Reinforcement Learning

[Chapter 13]
[R&N, Ch20]; [Barto/Sutton]; [Kaelbling et al. survey]
[TGD, “4 Current Trends”, 1997]

e Motivation: Control learning (backgammon)

e Framework

— Markov Decision Process

— Computing Optimal Policy (given Model)
— Policy Iteration
(Evaluating fixed policy)
— Value Iteration

e Extensions = Reinforcement Learning

1. Stochastic approx to backups
T D-learning, T'D()\)-learning

2. Value function approximation

3. Model-free learning
Q-learning

e Topics

Reinforcement Learning

So far... Learning = ‘classification learning”
~ ‘“function approx’:
Agent receives explicit training data {{xz;, f(x;))};
seeks h(-) =~ f(-)

e What if feedback is not so clear/immediate?
Less generous environment:

(Agent receives no examples, but can “explore’)
no a priori model

Agent has { no pre-defined utility function

Eg: Playing a game:
1. No “teacher” providing examples
2. Feedback only after many actions
Final “reward” (“reinforcement”, “feedback”):
win / loss / draw

Agent NEVER told
o correct action, nor even

o which individual actions good/bad

Backgammon World

Task: Learn to play backgammon

1. Given { (board;, optAction;) }
Standard learning... f: board — optAction

2. Given { (board;, utility;) }
.. . utility &~ chance of winning
Standard learning... u: board — R
(then take action producing best utility)

3. Given { (FINALDboard;, utility;) }:
Only feedback in final state: { Win, Loss }
Hmmm...

= Use Reinforcement learning
to compute utility for intermediate states!

TD-Gammon
[Tesauro, 1995]

e Learn to play Backgammon

e Immediate reward
— 4100 if win
— —100 if lose

— O for all other states

e Starting from random play;
Trained by ...
playing 1.5 million games against itself

Now: &~ best human player

Pole Balancing

einforcement Learning

Control Learning, in General

e Consider learning to choose actions, eg,
— Learning to play game (Backgammon)

— Robot learning to dock on battery charger
— Learning to choose actions to optimize fac-
tory output

e Several problem characteristics:
— Delayed reward
— Opportunity for active exploration
— State is only partially observable

— May need to learn multiple tasks with same
sensors/effectors

e SUCCeESSES:
+ World-class Backgammon [Tesauro’95]
+ Checkers program [Samuels'59]
+ Job-shop scheduling [zZhang/Dietterich’95]
+ Real-time scheduling of passenger

elevators [Crites/Barto’'95]

Simple Sequential Decision Problem

3 0.8
0.1 0.1
2
1 START
1 2 3 4

(a) (b)
e Agent can move { North, South, East, West }
Terminates on reaching [4,2] or [4,3]

Transition Model: | M2 = P(Si41=j|St=1i, A=a)

= prob of reaching state j if perform action a
from state ¢

If actions have DETERMINISTIC EFFECTS (MZ-“]- € {0,1})
= (std) Planning Problem

but... Actions NOT reliable: N
Action = North = TOB
W E

0.1 0.1

Immediate Reward & Total Utility

3
N
e Immediate reward: o2 3
—2= if Si41 # [4,2] or [4,3]
R(si11) = 1— 2 if Sip1 =[4,3]

—1— % if S41=1[4,2]

e Utility function of sequence of actions—states
= cumulative immediate reward:

U([80,&1,81,...,an,8n]) — ZR(St—I—l)
t
_ { — 35 ?f sn = [4, 3]
-1 if s, = [4, 2]

Note: Utility depends on EPISODE

Most reward after SERIES of states
(= sequence of actions)
not single state

Observable (Accessible) Environment

e After each action,
agent can determine resulting state s;4 1

= Agent just needs to know
optimal action for each state.

e Agent =~ "Policy” 7. State — Action

3 —_— —_— —_—

2 |} }
1 ? - - -
1 2 3 4

Note: Don’'t need optimal action sequence
just need optimal policy!

e Agent, using m, is “deterministic” (“reflex”)

Different Policies

> | | - |
NEEE|nsE
— —_ —_
? ? R(s) < -1.6284 -0.4278 <R(s) < -0.0850
1 2 3 4 b= |- Y + + Y

~0.0218 <R(S) < 0 R(S) > 0
(@) (b)

einforcement Learning

Model

e Agent wanders around environment
o observing various inputs
o performing various actions
... occasionally gets reward

e Challenge: Figure out what action to take,
in each situation.

e Useful to know utility of each state
...can then avoid bad states, etc

But utility not known initially!

e Reinforcement learning addresses this!

einforcement Learning

Markov Decision Processes

Assume: e finite set of states S
e finite set of actions A

At each discrete time, agent ...
observes state s; € S, and
chooses action a; € A

then receives (immediate) reward 1 = R(s¢)
and state changesto s;y1 ~ P(S;4+1|5st,a¢)

Markov assumption:
state(s)

¢, St+1 depend only on current { action

Use of Mg;. suggests

(time-independent) Markovian

Adgent’s Learning Task

e EXxecute actions in environment,
observe results, and . ..

— learn action policy
A |
that maximizes

Elrt + re41 + 140 + ...
from any starting state in S

— Or. ..

Elre 4+ yriv1r + Yorige + .-.]

0 <~ <1is “discount factor for future rewards”
(relative importance of short-term vs long-term rewards)
Assuming “accessible” (so know state)

Note: — Target functionisn:S — A

— but training examples NOT of form (s, a*)
(a* = optimal action)

— instead: ({(s,a), r)

Defining Utility Function Over States

Ur(S;) = expected cumulative reward of
executing policy w, starting in state §;
(aka “value function™)

Un(Si) = R(Si) + X,;P(S;18,m(8)) - Us(S))
= R(S) + X, M UL(S))

Key Point: Can use Ur(S;)
as observe S; after taking action w(S;)

T heorem (Bellman and Dreyfus) [MEU]

Optimal policy #*(S) = action that
maximizes expected utility U*(+)

m(8;) = argmax) Mg U*(S;)
a R

J
U*(S;) = R(S;) + max) M U*(S))
J

Challenges

Goal: Computing optimal policy

*

m = argmax Es[Ux(s)]
T

Challenge#£1: Finding optimal policy
given model [P(s'|s,a), r(s)]

o Value Iteration

o Policy Iteration
= Challenge#1A: Evaluating fixed policy

— Adaptive Dynamic Programming
— Sampling
e TD-learning; TD(\)-learning

Challenge#£2: Scaling to large spaces

e Generalization

Challenge#£3: Finding optimal policy
NOT given model [P(s'|s,a), R(s)]

o Estimation 4+ “Challenge#1"
e (Q-learning

Finding Optimal Policy

e Easy to find optimal policy n*, given U*(s;)

™*(s;) = argmaxZMi“j U*(s;)
a .
j

e Easy to find U*(s;), given optimal policy ©*:

US(s) = R(s;)+ Y M™ D U(s))
J

e Circular:
Given U¥*, can find «*
But need =«* to find U* values
as need to know 7*(s;) to determine U*(s;)
... to know U*(s;)

e ANnswers ...

einforcement Learning

Value Iteration:
Algorithm for computing U*

function Valuelteration(---)
U(S) := R(S) for all S
while U is changing dO
for each state s; do
U(si) = R(si)+ maxy Mg-U(s;)
J

end
end
return(U(-))

e U(-) converges to stable values

e Each update of U is called Bellman backup

einforcement Learning

Example of Bellman Backup

‘ \
V I y y

P -
|

[3.3] 0.8 -0.04 -0.14
[42] 0.8 -1.04 -0.84
3.1] 0.8 -0.04 14

[3.2] 0.8 -0.04 -0.04

P(S'[S,A)
R(S)) + U_t(S)
EU(S'|A)

Optimal Value Function and Policy

2 f ? —1
1 ? - - -
1 2 3 4
3 0.812 0.868 0.912 +1
2 0.762 0.660 -1

1 0.705 0.655 0.611 0.388

Reinforcement Learning 19

Behavior of VValue Iteration

1

1

I

0.5 |
. 1
1
1

Utility estimates
o
T

-0.5

S e e (4,2

0 5 10 15 20 25 30
Number of iterations

Utility value for selected states
at each iteration step in Valuelteration

Convergence of Value Iteration

1
0.8 |
S 06!
()]
%)
2 04
0.2 |
0 ‘ ‘ ‘
0 5 10 15 20
Number of iterations
. 1 . ~ 2
RMS(Ux) = = (U(S)-Tu(5))
514
1
0.8 |
2 o6}
z
S 04t
0.2 |
0 I 1 1
0 5 10 15 20
Number of iterations
PolicyLoss(m,) = Z U(s;) [P(n* leads sg to s;) —
s;€Terminal

P(7y leads sp to s;)]2

Policy Iteration

Note: Policy @ not particularly sensitive
to utility estimate U

e \WWhy not just estimate Policy,
on each iteration?

function Policylteration(R(-), M)
Choose initial policy mg; t = O
Repeat

% Value Determination
Compute utility Ur,(s), Vs
% Policy Improvement

Compute new policy

Vsi: my1(s;) = argmaXZMi‘; Ur,(s5)
¢ j

until convergence (m41 = m¢)
return(m)

Implementing ValueDetermination

e Evaluating Fixed Policy

Finding {:U(s)} S.t.
U(s) = R(si) + > ME - U(s))
J

(in known accessible environment)

e Just solve set of equations:

i\ () [
U.2 _ B?z n M3 M .. M3

U=—-(M-1"'R

(Note: most M¢ = 0)

but ... too many equations/unknowns!

Eg, for backgammon:
~ 1029 equations w/ =~ 10°9 unknowns!

Infeasibly large!

The Curse of Dimensionality

e Computational cost scales with
* hnumber of states |S|
* number of actions |A]

e |S| is exponential in
number of “dimensions” (& sensors)

e ""Curse of Dimensionality” [Bellman]
— Value Iteration: O(n|S||A|B)
— Policy Iteration: O(n'/|S||A]|)
— Value Determination: O(n” |S|B)

or O(|S|?)

(n, n’, n” is number of iterations;

B is time for each Bellman Update)

einforcement Learning

Simple Extensions

e SO far,
— R(s)

(reward just depends on current state)

— P(s¢4115t,a¢)
(transition probability independent of WHEN)

- Zst RSt

(total cost just sum of rewards)

e Easy extensions to ...

— R(s441|5t,at)
(reward also depends on previous state, action)

— P9(5441 |s¢t,0¢)
(transition probability depends of time of transition)

- Zst /YtRSt
(total cost is discounted sum of rewards;

0<y<1)

