Reinforcement Learning

[Chapter 13]
[R&N, Ch20]; [Barto/Sutton]; [Kaelbling *et al.* survey]
[TGD, "4 Current Trends", 1997]

- Motivation: Control learning (backgammon)
- Framework
 - Markov Decision Process
 - Computing Optimal Policy (given Model)
 - Policy Iteration (Evaluating fixed policy)
 - Value Iteration
- Extensions ⇒ Reinforcement Learning
 - 1. Stochastic approx to backups TD-learning, $TD(\lambda)$ -learning
 - 2. Value function approximation
 - 3. Model-free learning Q-learning
- Topics

Reinforcement Learning

```
So far... Learning \equiv "classification learning" \approx "function approx": Agent receives explicit training data \{\langle x_i, f(x_i) \rangle\}_i seeks h(\cdot) \approx f(\cdot)
```

What if feedback is not so clear/immediate?
 Less generous environment:

Eg: Playing a game:

- 1. No "teacher" providing examples
- 2. Feedback only after many actions

```
Final "reward" ("reinforcement", "feedback"): win / loss / draw
```

Agent NEVER told

- o correct action, nor even
- which individual actions good/bad

Backgammon World

Task: Learn to play backgammon

- 1. Given $\{ \langle board_i, optAction_i \rangle \}$ Standard learning... f: board \mapsto optAction
- 2. Given $\{ \langle board_i, utility_i \rangle \}$... utility \approx chance of winning
 Standard learning... u: board $\mapsto \Re$ (then take action producing best utility)
- 3. Given $\{\langle \underline{\mathbf{FINAL}} \mathsf{board}_i, \mathsf{utility}_i \rangle \}$:
 Only feedback in final state: $\{\mathsf{Win}, \mathsf{Loss}\} \}$
- ⇒ Use Reinforcement learning to compute utility for intermediate states!

TD-Gammon

[Tesauro, 1995]

- Learn to play Backgammon
- Immediate reward
 - +100 if win
 - -100 if lose
 - 0 for all other states
- Starting from random play;
 Trained by . . .
 playing 1.5 million games against itself

Now: \approx best human player

Pole Balancing

Control Learning, in General

- Consider learning to choose actions, eg,
 - Learning to play game (Backgammon)
 - Robot learning to dock on battery charger
 - Learning to choose actions to optimize factory output
- Several problem characteristics:
 - Delayed reward
 - Opportunity for active exploration
 - State is only partially observable
 - May need to learn multiple tasks with same sensors/effectors

Successes:

- + World-class Backgammon [Tesauro'95]
- + Checkers program [Samuels'59]
- + Job-shop scheduling [Zhang/Dietterich'95]
- + Real-time scheduling of passenger elevators [Crites/Barto'95]

Simple Sequential Decision Problem

(b)

Agent can move { North, South, East, West } Terminates on reaching [4,2] or [4,3]

Transition Model:
$$M_{ij}^a = P(S_{t+1} = j | S_t = i, A = a)$$

= prob of reaching state j if perform action afrom state i

If actions have DETERMINISTIC EFFECTS $(M_{i,j}^a \in \{0,1\})$ ⇒ (std) Planning Problem

but... Actions NOT reliable:

Immediate Reward & Total Utility

Immediate reward:

$$R(s_{t+1}) = \begin{cases} -\frac{1}{25} & \text{if } S_{t+1} \neq [4,2] \text{ or } [4,3] \\ 1 - \frac{1}{25} & \text{if } S_{t+1} = [4,3] \\ -1 - \frac{1}{25} & \text{if } S_{t+1} = [4,2] \end{cases}$$

Utility function of sequence of actions+states
 = cumulative immediate reward:

$$U([s_0, a_1, s_1, \dots, a_n, s_n]) = \sum_{t} R(s_{t+1})$$

$$= \begin{cases} 1 - \frac{n}{25} & \text{if } s_n = [4, 3] \\ -1 - \frac{n}{25} & \text{if } s_n = [4, 2] \end{cases}$$

Note: Utility depends on EPISODE

Most reward after SERIES of states (≡ sequence of actions) not single state

Observable (Accessible) Environment

- ullet After each action, agent can determine resulting state s_{t+1}
- ⇒ Agent just needs to know optimal action for each state.
 - Agent \approx "**Policy**" π : State \mapsto Action

Note: Don't need optimal action sequence just need optimal policy!

• Agent, using π , is "deterministic" ("reflex")

Different Policies

Model

- Agent wanders around environment
 - observing various inputs
 - o performing various actions
 - ...occasionally gets reward
- Challenge: Figure out what action to take, in each situation.
- Useful to know utility of each state
 ... can then avoid bad states, etc

But utility not known initially!

• Reinforcement learning addresses this!

Markov Decision Processes

Assume: \bullet finite set of states S

finite set of actions A

At each discrete time, agent . . . observes state $s_t \in S$, and chooses action $a_t \in A$

then receives (immediate) reward $r_t = R(s_t)$ and state changes to $s_{t+1} \sim P(S_{t+1} | s_t, a_t)$

Markov assumption:

 r_t , s_{t+1} depend only on current $\begin{cases} state(s) \\ action \end{cases}$

Use of M_{ij}^a suggests (time-independent) Markovian

Agent's Learning Task

- Execute actions in environment, observe results, and . . .
 - learn action policy

$$\pi:S\to A$$

that maximizes

$$E[r_t + r_{t+1} + r_{t+2} + \dots]$$

from any starting state in S

– Or...

$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots]$$

 $0 \le \gamma < 1$ is "discount factor for future rewards" (relative importance of short-term vs long-term rewards) Assuming "accessible" (so know state)

Note: — Target function is $\pi: S \to A$

- but training examples NOT of form $\langle s, a^* \rangle$ $(a^* = \text{optimal action})$
- instead: $\langle \langle s, a \rangle, r \rangle$

Defining Utility Function Over States

 $U_{\pi}(S_i) = \text{expected cumulative reward of}$ executing policy π , starting in state S_i (aka "value function")

$$U_{\pi}(S_{i}) = R(S_{i}) + \sum_{j} P(S_{j} | S_{i}, \pi(S_{i})) \cdot U_{\pi}(S_{j})$$

$$= R(S_{i}) + \sum_{j} M_{ij}^{\pi(S_{i})} \cdot U_{\pi}(S_{j})$$

Key Point: Can use $U_{\pi}(S_j)$ as observe S_j after taking action $\pi(S_i)$

Theorem (Bellman and Dreyfus) [MEU]

Optimal policy $\pi^*(S) = \text{action that}$ maximizes expected utility $U^*(\cdot)$

$$\pi^*(S_i) = \underset{a}{\operatorname{argmax}} \sum_{j} M_{ij}^a \ U^*(S_j)$$

$$U^*(S_i) = R(S_i) + \underset{a}{\operatorname{max}} \sum_{j} M_{ij}^a \ U^*(S_j)$$

Challenges

Goal: Computing *optimal* policy
$$\pi^* = \underset{\pi}{\operatorname{argmax}} E_s[U_{\pi}(s)]$$

Challenge#1: Finding optimal policy given model [P(s'|s,a), r(s)]

- Value Iteration
- Policy Iteration
 - ⇒ Challenge#1A: Evaluating *fixed* policy
 - Adaptive Dynamic Programming
 - Sampling
 - TD-learning; TD(λ)-learning

Challenge#2: Scaling to large spaces

Generalization

Challenge#3: Finding optimal policy NOT given model [P(s'|s,a), R(s)]

- Estimation + "Challenge#1"
- Q-learning

Finding Optimal Policy

• Easy to find optimal policy π^* , given $U^*(s_i)$

$$\pi^*(s_i) = \underset{a}{\operatorname{argmax}} \sum_{j} M_{ij}^a \ U^*(s_j)$$

• Easy to find $U^*(s_i)$, given optimal policy π^* :

$$U^*(s_i) = R(s_i) + \sum_j M^{\pi^*(s_i)} U^*(s_j)$$

• Circular:

Given U^* , can find π^* But need π^* to find U^* values as need to know $\pi^*(s_j)$ to determine $U^*(s_j)$...to know $U^*(s_i)$

• Answers . . .

Value Iteration: Algorithm for computing U^*

```
\begin{array}{l} \textbf{function } \textit{ValueIteration}(\cdot \cdot \cdot \cdot) \\ \textit{$U(S):=R(S)$ for all $S$} \\ \textbf{while } \textit{$U$ is changing do} \\ \textbf{for each state } s_i \textbf{ do} \\ \textit{$U(s_i):=R(s_i)+\max_a \sum_j M_{ij}^a \cdot U(s_j)$} \\ \textbf{end} \\ \textbf{end} \\ \textbf{return}( \textit{$U(\cdot)$} ) \end{array}
```

- $U(\cdot)$ converges to stable values
- ullet Each update of U is called Bellman backup

Example of Bellman Backup

Optimal Value Function and Policy

Behavior of Value Iteration

Utility value for selected states at each iteration step in *ValueIteration*

Convergence of Value Iteration

$$RMS(\widehat{U}_k) = \frac{1}{|S|} \sum_{S} (U^*(S) - \widehat{U}_k(S))^2$$

$$PolicyLoss(\widehat{\pi}_k) = \sum_{s_j \in Terminal} U(s_j) \cdot [P(\pi^* \text{ leads } s_0 \text{ to } s_j) - P(\widehat{\pi}_k \text{ leads } s_0 \text{ to } s_j)]^2$$

Policy Iteration

Note: Policy $\widehat{\pi}$ not particularly sensitive to utility estimate \widehat{U}

 Why not just estimate Policy, on each iteration?

```
function PolicyIteration(R(\cdot), M_{ij}^a)
Choose initial policy \pi_0; t := 0
Repeat

% Value Determination
Compute utility U_{\pi_t}(s), \forall s
% Policy Improvement
Compute new policy
\forall s_i \colon \pi_{t+1}(s_i) := \argmax_a \sum_j M_{ij}^a \ U_{\pi_t}(s_j)
until convergence (\pi_{t+1} \approx \pi_t)
return(\pi_t)
```

Implementing ValueDetermination

Evaluating Fixed Policy

Finding
$$\{U(s)\}$$
 s.t.
$$U(s_i) = R(s_i) + \sum_j M_{ij}^{\pi(s_i)} \cdot U(s_j)$$

(in known accessible environment)

Just solve set of equations:

$$\begin{pmatrix} U_1 \\ U_2 \\ \vdots \\ U_n \end{pmatrix} = \begin{pmatrix} R_1 \\ R_2 \\ \vdots \\ R_n \end{pmatrix} + \begin{pmatrix} M_{11}^{\pi(s_1)} & M_{12}^{\pi(s_1)} & \dots & M_{1n}^{\pi(s_1)} \\ M_{21}^{\pi(s_2)} & M_{22}^{\pi(s_2)} & \dots & M_{2n}^{\pi(s_2)} \\ \vdots & \vdots & \ddots & \vdots \\ M_{n1}^{\pi(s_n)} & M_{n2}^{\pi(s_n)} & \dots & M_{nn}^{\pi(s_n)} \end{pmatrix} \begin{pmatrix} U_1 \\ U_2 \\ \vdots \\ U_n \end{pmatrix}$$

$$\vec{U} = -(M-I)^{-1}\vec{R}$$

(Note: most $M_{ij}^a = 0$)

but ... too many equations/unknowns!

Eg, for backgammon: $\approx 10^{50}$ equations w/ $\approx 10^{50}$ unknowns!

Infeasibly large!

The Curse of Dimensionality

- Computational cost scales with
 - \star number of states |S|
 - \star number of actions |A|
- |S| is exponential in number of "dimensions" (\approx sensors)
- "Curse of Dimensionality" [Bellman]
 - Value Iteration: O(n|S||A|B)
 - Policy Iteration: O(n'|S||A|)
 - Value Determination: O(n''|S|B) or $O(|S|^3)$

(n, n', n'') is number of iterations; B is time for each Bellman Update)

Simple Extensions

- So far,
 - -R(s) (reward just depends on current state)
 - $P(s_{t+1} | s_t, a_t)$ (transition probability independent of WHEN)
 - $-\sum_{s_t} R_{s_t}$ (total cost just sum of rewards)
- Easy extensions to . . .
 - $R(s_{t+1} | s_t, a_t)$ (reward also depends on previous state, action)
 - $P^q(s_{t+1} | s_t, a_t)$ (transition probability depends of <u>time of transition</u>)
 - $\sum_{s_t} \gamma^t R_{s_t}$ (total cost is <u>discounted</u> sum of rewards; $0 < \gamma < 1$)