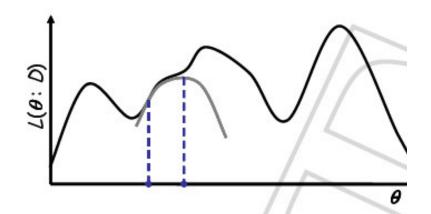
- eg, $\Theta^{(500)}$, $\Theta^{(600)}$, $\Theta^{(700)}$, ...
- Q: When to stop?

When distribution over ⊕(i)s have converged

- Comparison: Gibbs vs EM
 - + EM "splits" each instance
 ...into 2^k parts if k *'s
 - EM knows when it is done, and what to return

General Issues

- All alg's are heuristic...
- Starting values θ
- Stopping criteria
- Escaping local maxima



So far, trying to optimize likelihood.
 Could try to optimize APPROXIMATION to likelihood...

Gaussian Approximation

```
( Assumes large amounts of data )
• Let g(\Theta) = \log[P(S \mid \Theta, G) \mid P(\Theta \mid G)]
   Let \tilde{\Theta}_{BN} = \arg \max_{\Theta} g(\Theta)
          ...also maximizes P(\Theta \mid G, S).
   With many samples,
          \tilde{\Theta}_{BN} \approx \arg \max_{\Theta} \{ P(S | \Theta, G) \}
• g(\Theta) \approx g(\tilde{\Theta}_{BN}) - \frac{1}{2}(\Theta - \tilde{\Theta}_{BN})A(\Theta - \tilde{\Theta}_{BN})^t
          (2^{nd}-order Taylor; A is neg. Hessian of g(\tilde{\Theta}_{BN})
   So...
          P(\Theta|G, S) \propto P(S|\Theta,G) P(\Theta|G)
          P(S \mid \tilde{\Theta}_{BN}, \mathsf{G}) P(\tilde{\Theta}_{BN} \mid \mathsf{G}) e^{\{(\Theta - \tilde{\Theta}_{BN})A(\Theta - \tilde{\Theta}_{BN})^t\}}
    ... which looks (approximately) Gaussian!

    Now use

          gradient descent or
                                                  EΜ
```

Note: Can often use values computed during inference!

- Missingness: MCAR vs MAR
- Approaches
 - Gradient Ascent
 - EM
 - Gibbs sampling
 - Multiple imputation

Jote covered: Bayesian methods
JMCMC, Variational, Particles, ...