Learning

ITII. Model-Free Learning

TD()\) used for

ValueDetermination

Given m(s), compute Ui( s)

within PolicyIteration

Next step of PolicyIteration:

Given U(s), compute w4 1(s)

mg1(s) = arggnaxz
/

S

Need model: |P(s'|s,a)

Ok for Backgammon
What about Factory??

P(s'|s,a)

U(s")



Curse of Modeling

e So far: “Known” environment ...

Agent knows
M,f‘j: Dist overS x A x S
P(s'|s,a)
R: SXxXAxXxS—*R

R( Sty Qt, St4-1 ) v

e Typically, M, R(--+) unknown!

...SO agent can’'t choose actions ...

Option#1: First estimate M(---), R(---). ..
then find best policy, based on M, R

Option#£2: . ..



¢ Function

Define Qr(s,a) = cumulative reward of
performing a in s
then following = from then on

Q(s,0) = R(s)+ Y P(s'|5,a) maxQ(s,a)

o If we knew Q(-,-),
can choose optimal action «(s)
even without knowing P(s'|s,a) !

To(s) = argcrlnax{ Q(s,a) }

= Just need to learn this
Q(-,-) evaluation function

e Need to know set of actions {a} for each state s
but NOT where each action goes (M)



Difference between U and (@

u(s s

3 3 3 QAsa) s

us) s s % s S %

Qs.d) S S8 S8 S & S

U(s) = R(s)+ma§1xZM§‘,S,U(s’)

Q(s,a1) = R(s)+Y. M™, maxQ(s',a')



Example: Simple Deterministic World
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Training Rule to Learn @

e (Qr and U, closely related:

Ur(s) = maaflx {Qnr(s,a") }

e Consider deterministic case:
s’ = 6(s,a) is state resulting from
applying action a in state s

= Q(st,at) = R(st) + YU((st,at)))
= R(st) + v maE}X{Q(St+1,a')}

—

Let: (Q = approx to

e Training rule: (Bellman backup-ish)

Qs,a)  « R(s) + 7 max{Q(s,a)}



Q-Learning for Deterministic Worlds

For each s,a
initialize table entry Q(s,a) + O

Observe current state s

Do forever:
e Select an action a and execute it
e Receive immediate reward r = R(s)
e Observe new state s’ = (s, a)

e Update table entry for Q(s,a):

Qs,a) 1+ 7 max{Qs,a)}



Updating Q
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Initial state: Sl Next state: Sz

Q(s1,ar) + R(s1) + v maxQ(d(s1,ar), a’)
a

0 + 0.9 max{63,81,100}

90

Thrm: If rewards > 0, then

(‘v’s,a,n) Qn—|—1(87a’) > Qn(s,a)

and

(VS,CL,’I’L) O S Qn(s,a) S Q(Saa)



Pl

¢} converges to @ ...

.. .If o deterministic world
o visit each (s, a) infinitely often

Proof: Let "full interval’ = interval during which
each (s,a) is visited.

Let Qn, = table after n updates;
A, = maximum error in Qn

= rr;%x{ |Qn(s,a) — Q(s,a)| }

Claim: After each full interval,

A'n,—I—f'i < YAy

(largest error in @ is reduced by ~)

e Error in revised estimate Q,4+1(s,a)
(after updating Q. (s, a), on iteration n+ 1)



|Qn—|—1(37a) — Q(s,a)|
= [(R(s) + v maxyQn(s,a’))
— (R(s) + v maxyQ(s',a"))

v | max, Qn(s',a) — maxa/Q(s’,a’)|

< g maxy |Qn(s’,a") — Q(S', d')|
<y Maxgr g 1Qn(s",a") — Q(s",a)]
< 74An

Uses: [max fi(a) —max fa(a)] < max|fi(a) — f2(a)|



Nondeterministic Case
TD-style Learning

Reward .
So far: { Next state are deterministic

What if non-deterministic?

e Redefine U, Q) by taking expected values
U™(s) = Elre+yr41+ 7142+ . ]

m .
= E[)  ~'rigi]
1=0

Q(s,a) = E[R(s) + vU™(6(s,a))]

e New training rule:
(Generalize Q-learning to nondeterministic worlds)

Qt(sa a’) < (1 — at)@n—l(sa a') + Oét[?" + ma?X Qn—l(sla a'/)]

1
1+ visitse(s, a)

e () converges to Q
[Watkins and Dayan, 1992]

where oy




Comments on
-Learning Update Rule

e Like TD(0)
on-line sampling of transition probabilities

+ on-line sampling of actions

e After sampling from actions a € A
approximates full Bellman backup

[Sample s’ in proportion to P(s'|s,a)]

Note: With U, need P(s'|s,a) to compute action
w(s) = argmax,) .| P(s'|s,a)|U(s")

With @, do NOT need P(s'|s,a)
w(s) = argmax{ Q(s,a) }
a



Issue:
Where to “Drive”, during Learning

e Given the Q(-,-) value, optimal actionis. ..
w(s) = argmax{ Q(s,a) }
a

e How to learn these Q(-,-) values?

e Why not just use “optimal action”?

When learner reaches state s, perform action
argmax{ Q:(s,a) }
a

e Can fall in a rut. ..

A strategy might SEEM best (at time t)
as other regions are NOT explored.

Learning




Just Exploring “Best” Action
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Should learner just take
apparently-best action?

o At time t = 3, may think best action is
Everyone go RIGHT...7*"([4,j]) = Right

Does ok. .. never consider
©([1,1]) = Up !

e ISssue:
— In general, need to observe all possible

(state, action) pairs. ..
— In practice, where to go each visit?

e How to balance
*x exploring region
* exploiting “optimal” move

Learning



Approach: Explore/EXxploit

e At time ¢, have estimates
Q:(s,a) for each state s, action a

Rt ifn<T
U otherwise

Let f(u,n) = {

Eg, Rt =2, T=5

e Maintain count
N(s,a) = #times took action a from state

e Select action
argmax{ f(Qi(s,a), N(s,a) }

Effect: Every action gets (at least) T' = 5 attempts
afterwards, just take best.



earnin,

Utility estimates

RMS error, policy loss (exploratory policy)
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Comparison

e ()-learning converges in ~ 26 trivials

e Compare to standard U-learning:
15 - Ji 21'47 RMSerror —
. '1 \ f 1? Policy loss
R 8o
S ol 23 2 08
> %B """ B o4 |
0.5: Eig § 0.2 — ]
(using same exploration RT =2, T =5)
e (Q-learning is worse
* 26 vs 18 trials
* inferior final error
o \Why?
(Q does not enforce consistency (as no model)
e Clearly: if you have P(s'|s,a) model

Learning

should use it!



Temporal Difference (Q-Learning

e Reduce discrepancy between successive
() estimates

(Qeny and Q(n_1))

Q: When updating Q, what should
“more correct” value be?

— One step time difference:

QW (st,ar) = 1 + 7 me{Q(StJrl,a)}
— Why not two steps?

QP (st,ar) = e+ yrer +v maX{Q(8t+2,a)}
— Orn7

Q(n)(st,at) = r¢ + Y41 + oo

+ V(n_l)TH-n—l + " maaX{Q(SHn,a)}

A: Blend all of these:

QM(st,ar) =
(1= X) [QP (51, ar) + AQP (51, ar) + X2QP) (51, a1) + -]



TD()\) Q-Learning

QA(Sta at) = (1-X) [Q(l)(st, as) + AQ(Q)(St, at) + )\QQ(?’)(st, az) + -- }

e Equivalent expression:

QMstyar) =re+~[ (1 —N) max Q(s¢,at)
+ A Q/\(St—I—laat-I—l)]

e TD(\) algorithm uses above training rule
— Sometimes converges faster than @ learning
— converges for any 0 < A < 1 [Dayan, 1992]

— Tesauro’s TD-Gammon uses this alg



Dimensions

Accessibility: In Accessible env, state = percepts.

When Rewards: Are rewards only at TERMINAL
states, or any state?

Prior Knowledge: Does agent initial know model
Mg, R(s,a)
or must it learn this,
as well as utility info?

Deterministic: Is P(stt+1|st,ac) € {0,1}7

Fixed / Changing Policy:
Given fixed policy:
Agent just “passively” watches world,
trying to learn utility of different states
“Active’” agent changes policy.

Discount: Relative importance of current reward,
vs future reward.
(y=1,vsy<1)



Situations

Here: ALWAYS “accessible”

Doesn’'t matter:
Rewards-only-at-Terminals?
Discounted?

(Q-learning proof needs A < 1)
Deterministic?

o If ModelKnown, Fixed Policy:
= F##1A: evaluating fixed policy
IMPROVEMENT: stochastic approx: TD(\)

e If ModelKnown, Learning Policy:
= computing optimal policy
Value Iteration, Policy Iteration, ...
IMPROVEMENT: scaling, generalization

o If Model NOT Known, Learning Policy:
= computing optimal policy (unknown)
IMPROVEMENT: Q-Learning



Subtleties and Ongoing Research

e Reinforcement learning for
Hierarchical Problem Solvers

e Design optimal exploration strategies
Occasionally perform new (non utility optimizing)
move

(see n-armed bandit problem [Russell4+Norvig, p611])

e Inaccessible: State only partially observable

e Extend to continuous actions, states

Learning



