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Motivating example [1]: Suppose we wish to model an expert translator’s decisions concerning the
proper French rendering of the English word in. Our model of the expert’s decisions assigns to each French
word or phrase f an estimate, p(f), of the probability that the expert would choose f as a translation of in.

We might discover that the expert translator always chooses among the following five French phrases:
{dans, en, a, au cours de, pendant}. With this information in hand, we can impose our first constraint on
our model p:

p(dans) + p(en) + p(a) + p(au cours de) + p(pendant) = 1

Knowing only that the expert chose exclusively from among these five French phrases, the most intuitively
appealing model is

) 1/5
) = 1/5
pla) = 1/5
) = 1/5
) = 1/5

Suppose we notice that the expert chose either dans or en 30% of the time. We could apply this knowledge
to update our model of the translation process by requiring that satisfy two constraints:

p(dans) + p(en) =1/3
p(dans) + p(en) + p(a) + p(au cours de) + p(pendant) = 1

In the absence of any other knowledge, a reasonable choice for p is again the most uniform-that is, the
distribution which allocates its probability as evenly as possible, subject to the constraints:

p(dans) = 3/20

plen) = 3/20

p(a) = 7/30

p(au cours de) = 7/30
p(pendant) = 7/30

Say we inspect the data once more, and this time notice another interesting fact: in half the cases, the
expert chose either dans or a. We can incorporate this information into our model as a third constraint:

p(dans) + p(en) =1/3
p(dans) + p(en) + p(a) + p(au cours de) + p(pendant) = 1
pldans) + pla) = 1/2

We can once again look for the most uniform p satisfying these constraints, but now the choice is not
as obvious. As we have added complexity, we have encountered two problems. First, what exactly is meant
by “uniform,” and how can one measure the uniformity of a model? Second, having determined a suitable
answer to these questions, how does one find the most uniform model subject to a set of constraints like
those we have described?

The maximum entropy method answers both these questions. Intuitively, the principle is simple: model
all that is known and assume nothing about that which is unknown. In other words, given a collection of
facts, choose a model which is consistent with all the facts, but otherwise as uniform as possible. This is
precisely the approach we took in selecting our model at each step in the above example.



Maximum entropy (maxent) principle:

max H(p) = - [ p(a) logp(a)ds 1)
5. / p@fi@) = Y p@fia), i =1, N (2)
REEE 3)
fi(z): feature function 5
p(z) = 47 number of times that z occurs in the train data X = (z1,-- -,z ), empirical distribution of z

Fact Maximum entropy = Minimum KL distance between p € C and uniform distribution U:

mgnD(pHZ/{) = m;n/mp(w) log (%) dx

= mgn (/z p(z) log p(x)dx — /mp(a:) log ﬁdw)
max (—/wp(x) log p(z)dz + log |L{|)

Denote the set of p(x) satisfying the constraints (2) as C.
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Figure 1: Maximum entropy over C= Minimum KL distance between p € C' and uniform distribution.

Solving maxent: Maxent is a convex optimization problem with concave objective function over a set of
linear constraints. This is called primal problem in optimization. We form the Lagrangian function using
Lagrangian multipliers A,

T

N
Lip,N) = = [ p@)ogp(a)da + Ao [ [ plarda - 1] LI [ [ pa@)fia)da = 3 pe) filo) (1)

Differentiating with respect to p(x), the xth component of p to obtain

OL(p,\) A
“op@) logp(x) — 1+ Ao + ;)\zfz(w) (5)

Setting this to 0, we obtain the form of the maximizing density
N
plz) = 07 L M) (6)

where Ag, A1, -, An are chosen so that p satisfies the constraints.
In machine learning, people prefer to use another form

1 SV o tia
Pa() = edum M/ ™)



N
where Zy = [ e2i=1 2J1®) gy s called normalization constant or partition function to ensure (3). Ao =
—log Z) + 1 in this case.
Plug (7) into Lagrangian function (4), we obtain the unconstrained dual optimization problem

min & (A) = log Z» — > () (Z Aifi (w)) (8)

Minimizing ¥(A) is equivalent to maximizing

N
LX) =Y p(z)logpa(z) = —log Zn + _ (=) <Z /\ifi($)> 9)

(MLE over exponential family py(z), Markov random field)

m/\in T(A) = — m/\axﬁ(/\) (10)
= Maximum entropy subject to (2) = maximum likelihood estimation over exponential family py(z), A €
RN

Fact Maximum likelihood estimation over exponential family py(z) = Minimum KL distance between
empirical distribution and exponential family, D (p(z)||pa(z)).

N
Theorem 1 Let p*(x) = pa(x) = e)‘°+2i=1)“'f(w), where Ao, -+, AN are chosen so that p* satisfies (2) and
(3). Then p* mazimizes H(p) over all probability densities p satisfying constraints (2) and (3).

Proof:
HE') - HG) = - [ p'(@)losp"(@)ds + [ pla)logpla)ds
N
= —/p*(:z:) ()\0 + Z/\zf(x)> dz + /p(x) log p(x)dx (by definition of p*)
z i—1 T
N
= — ()\0 + Z)\iz;ﬁ(x)fi(x)> + /p(m) log p(x)dz (p* satisfies constraints)
i=1 T z
N
= —/p(a:) ()\0 + Z A,f(:c)) dz + /p(a:) log p(x)dx (p satisfies constraints)
T i=1 xz
= —/p(x) log p* (z)dz + /p(x) log p(z)dz (by definition of p*)
= D(pllp*) 20
1
Example 1. Let the constraints be EX = 0, EX?2 = ¢2. Then the form of the maxent distribution is
p(.’L’) — e)\o-i-)q.z‘-‘rkg.z‘z

We first recognize that this distribution has the same form as a normal distribution. It has mean 0 and
variance 2. Hence maxent = N(0,02).

Example 2. (Dice, no constraints) X € S = {1,2,3,4,5,6}. Maxent is the uniform distribution, p(z) =
1/6 forx € S.

Example 3. z € [0,00) and EX = p. Then the form of the maxent distribution is

plz) =tz >0

It’s easy to recognize that this distribution has the same form as an exponential distribution.



Theorem 2 (Pythagorean Theorem) Let © = {/\ e R™: [g(x)exp (Zf\;l /\,f,(a:)) dr < oo} and £ =
{p,\ ipa(z) = ZLA exp (Zfil )\,-fi(a:)) , AE @}. If there exists p* € C N E, then p* satisfies

D(pllpa) = D(pl||p*) + D(p*||py) Vpe C,Vpr € E,X€O (1)
C
) 2 | p*

‘right angle’
P

E

Figure 2: Pythagorean theorem.

Computing the optimal parameters of maxent solution

For all but the most simple problems, the A* that maximize £(\) cannot be found analytically. Instead,

we must resort to numerical methods. Denote f(z) = (fi(z),---, fn(2))T, L()) has the following properties:
OL(A dlog Z -
AN _ 218D S ) () = By (£(2) + By () (12)
02L(N) 0%log Z) . .
T = BT = —Vary, (o)(f(x)) (negative definite) (13)

The log-likelihood function is concave in each A. A variety of numerical methods can be used to calculate
A*, for example, gradient ascent and conjugate gradient.

Here we describe a nice simple algorithm called the Iterative Scaling algorithm, that can be used to find
A*. We assume f;(z) > 0 and Zfil filz) = 1. (If f;(x) is sometimes negative, we can replace f;(z) by
fi(x) + ¢ for some constant ¢. Because of normalization, this does not change the corresponding exponential
distribution. If Ei\; fi(z) < 1, we can add a new feature fo(z) = 1— Zi\; fi(x). Since a linear combination
over all the features including fy is the same as one over just the original features, this again does not change
the problem or the exponential distributions that can be represented.)

We are looking for a sequence of vectors A!, A%, ... and we want £ to be going up for each subsequent

vector. So in a single time step say from t to t + 1 the difference can be defined as below, and we want to
lower bound this. Denote dA! = At + 2\

AL = LMY — £

N N
= —logZy+1 + Zﬁ(w) (Z /\§+1fi(x)> +log Zy: — Zﬁ(x) (Z Aff,»(x))

N
Zyes1
= —log Z*; +) 0N (Zﬁ(m)fi(w)) (14)
i=1 T
Now,
Zyw e (TN @) de
ZAi N Z)\t



J,exp (S M fila) ) exp (S, 00 fi(a) ) da »
= i (plug in the value of \i*1)
At

N
/ pxe(z) exp (Z oA f,-(w)) dr

/ pat(x Z filz eidy (Jensen's inequality exp is convex, f is a distribution)
xz

IN

N t
Y e / px (@) fi(@)de (15)

Plug (15) into (14), we have

N
AL > Z&)\ﬁ (Zﬁ(x)fz(x)> log (Z O /p,\t (m)dw) (16)
i=1 T

We have derived a lower bound of the change in the loss function. Now, to optimize, we can take the
derivative to choose the d\! that is the largest.

. f p/\t fz( )
= (w)fi(w)) - =0 (17)
(210 (Zé\; e [ pxe $)fz'($)d$)

The thing to notice is that if we have any solution for this, say d\ f we can add a constant ¢ and get another
solution, dX! = d)\'; + ¢. The reason is that the constants get cancelled. We will choose this constant in such
a way that the denominator of the second term equals 1

By using that trick we can set
SN =1 M 18
=g (2R (18)

The iterative scaling algorithm works iteratively by calculating successive A’s in each round, for ¢t =
1.2....

»

)\IZ‘:+1:XZ§+IOg (%) i=1,---,N (19)

which monotomically increases the log-likelihood.

Theorem 3 Denote p* as the optimal mazent distribution, then as t — 00, pyt — p*.

Regularized maximum entropy (RME) principle

In situations of limited traing data, we can’t get an accurate estimate of empirical feature expectations.
We use regularized maximum entropy principle instead,

max H(p)—U(a) (20)
5.t /p(m)fi(m) => B@)fiz) +a, i=1,.,N (21)

Here a = (ay,...,ayn), a; is the error for each constraint, and U : RN — R is a convex function which
has its minimum at 0. The function U penalizes errors in satisfying the constraints, and can be used to
penalize deviations in the more reliably observed constraints to a greater degree than deviations in less
reliably observed constraints.



The key observation to finding optimal solutions is to note that they are intimately related to finding
mazimum a posteriori (MAP) solutions: Given a penalty function U over errors a, an associated prior U*
on A can be obtained by setting U* to the convex (Fenchel) conjugate of U [2]. Vice versa, given the convex
conjugate cost function U*, the corresponding penalty function U can be derived by using the property of
Fenchel biconjugation; that is, the conjugate of the conjugate of a convex function is the original convex
function, U = U**.

N 1 _2 2

To illustrate, consider a quadratic penalty U(a) = 7,2, 507a;. Here the convex conjugate U*()\) =

2
Zf;l ;7 can be determined by setting a; = %, which specifies a Gaussian prior on A. A different example

can be obtained by considering the Laplacian prior on A, U*(X) = [|A||1 = Zfil [Ai|, which leads to the
penalty function
_ [0 llallec = max}, Ja;| <1
Ula) = { oo otherwise

that forces hard inequality constraints.

Note that in each case, given a prior U*, the standard MAP estimate maximizes the penalized log-
likelihood R(A) = Y, B(x)log pa(z) — U*(N).

— Maximum regularized entropy subject to (21) = Maximum penalized log-likelihood over exponential
family py(z) with penalty U*.

Maximum conditional entropy and conditional random fields

Denote Y as observed data, Z missing data and X = (Y, Z) complete data. Given training data D =

[(yla zl)a T (yMa zM)]
Primal problem: maximum conditional entropy

max (— > 5w [ el logp<z|y)dz> (22)

p(z]y) Y z
st.350) [ 2 A = S pw k), i=1 N (23)
Yy z Y,z
[peln = 1 v (24)
Dual problem: maximum likelihood over conditional random fields
> " 5(y, 2) log pa(zly) (25)
Y,z

where py(z|y) = m exp (Zf;l fily, z)) and Zx(y) = [, (Zf;l fily, z)) dz is a normalization constant to
ensure (24) for each y.
—> Maximum conditional entropy = maximum conditional likelihood over conditional random fields

paA(zly)-
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