III. Model-Free Learning

- ullet $TD(\lambda)$ used for ValueDetermination Given $\pi_t(s)$, compute $U_t(s)$ within PolicyIteration
- Next step of PolicyIteration:

Given $U_t(s)$, compute $\pi_{t+1}(s)$

$$\pi_{t+1}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} \boxed{P(s'|s,a)} U_t(s')$$

- \Rightarrow Need model: P(s'|s,a)
 - Ok for Backgammon
 What about Factory??

Curse of Modeling

• So far: "Known" environment . . .

Agent knows

$$M_{ij}^a$$
: Dist over $S imes A imes S$ $P(s'|s,a)$ $R \colon S imes A imes S o \Re$ $R(s_t,a_t,s_{t+1}) = v$

• Typically, M^a_{ij} , $R(\cdots)$ unknown!

... so agent can't choose actions ...

Option#1: First estimate $\widehat{M}(\cdots)$, $\widehat{R}(\cdots)$... then find best policy, based on \widehat{M} , \widehat{R}

Option#2: ...

Q Function

Define $Q_\pi(s,a)\equiv$ cumulative reward of performing a in s then following π from then on

$$Q(s,a) \equiv R(s) + \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

• If we knew $Q(\cdot,\cdot)$, can choose optimal action $\pi(s)$ even without knowing P(s'|s,a)!

$$\pi_Q(s) = \underset{a}{\operatorname{argmax}} \{ \ Q(s,a) \ \}$$

- \Rightarrow Just need to learn this $Q(\cdot,\cdot)$ evaluation function
 - ullet Need to know set of actions $\{a\}$ for each state s but NOT where each action goes (M^a_{ij})

Difference between ${\it U}$ and ${\it Q}$

$$U(s) = R(s) + \max_{a} \sum_{s'} M_{s,s'}^{a} U(s')$$

 $Q(s, a_1) = R(s) + \sum_{s'} M_{s,s'}^{a_1} \max_{a'} Q(s', a')$

Example: Simple Deterministic World

R(s,a) (immediate reward values)

Q(s,a) values $(\gamma = 0.9)$

 $U^*(s)$ values

An optimal policy

Training Rule to Learn Q

• Q_{π} and U_{π} closely related:

$$U_{\pi}(s) = \max_{a'} \{Q_{\pi}(s, a')\}$$

Consider deterministic case:

 $s' = \delta(s, a)$ is state resulting from applying action a in state s

$$\Rightarrow Q(s_t, a_t) = R(s_t) + \gamma U(\delta(s_t, a_t)))$$

$$= R(s_t) + \gamma \max_{a'} \{ Q(s_{t+1}, a') \}$$

Let: $\widehat{Q} \equiv \operatorname{approx} \operatorname{to} Q$

• Training rule: (Bellman backup-ish)

$$\widehat{Q}(s,a) \leftarrow R(s) + \gamma \max_{a'} \{ \widehat{Q}(s',a') \}$$

Q-Learning for Deterministic Worlds

For each s, a initialize table entry $\widehat{Q}(s, a) \leftarrow 0$

Observe current state s

Do forever:

- Select an action a and execute it
- Receive immediate reward r = R(s)
- Observe new state $s' = \delta(s, a)$
- Update table entry for $\widehat{Q}(s,a)$:

$$\widehat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \{\widehat{Q}(s',a')\}$$

 \bullet $s \leftarrow s'$

Updating \widehat{Q}

$$\widehat{Q}(s_1, a_r) \leftarrow R(s_1) + \gamma \max_{a'} \widehat{Q}(\delta(s_1, a_r), a')$$

= 0 + 0.9 max{63,81,100}
= 90

Thrm: If rewards \geq 0, then

$$(\forall s, a, n) \quad \widehat{Q}_{n+1}(s, a) \geq \widehat{Q}_n(s, a)$$

and

$$(\forall s, a, n) \quad 0 \leq \widehat{Q}_n(s, a) \leq Q(s, a)$$

Q Learning

8

\widehat{Q} converges to Q ...

- ... if o deterministic world
 - \circ visit each $\langle s,a \rangle$ infinitely often

Proof: Let "full interval" \equiv interval during which each $\langle s,a \rangle$ is visited.

Let
$$\hat{Q}_n \equiv$$
 table after n updates;
$$\Delta_n \equiv \text{maximum error in } \hat{Q}_n$$

$$= \max_{s,a} \{ |\hat{Q}_n(s,a) - Q(s,a)| \}$$

Claim: After each full interval,

$$\Delta_{n+fi} \leq \gamma \Delta_n$$

(largest error in \widehat{Q} is reduced by γ)

• Error in revised estimate $\widehat{Q}_{n+1}(s,a)$ (after updating $\widehat{Q}_n(s,a)$, on iteration n+1)

$$\begin{aligned} |\widehat{Q}_{n+1}(s,a) - Q(s,a)| \\ &= |(R(s) + \gamma \max_{a'} \widehat{Q}_n(s',a'))| \\ &- (R(s) + \gamma \max_{a'} Q(s',a'))| \\ &= \gamma |\max_{a'} \widehat{Q}_n(s',a') - \max_{a'} Q(s',a')| \\ &\leq \gamma \max_{a'} |\widehat{Q}_n(s',a') - Q(s',a')| \\ &\leq \gamma \max_{s'',a'} |\widehat{Q}_n(s'',a') - Q(s'',a')| \\ &\leq \gamma \Delta_n \end{aligned}$$

Uses: $|\max_{a} f_1(a) - \max_{a} f_2(a)| \le \max_{a} |f_1(a) - f_2(a)|$

Nondeterministic Case TD-style Learning

So far:
$$\begin{cases}
Reward \\
Next state
\end{cases}$$
 are deterministic
$$What if non-deterministic?$$

ullet Redefine U,Q by taking expected values

$$U^{\pi}(s) \equiv E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]$$
$$\equiv E[\sum_{i=0}^{\infty} \gamma^i r_{t+i}]$$
$$Q(s,a) \equiv E[R(s) + \gamma U^*(\delta(s,a))]$$

New training rule:
 (Generalize Q-learning to nondeterministic worlds)

$$\hat{Q}_t(s,a) \leftarrow (1 - \alpha_t)\hat{Q}_{n-1}(s,a) + \alpha_t[r + \max_{a'} \hat{Q}_{n-1}(s',a')]$$

where
$$\alpha_t = \frac{1}{1 + visits_t(s, a)}$$

ullet \widehat{Q} converges to Q [Watkins and Dayan, 1992]

Comments on Q-Learning Update Rule

- Like TD(0)
 on-line sampling of transition probabilities
 + on-line sampling of actions
- ullet After sampling from actions $a \in A$ approximates full Bellman backup

[Sample s' in proportion to P(s'|s,a)]

Note: With
$$U$$
, need $P(s'|s,a)$ to compute action
$$\pi(s) = \operatorname{argmax}_a \sum_{s'} \boxed{P(s'|s,a)} U_t(s')$$
 With Q , do NOT need $P(s'|s,a)$

 $\pi(s) = \underset{\tilde{a}}{\operatorname{argmax}} \{ Q(s, a) \}$

Issue: Where to "Drive", during Learning

- Given the $Q(\cdot,\cdot)$ value, optimal action is. . . $\pi(s) = \underset{a}{\operatorname{argmax}} \{ \ Q(s,a) \ \}$
- How to learn these $Q(\cdot, \cdot)$ values?
- Why not just use "optimal action"?

When learner reaches state s, perform action $\mathop{\rm argmax}_a\{\; \widehat{Q}_t(\; s, a\;)\;\}$

Can fall in a rut...

A strategy might SEEM best (at time t) as other regions are NOT explored.

Just Exploring "Best" Action

Should learner just take apparently-best action?

• At time t=3, may think best action is Everyone go RIGHT... $\pi^{\star,7}([i,j])=$ Right

Does ok...never consider $\pi([1,1]) = Up!$

- Issue:
 - In general, need to observe all possible (state, action) pairs...
 - In practice, where to go each visit?
- How to balance
 - * exploring region
 - * exploiting "optimal" move

Approach: Explore/Exploit

ullet At time t, have estimates $\widehat{Q}_t(s,a)$ for each state s, action a

Let
$$f(u, n) = \begin{cases} R^+ & \text{if } n < T \\ u & \text{otherwise} \end{cases}$$

Eg,
$$R^+ = 2$$
, $T = 5$

Maintain count

$$N(s,a) = \# {\sf times} \ {\sf took} \ {\sf action} \ a \ {\sf from} \ {\sf state}$$
 s

Select action

$$\underset{a}{\operatorname{argmax}} \{ \ f(\widehat{Q}_t(s,a), N(s,a) \ \}$$

Effect: Every action gets (at least) T=5 attempts afterwards, just take best.

Results

Comparison

- ullet Q-learning converges in pprox 26 trivials
- ullet Compare to standard U-learning:

(using same exploration $R^+ = 2$, T = 5)

- Q-learning is worse
 - * 26 vs 18 trials
 - * inferior final error
- Why?

Q does not enforce consistency (as no model)

• Clearly: if you have P(s'|s,a) model should use it!

Temporal Difference Q-Learning

Reduce discrepancy between successive
 Q estimates

$$(\widehat{Q}_{(n)} \text{ and } \widehat{Q}_{(n-1)})$$

Q: When updating \hat{Q} , what should "more correct" value be?

- One step time difference:
$$Q^{(1)}(s_t,a_t) \equiv r_t + \gamma \max_{a} \{\widehat{Q}(s_{t+1},a)\}$$

- Why not two steps?
$$Q^{(2)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 \max_a \{\widehat{Q}(s_{t+2}, a)\}$$

- Or
$$n$$
?
 $Q^{(n)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \cdots + \gamma^{(n-1)} r_{t+n-1} + \gamma^n \max_{a} \{ \widehat{Q}(s_{t+n}, a) \}$

A: Blend all of these:

$$Q^{\lambda}(s_{t}, a_{t}) \equiv (1 - \lambda) \left[Q^{(1)}(s_{t}, a_{t}) + \lambda Q^{(2)}(s_{t}, a_{t}) + \lambda^{2} Q^{(3)}(s_{t}, a_{t}) + \cdots \right]$$

TD(λ) Q-Learning

$$Q^{\lambda}(s_t, a_t) \equiv (1-\lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) + \cdots \right]$$

Equivalent expression:

$$Q^{\lambda}(s_t, a_t) = r_t + \gamma [(1 - \lambda) \max_{a} \widehat{Q}(s_t, a_t)$$

+ $\lambda Q^{\lambda}(s_{t+1}, a_{t+1})]$

- $TD(\lambda)$ algorithm uses above training rule
 - Sometimes converges faster than Q learning
 - converges for any $0 \le \lambda \le 1$ [Dayan, 1992]
 - Tesauro's TD-Gammon uses this alg

Dimensions

Accessibility: In Accessible env, state \equiv percepts.

When Rewards: Are rewards only at TERMINAL states, or any state?

Prior Knowledge: Does agent initial know model $M^a_{ij},\ R(s,a)$ or must it learn this, as well as utility info?

Deterministic: Is $P(s_{t+1} | s_t, a_t) \in \{0, 1\}$?

Fixed / Changing Policy:

Given fixed policy:

Agent just "passively" watches world, trying to learn utility of different states "Active" agent changes policy.

Discount: Relative importance of current reward, vs future reward.

$$(\gamma = 1, \text{ vs } \gamma < 1)$$

Situations

If ModelKnown, Fixed Policy:

```
\Rightarrow #1A: evaluating fixed policy IMPROVEMENT: stochastic approx: TD(\lambda)
```

- If ModelKnown, Learning Policy:
 - ⇒ computing optimal policy Value Iteration, Policy Iteration, . . . IMPROVEMENT: scaling, generalization
- If Model NOT Known, Learning Policy:
 - ⇒ computing optimal policy (unknown)
 IMPROVEMENT: Q-Learning

Subtleties and Ongoing Research

- Reinforcement learning for Hierarchical Problem Solvers
- Design optimal exploration strategies
 Occasionally perform new (non utility optimizing)
 move

(see *n*-armed bandit problem [Russell+Norvig, p611])

- Inaccessible: State only partially observable
- Extend to continuous actions, states