Learning Bayesian Nets
Parameters from Partial Data

KF, Chapter 18-18.2

Some material taken from C Guesterin (CMU)
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Learning Belief Net Parameters
from Partial Data

= Framework
= Why is the data missing? ... MCAR, MAR, ...
= Why more challenging?

= Approaches
» Gradient Ascent
« EM
= Gibbs



‘L Learning from Missing data

To find good ©®, need to compute P(®, S | §)

Easy if .. e |
G — {':2.: ({':.21
:(
L em: (em1

What if S is incomplete
= Somec; = *

C'i-j

C1N
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= "Hidden variables” (X, never seen: ¢, = * V i)

Here:
= Given fixed structure

= Missing (Completely) At Random:

Omission not correlated with value, etc.

Approaches:

= Gradient Ascent, EM, Gibbs sampling, ...
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Why is the data missing?

= Estimating P(Heads) = 6 A

= Earlier: ¢
= Now: ¢

heads tails

- ‘
S

ata=[H, T,H H, ..., T]
ata=1[H,T,7?, 2, H,..T]

= humbtac

K falls off table, ...not recorded

= No information in “?”

VS

= Recorder doesn't like “Tails”, and
so omits those values

= Here, "?” means “Tails” — lots of info!



i Formal Model

s X ={X, X,, ..., X.} : setof r.v.s

Ox — {Ol, OZ, ERY On} :
corresponding set of observability variables

- Pmiss( X, OX) — P(X) ' Pmiss(ox ‘ X)

= P(X) parameterized by 6
P.i«<(Oy | X ) parameterized by v

s Y={Y,Y,, .. Y.} Val(Y) = Val(X) u{?}
X, 1t +o,

{ ?7 1f —o,



Uncorrelated Missingness

 Thumbtack falls off table, ...not recorded

= Here, X L Oy ;06 Ly |D

C P(Y=H)=9\|I
P(Y=T)=(1-06)y
P(Y=?)= 1—-y
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= Assuming D contains #[H], #[T], #[?]

= L[0, v : D] = 6#M (1— 0)#[T] y#HI+#[T] (1 — y )#[?]

« OME) = #[H] / (#[H] + #[T])

o yME = (#[H] + #[T]) / (#[H] + #[T] + #[?])

Simple frequencies!!




i Correlated Missingness

Recorder doesn’t like “Tails”, and so omits those values

= Here, =[ 6 Ly | D] &

__B,,f' JCT)
= Yo,y = Prob of seeing output, if heads i
= P(Y=H | X=H) (% l
Yoyt = PCY=T | X=T)

= PCY=H) = 0 youn
Pg Y= T; = (1=8) Yoy
PCY=7?) =6 (1= Wouu ) + (1-6) (1= woyr)

= Assuming D contains #[H], #[T], #[?]
- L[e r V- D] — e#[H] (1_ e)#[T] \VOle#[H] WOxlT#[T]
(9 (1 ~ Yox|H ) + (1 — 9) (1 B \VOxlT) )#[?]

What a mess! Does not factor, so no easy MLE values... 8




i Missing Completely At Random

A missing data model P sing IS
missing completely at random (MCAR)

if
PEX 1O,

. “ P
L _Il. \..
. .
X — D
. |
..‘. . o I'\-‘..\.- -..-'-.

= Plausible ...
= Coffee spills on paper

*

= Flecks of dusts in images 7

= Here, can solve separately for
= 06 (for P(X))

Y (fOI’ Pmiss (OX | X ) )



i MCAR is ... too strong !

= Not MCAR:

= test results are missing if not ordered...
perhaps as patient too sick or too healthy

= = Missingness-of-test is correlated with test-outcome

= MCAR is sufficient for decomposition of likelihood...

= but NOT necessary
= Just need

Observation mechanism is
CONDITIONALLY INDEPENDENT of variables,
GIVEN OTHER OBSERVATIONS
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i Weaker Condition

= Flip coin X1, X2 (O
s If X1—Heads, reveal outcome of X2 T

= Here, PE Oy, 1X, | X4

= Outcomes of both coins INDEPENDENT of whether hidden,
given observations

= Use 6y, Oy, Woon Woer (Where 8y, L 6y, )

L(O:D) = Q:"{:rl”-lZ“"'”J*"](l — By, )MIYi="oits]
H:‘::Lﬂrﬂ[‘r}"-:‘r""””"“"] [l . de,ﬂ};ﬁf[‘r'g'f',m.-,-]
?F"E':ﬂ:-i;”m!H'H:’M’H]J””[H:”"”’i’"'y‘q‘:'“”“"]{l — Yoy, |H}-‘"‘r['*'1=“'f'=*=f~'-‘f'ﬂ='f]

= Four factors, each w/ just 1 parameter

— can solve independently!
11



Missing At Random

= Given tuple of observations vy,
partition variables X into
= Observed XV, ={ X |y, #?}
= hidden Xv., = {X |y, =7}
s Missing data model P,.. is missing at random
(MAR) if
V'Y W/ Prics (Y)>0 and V xV,4 € Val(XVyg)

Pmiss B OX 1 thid ‘ Xyobs

Pmiss (thid ‘ XyobSI OX) — Pmiss (thid ‘ Xyobs)

12




Meaning of MAR...

= MAR =

Pmiss (thid ‘ XyobSI OX) — Pmiss (thid ‘ Xyobs)
o

Prmiss (y) =@(OX ‘ Xyobs) P( Xyobs)
T

Depends on v Depends on 6

If P, IS MAR, then
L(6, v; D) = L(6; D) L(w; D)
MAR =

Can ignore observation model when learning model parameters!



i Comments on MAR...

= There are many MAR situations but ...

= BP_Sensor measures blood pressure
= BP_Sensor can fail if patient is overweight
= Obesity is relevant to blood pressure
= S0... "non-observation” is informative — not MAR

= (But if we know Weight & Height,
then Oz L B | {W,H} )

= Probably no X-ray X if no broken bones,

= S0 (0O, L X), not MAR
= But if “primary complaint” C known, O, L X | C ... MAR!

s We will assume MAR from now on...

14



Bayesian Learning for 2-node BN

= Every path between 6y — By y is:
Partial

» Complete data
= values for D = {X[I;==X[M], Y[1], ..., Y[M] }
— path is NOF active

= STy D_




| Example ... ’ Ox
+Xx, +y: 13
= Complete data: AR @ Oy
= Likelihood: ey A
- eng(l - 6x)14 6y|+x10 (1- ey|+x)4 6y|-x13 (1- ey|-x
= Easy to solve

= What if dont know X[1]
= (Assume Y[1]=+)

= Likelihood:
eng(l o 6x)13 ey|+x10 (1' ey|+x)4 ey|-x1 ex 6y|+x + (1' ex) ey|—x]

= Not as nice...
= If k missing values, L(...; D) could have many terms...

16
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i Geometric Visualization

= Complete data: unimodal

= Incomplete data:
... sum of unimodals...
which is multimodal

L(8/D)
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Problems with Hidden Variables

Q Oy
/
= Observe X, Y... but not H
- 6X|H 6Y|H
= P(+X, -y) = 2., P(h) P(+x]h) P(-y|h)
= Likelihood

L(6 : D) = [ I, (X, P(h) P(x|h) P(y|h) J#C»
= Cannot decouple estimate of P(x|h) from P(y|h)

18



i Problems with Partial Data

/@2 o0
= In general, likelihood over iid data:
L(6 : D) = Iy (Znmy P(0[m], h[m] | 6) %H ewH

s Involves evaluating likelihood function ...
can be arbitrary BN inference =INTRACTABLE!

= More bad news: Likelihood function is...
= ot unimodal
» does not have closed form representation

= IS not decomposable as product of

likelihoods for diff parameters
19



Learning Belief Net Parameters
from Partial Data

= Framework
= Why is the data missing? ... MCAR, MAR, ...
= Why more challenging?

= Approaches
» Gradient Descent
« EM
= Gibbs

20



‘L Gradient Ascent

= Want to maximize likelihood M-
= O(MLE) = argmax, L(6 : D)
= Unfortunately...

= L(6 : D) is nasty, non-linear, multimodal fn

| SO Procedure Gradient-Ascent |
o' /) Initial starting point
I - fobj. // Function to be optimized
- Gradlent Ascent d // Convergence threshold

= ... 1st-order Taylor serie§ , ' ,_ |,

2 do
i t+1 L t . I
Fobi(67) 2= foni(8%) 4+ (0 — 0°)1V fopsl i f:¢+f+ V foby(6°)

JENEESEE while 10" — 0" | > 6
Need derivative! ~— 6 return (6')




Gradient Ascent [APN]

View: Pg(S)=P(S|©, G) as fn of ©

s 1Tt

i’j|ﬂp(§}(9) . Zl‘j|ﬂp(§].(f{) . Zl’jP@(Cf)X(jQUL

aa—ijk —1 C}Qijk —1 P@( Cy )
IPs(cp)/00;j _ Po( ¢ | vi, pay; ) Po( pa;; _ Po(vir,pay; | cr)
Pe(ce) Po(cr) Oijr

Alg: fn Basic-APN( BN = ( G, ® ), S ): (modified) CPtables
inputs: BN, a Belief net with CPT entries
D, a set of data cases
repeat until A® ~ 0
A® <~ 0
foreach c. € S
Set evidence in BN to c,
For each X; w/ value v,,, parents w/ j* value pa;
ABy += P(vy,Pay | ¢ ) / By
®+=o A0
® <+ project ® onto constraint region
return(®) 29

Note: Computed P( vy pa; | ¢, ) to deal with c,
=- can “piggyback" computation




Issues with Gradient Ascent

a Lots of Tricks for efficient ascent
= Line Search
= Conjugate Gradient

)

A
QARRKERR
R,

‘~\ %ﬁ’:’;‘;’? \%‘c e

Take Cmput551, or optimization

= Constraints
= Oy € [0,1]
- 2,0, =1
= But... © += o A®;, could violate
= Use Oy = exp( Ay )/ 2, exp(Ay; )
= Find best A ... unconstrained ...

23



i Expectation Maximization (EM)

= EM is designed to find most likely 0,
given incomplete data !

= Recall simple Maximization needs counts:
#(+X, 1Y), ...
= But is instance [?, +y] in ® Ox
L H(EX FY)? L #H(-X, HY)? Oy
= Why not put it in BOTH... fractionally ?
= What is weight of #(+x, +y)?
= P,( +x | +y), based on current value of 6

24



i EM Approach — E Step

@ 0, | 0.
O.aj+c | O-aj+c \‘ O4bj+c | O-pjc
6+a|-c e-a| C @ 6+b|-c e-b|-c
Guess initial values 6°
@ 0.55 | 0.45
0.8 0.2 \4 0.9 0.1
03 | 07 @ 0.4 | 06

A|lB|C
Sample S =[5 To 1
910
0 H{¥)] 1
* 1 ®]1
\
A|B|C
pl01] 10
Set S(0) = l ...... of. 07
0 0.3
0 ® 1 0.1
e 1/ ....... o
0.0 1| 07x01
0 1 1 0.7 x0.9
S8 B IR Bt
Lo o Bodeied




EM Approach — M Step

e+c e-c

A|B|C :

. 0 0 1 e+b|+c eb|+c
eUse fractional data: 0 0

0 1 0 - +b|-c b|
SO = |[°

0

0

[ury

#(+a,+c 0.3x0.1)+(0.3x0.9
eNew estimates: ‘ ( ( )+( )

1+0.1+40.9+(0.7x0.1)+ (0.7x0.9)+ (0.3x0.1) + (0.3x0. 9)
#(+ +c) 0.1+ (0.7x0. 9)+(O 3x0.9)

=0.33
#(+c)

#(+c) _L0+1.0+10) _
#({}) 4 '
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EM Approach — M Step

0, | O
A|lB|C
eUse fractional data: |->1 ° | * z+bl+c z-bm
0 1 0 +bl-c -b|-c
S0 = [.2.].0.
0 1
0 0
.

# / 0.3%0.1)+(0.3%0.9
eNew estimates: ‘ (ratc (0.3x0.1)+(0.3x0.9)

/é//1+0 1+0.9+(0.7x0.1)+(0.7%x0.9) + (0.3x0.1) + (0.3x 0. 9)
#(4F- Then
% #(+c m E-step: re-estimate distributions over the missing values
based on these new 61 values

#(+C) = M-step: compute new 6 values, using statistics based
#({ 1 on these new distribution

27



= Given parameters 0,
= find probability of each missing value
= ... SO get E[ Ny, |
= M step:

=« Given completed (fractional) data
= based on E[ Ny ]

« find max-likely parameters 6

28



‘L EM Approach

o Assign ©(0) = {Q,Eﬁg} randomly.

e [teratively, £t =0....

E step: Compute EXPECTED value of Njj,
given (G, 9F)

N = Ep(r 500Gy (Nigr) = Z P(xf,pal | c, ©",S)

CfES
M step: Update values of @*+1 based on Ny

ot = _ Nur+0
o 2k=1(Nijk 4;0)

... until |©F! ok

e Return ©F




i Facts about EM ...

= Always converges

= Always improve likelihood
s L(OEHD:D)Y>L(O6D:D)
= ... except at stationary points...

= For CPtable for Belief net:
= Need to perform general BN inference

= Use Click-tree or ClusterGraph
... just needs one pass
(as Nj, depends on node+parents)

30



Gibbs Sampling

e Let SO be COMPLETED version of S,
randomly filling-in each missing Cij

Let di)) = ey
If c;; = =, then d;_if:' = Random|[ Domain(X;) ]

e For &k = 0O..
— Compute @) from S%)  [frequencies]
— Form S+1) py. .
* di}"‘l = cyj
* IT ci; = * Then
Let dfjl be random value Tor X;,
based on current distr @F over Z — X;




i Gibbs Sampling — Example

0, | 6. New

o
O.aj+c | O-aj+c O4bj+c | O-pjc

O.1a1c | O-ac o O.1pc | O-bjc B
l ' @ . - a Flip 0.3-coin:
/Flip 0.9-coin:
Guess initial values 6° / Flip 0.8-coin:
Flip 0.9-coin:

/@ 0.55 | 0.45
0.8 0 \4 0.9 0.1

Ay 04 T o6

Then
= Use SO to get new 6(2) parameters
= Form new S(® by drawing new values from 6(%)

R Ol o o]lX>
= = = O]

= ([O(—=]10




i Gibbs Sampling (con't)

= Algorithm: Repeat
= Given COMPLETE data SO, compute new ML values for {6, (+!) }
= Using NEW parameters, impute (new) missing values S(+1)

= Q: What to return?

AVERAGE over separated 00)'s
= €g, @(500), @(600), @(700),
= Q: When to stop?
When distribution over ©()s have converged
= Comparison: Gibbs vs EM
= + EM “splits” each instance

...into 2k parts if k *'s
= — EM knows when it is done, and what to return

33



i General Issues

= All alg’s are heuristic...
= Starting values 6
= Stopping criteria
= Escaping local maxima

L(g: D)

= SO0 far, trying to optimize likelihood.
Could try to optimize APPROXIMATION
to likelihood...

34



‘L Gaussian Approximation

( Assumes large amounts of data )

e Let g(@) =log[P(S5|©.G) P(e|G)]
Let © gy arg maxe g(e)
..also maximizes P © | G,

S ).
WWIth many samples,

Opny = ardmMaxe{PP(S|©.G)}

e g(©) = g(Opn) — 3(© — Spn)A(S — Opn)°

(2nd-order Taylor; A Is neg. Hesslan of g(Sgx))
S0O.

P(O|G, S)x P(S]|©.G6) P(©|G)
P(S|Sgn.G) P(SOgyn | Glel(®@—San)A(S—San)'}

which looks {appraxlmately} Gaussian!

e MNoOow use

gradient descent or E M

MNote: Can often use values computed during IntTerence!
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i Summary

= Missingness: MCAR vs MAR

= Approaches
= Gradient Ascent
« EM

= Gibbs sampling
= Multiple imputation
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