Learning

ITII. Model-Free Learning

TD()\) used for

ValueDetermination

Given m(s), compute Ui(s)

within PolicyIteration

Next step of PolicyIteration:

Given U(s), compute w4 1(s)

mg1(s) = arggnaxz
/

S

Need model: |P(s'|s,a)

Ok for Backgammon
What about Factory??

P(s'|s,a)

U(s")

Curse of Modeling

e So far: “Known” environment ...

Agent knows
M,f‘j: Dist overS x A x S
P(s'|s,a)
R: SXxXAxXxS—*R

R(Sty Qt, St4-1) v

e Typically, M, R(--+) unknown!

...SO agent can’'t choose actions ...

Option#1: First estimate M(---), R(---). ..
then find best policy, based on M, R

Option#£2: . ..

¢ Function

Define Qr(s,a) = cumulative reward of
performing a in s
then following = from then on

Q(s,0) = R(s)+ Y P(s'|5,a) maxQ(s,a)

o If we knew Q(-,-),
can choose optimal action «(s)
even without knowing P(s'|s,a) !

To(s) = argcrlnax{ Q(s,a) }

= Just need to learn this
Q(-,-) evaluation function

e Need to know set of actions {a} for each state s
but NOT where each action goes (M)

Difference between U and (@

u(s s

3 3 3 QAsa) s

us) s s % s S %

Qs.d) S S8 S8 S & S

U(s) = R(s)+ma§1xZM§‘,S,U(s’)

Q(s,a1) = R(s)+Y. M™, maxQ(s',a')

Example: Simple Deterministic World

0
90, 100 | | —
<g = GO 0 = 100 (é)
A |72 A a1 A A | A | A
81l ¥ o[¥ [100] [y [y |
8l 0l — —
< <L 81 o 90 I 100
Q(s,a) values (y=0.9) U*(s) values
A
I
—1 —1

An optimal policy

Training Rule to Learn @

e (Qr and U, closely related:

Ur(s) = maaflx {Qnr(s,a") }

e Consider deterministic case:
s’ = 6(s,a) is state resulting from
applying action a in state s

= Q(st,at) = R(st) + YU((st,at)))
= R(st) + v maE}X{Q(St+1,a')}

—

Let: (Q = approx to

e Training rule: (Bellman backup-ish)

Qs,a) « R(s) + 7 max{Q(s,a)}

Q-Learning for Deterministic Worlds

For each s,a
initialize table entry Q(s,a) + O

Observe current state s

Do forever:
e Select an action a and execute it
e Receive immediate reward r = R(s)
e Observe new state s’ = (s, a)

e Update table entry for Q(s,a):

Qs,a) 1+ 7 max{Qs,a)}

Updating Q

72 100 90 100

R & — R T

63 63

81 81
Y ~ Y
a

right

Initial state: Sl Next state: Sz

Q(s1,ar) + R(s1) + v maxQ(d(s1,ar), a’)
a

0 + 0.9 max{63,81,100}

90

Thrm: If rewards > 0, then

(‘v’s,a,n) Qn—|—1(87a’) > Qn(s,a)

and

(VS,CL,’I’L) O S Qn(s,a) S Q(Saa)

Pl

¢} converges to @ ...

.. .If o deterministic world
o visit each (s, a) infinitely often

Proof: Let "full interval’ = interval during which
each (s,a) is visited.

Let Qn, = table after n updates;
A, = maximum error in Qn

= rr;%x{ |Qn(s,a) — Q(s,a)| }

Claim: After each full interval,

A'n,—I—f'i < YAy

(largest error in @ is reduced by ~)

e Error in revised estimate Q,4+1(s,a)
(after updating Q. (s, a), on iteration n+ 1)

|Qn—|—1(37a) — Q(s,a)|
= [(R(s) + v maxyQn(s,a’))
— (R(s) + v maxyQ(s',a"))

v | max, Qn(s',a) — maxa/Q(s’,a’)|

< g maxy |Qn(s’,a") — Q(S', d')|
<y Maxgr g 1Qn(s",a") — Q(s",a)]
< 74An

Uses: [max fi(a) —max fa(a)] < max|fi(a) — f2(a)|

Nondeterministic Case
TD-style Learning

Reward .
So far: { Next state are deterministic

What if non-deterministic?

e Redefine U, Q) by taking expected values
U™(s) = Elre+yr41+ 7142+ .]

m .
= E[) ~'rigi]
1=0

Q(s,a) = E[R(s) + vU™(6(s,a))]

e New training rule:
(Generalize Q-learning to nondeterministic worlds)

Qt(sa a’) < (1 — at)@n—l(sa a') + Oét[?" + ma?X Qn—l(sla a'/)]

1
1+ visitse(s, a)

e () converges to Q
[Watkins and Dayan, 1992]

where oy

Comments on
-Learning Update Rule

e Like TD(0)
on-line sampling of transition probabilities

+ on-line sampling of actions

e After sampling from actions a € A
approximates full Bellman backup

[Sample s’ in proportion to P(s'|s,a)]

Note: With U, need P(s'|s,a) to compute action
w(s) = argmax,) .| P(s'|s,a)|U(s")

With @, do NOT need P(s'|s,a)
w(s) = argmax{ Q(s,a) }
a

Issue:
Where to “Drive”, during Learning

e Given the Q(-,-) value, optimal actionis. ..
w(s) = argmax{ Q(s,a) }
a

e How to learn these Q(-,-) values?

e Why not just use “optimal action”?

When learner reaches state s, perform action
argmax{ Q:(s,a) }
a

e Can fall in a rut. ..

A strategy might SEEM best (at time t)
as other regions are NOT explored.

Learning

Just Exploring “Best” Action

0.6 - - - - -
05 1
04 1
03 f 1

0.2 MW

01 f 1

RMS error in utility (greedy policy)

O 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Number of epochs

2.5 T T T T T T T T T

15 ¢ 1

Policy loss (greedy policy)

O 1 1 1 1 1 1 1 1 1
0O 50 100 150 200 250 300 350 400 450 500
Number of epochs

Q Learning 13

Should learner just take
apparently-best action?

o At time t = 3, may think best action is
Everyone go RIGHT...7*"([4,j]) = Right

Does ok. .. never consider
©([1,1]) = Up !

e ISssue:
— In general, need to observe all possible

(state, action) pairs. ..
— In practice, where to go each visit?

e How to balance
*x exploring region
* exploiting “optimal” move

Learning

Approach: Explore/EXxploit

e At time ¢, have estimates
Q:(s,a) for each state s, action a

Rt ifn<T
U otherwise

Let f(u,n) = {

Eg, Rt =2, T=5

e Maintain count
N(s,a) = #times took action a from state

e Select action
argmax{ f(Qi(s,a), N(s,a) }

Effect: Every action gets (at least) T' = 5 attempts
afterwards, just take best.

earnin,

Utility estimates

RMS error, policy loss (exploratory policy)

05

Results

20

40 60 80
Number of iterations

100

RMSerror ——
Policy loss

20

40 60 80
Number of epochs

100

16

Comparison

e ()-learning converges in ~ 26 trivials

e Compare to standard U-learning:
15 - Ji 21'47 RMSerror —
. '1 \ f 1? Policy loss
R 8o
S ol 23 2 08
> %B """ B o4 |
0.5: Eig § 0.2 —]
(using same exploration RT =2, T =5)
e (Q-learning is worse
* 26 vs 18 trials
* inferior final error
o \Why?
(Q does not enforce consistency (as no model)
e Clearly: if you have P(s'|s,a) model

Learning

should use it!

Temporal Difference (Q-Learning

e Reduce discrepancy between successive
() estimates

(Qeny and Q(n_1))

Q: When updating Q, what should
“more correct” value be?

— One step time difference:

QW (st,ar) = 1 + 7 me{Q(StJrl,a)}
— Why not two steps?

QP (st,ar) = e+ yrer +v maX{Q(8t+2,a)}
— Orn7

Q(n)(st,at) = r¢ + Y41 + oo

+ V(n_l)TH-n—l + " maaX{Q(SHn,a)}

A: Blend all of these:

QM(st,ar) =
(1= X) [QP (51, ar) + AQP (51, ar) + X2QP) (51, a1) + -]

TD()\) Q-Learning

QA(Sta at) = (1-X) [Q(l)(st, as) + AQ(Q)(St, at) +)\QQ(?’)(st, az) + -- }

e Equivalent expression:

QMstyar) =re+~[(1 —N) max Q(s¢,at)
+ A Q/\(St—I—laat-I—l)]

e TD(\) algorithm uses above training rule
— Sometimes converges faster than @ learning
— converges for any 0 < A < 1 [Dayan, 1992]

— Tesauro’s TD-Gammon uses this alg

Dimensions

Accessibility: In Accessible env, state = percepts.

When Rewards: Are rewards only at TERMINAL
states, or any state?

Prior Knowledge: Does agent initial know model
Mg, R(s,a)
or must it learn this,
as well as utility info?

Deterministic: Is P(stt+1|st,ac) € {0,1}7

Fixed / Changing Policy:
Given fixed policy:
Agent just “passively” watches world,
trying to learn utility of different states
“Active’” agent changes policy.

Discount: Relative importance of current reward,
vs future reward.
(y=1,vsy<1)

Situations

Here: ALWAYS “accessible”

Doesn’'t matter:
Rewards-only-at-Terminals?
Discounted?

(Q-learning proof needs A < 1)
Deterministic?

o If ModelKnown, Fixed Policy:
= F##1A: evaluating fixed policy
IMPROVEMENT: stochastic approx: TD(\)

e If ModelKnown, Learning Policy:
= computing optimal policy
Value Iteration, Policy Iteration, ...
IMPROVEMENT: scaling, generalization

o If Model NOT Known, Learning Policy:
= computing optimal policy (unknown)
IMPROVEMENT: Q-Learning

Subtleties and Ongoing Research

e Reinforcement learning for
Hierarchical Problem Solvers

e Design optimal exploration strategies
Occasionally perform new (non utility optimizing)
move

(see n-armed bandit problem [Russell4+Norvig, p611])

e Inaccessible: State only partially observable

e Extend to continuous actions, states

Learning

