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K-means: one of the most popular iterative descent clustering method.

Given a set of observations (z1,---,zn), a prespecified number of clusters K < N is postulated, and
each observation z; is assigned to one and only one cluster which is denoted as C(3).

Assume we are using squared Euclidean distance d(z;,zy) = ||z; — 24 || to denote dissimilarity of pair of
observations x;, T; .

For a cluster assignment C, define its loss function as
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This criterion characterizes the extent to which observations assigned to the same cluster tend to be close
to one another. It is referred to as within-cluster point scatter.
Similarly we can define between-cluster point scatter,
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This will tend to be large when observations assigned to different clusters are far apart.
Define the total point scatter,
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which is a constant given the data, independent of cluster assignment.
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— W(C)+ B(C)

Thus one has

So minimizing W (C) is equivalent to maximizing B(C).
The within-cluster point scatter can be written as
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where Z, is the mean vector associated with the kth cluster, and Ny, = Ef;l I(C(i) = k). Thus, the criterion
is minimized by assigning the N observations to the K clusters in such a way that with each cluster the



average dissimilarity of the observations from the cluster mean, as define by the points in that cluster, is
minimized.
Thus the optimal assignment is
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First noting that for any set of observations S
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Hence we can obtain C* by solving the enlarged optimization problem
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This can be minimized by an alternating optimization procedure as the following:
K-means clustering

1. For a given cluster assignment C, the total cluster variance (7) is minimized with respect to {mi,---,mx}
yielding the means of the currently assigned clusters (8).

2. Given a current set of means {mq,---,mg}, (7) is minimized by assigning each observation to the
closest (current) cluster mean. That is,

C(i) = argn;i]nC = a,rglglciélK [|2; — mg|? 8)

3. Steps 1 and 2 are iterated until the assignments do not change.

Each steps 1 and 2 reduces the value of (7), and (7) is bounded below by 0, so that convergence is assured.

Principal Component Analysis (PCA)

PCA: a dimensionality reduction method.
Given a set of observations (x1,---,zn),2 € 7, find best hyperplane of rand ¢ to represent the data.

T=p+Ved,  q<p (9)
where p € RP a location vector, Vg, a p x g orthonormal matrix,

ViYiT 10 ifi#j
vi,% =1,--+,¢: orthogonal unit vectors, A € R?: parameters, V;A: a subspace of 7.
Reconstruction error:
N
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Choose u, {A;}, Vy to minimize the reconstruction error,
N
min zi — p— Vol 11
u,{,\,-},vq;” i M g Aill (11)



We can partially optimize for v and A;’s to obtain

i = T sample mean (12)
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This leaves us to find the orthonormal normal matrix Vj:

N
- - T =\]12
ngngllwi—m—Vq% (zi — 7| (14)

For convience, we assume that Z = 0 (otherwise we simplely replace the observations by their centered
versions &; = x; — T).

Let Hy = V}IVqT, projection matrix, maps each point z; onto its rank q reconstruction Hyx;, orthogonal
projection of z; onto the subspace spanned by {v;},i=1,---,¢q.

Stack z1,---,zn to form an N x p matrix A

_ T
ANXP - UNXprXprXp

(15)
U: N x p orthogonal matrix, UTU = I,, V: p x p orthogonal matrix, VIV = I,,, D diagonal matrix,
dy > dy > -+ > dp > 0 singular values. u;: left singular vectors, v; right singular vectors.

Columns of UD: principal components of A.
Optimal A;,i=1,---,¢:

A= U,D, (16)

Theorem 1 (The Eckart and Young theorem) Let the SVD of A be A=3%_, dkukv,{ withdy >dy > -+ >
dp > 0. Let Aq denote the truncated sum, Aq = 2%21 drurvi g integar, 1 < q<p—1, then
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and o minimizer is B = A,. The minimizer of ||A — B||p is unique iff dy > dgy1-

[|14||lr = \/Zf;l ;.’:1 |a;j|? = +/trace(AT A): Frobenius norm of a matrix, square root of the sum of
squares of all elements in the matrix.
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