Linear Classifiers and Regressors

"Borrowed" with permission from Andrew Moore (CMU)

Single-Parameter Linear Regression

Regression vs Classification

Linear Regression

DATASET

inputs	outputs	
$x_1 = 1$	$y_1 = 1$	
$x_2 = 3$	$y_2 = 2.2$	
$x_3 = 2$	$y_3 = 2$	
$x_4 = 1.5$	$y_4 = 1.9$	
$x_5 = 4$	$y_5 = 3.1$	

Linear regression assumes

expected value of output *y* given input *x*, E[y/x], is linear. Simplest case: $Out(x) = w \times x$ for some unknown *w*. Challenge: Given dataset, how to estimate *w*.

1-parameter linear regression

Assume data is formed by

 $y_i = w \times x_i + \text{noise}_i$

where...

- noise signals are independent
- noise has *normal* distribution with mean 0 and unknown variance σ^2

P(y|w,x) has a normal distribution with

- mean *w×x*
- variance σ^2

Bayesian Linear Regression

 $P(y|w,x) = Normal(mean w \times x; var \sigma^2)$

Datapoints $(x_1, y_1) (x_2, y_2) \dots (x_n, y_n)$ are EVIDENCE about *w*.

Want to infer *w* from data: $P(w \mid x_1, x_2, ..., x_n, y_1, y_2, ..., y_n)$

•?? use BAYES rule to work out a posterior distribution for *w* given the data ??

•Or Maximum Likelihood Estimation ?

Maximum likelihood estimation of w

Question:

 \bigcirc

"For what value of *w* is this data most likely to have happened?"

What value of W maximizes

$$P(y_1, y_2, ..., y_n \mid x_1, x_2, ..., x_n, w) = \prod_{i=1}^n P(y_i \mid w, x_i) ?$$

$$w^{*} = \arg \max \left\{ \prod_{i=1}^{n} P(y_{i} | w, x_{i}) \right\}$$
$$= \arg \max \left\{ \prod_{i=1}^{n} \exp\left(-\frac{1}{2}\left(\frac{y_{i} - wx_{i}}{\sigma}\right)^{2}\right) \right\}$$
$$= \arg \max \left\{ \sum_{i=1}^{n} -\frac{1}{2}\left(\frac{y_{i} - wx_{i}}{\sigma}\right)^{2} \right\}$$
$$= \arg \min \left\{ \sum_{i=1}^{n} \left(y_{i} - wx_{i}\right)^{2} \right\}$$

Linear Regression

$$E(w) = \sum_{i} (y_{i} - wx_{i})^{2} = \sum_{i} y_{i}^{2} - (2\sum_{i} x_{i}y_{i})w + (\sum_{i} x_{i}^{2})w^{2}$$

\Rightarrow Need to minimize a quadratic function of W.

Linear Regression

Sum-of-squares minimized when

The maximum likelihood model is

 $Out(x) = w \times x$

Can use for prediction

provide a prob dist of *w*

... and predictions would give a prob dist of expected output

Often useful to know your confidence.

Max likelihood also provides kind of confidence!

Multi-variate Linear Regression

Multivariate Regression

What if inputs are *vectors*?

Input is 2-d; Output value is "height"

Multivariate Regression

R datapoints; each input has *m* components ... as Matrices:

$$\mathbf{x} = \begin{bmatrix} \dots \mathbf{x}_{1} \dots \mathbf{x}_{2} \dots \\ \dots \mathbf{x}_{2} \dots \\ \vdots \\ \dots \mathbf{x}_{R} \dots \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1m} \\ x_{21} & x_{22} & \dots & x_{2m} \\ \vdots \\ x_{R1} & x_{R2} & \dots & x_{Rm} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{R} \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{R} \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{R} \end{bmatrix}$$

Linear regression model assumes \exists vector w s.t. Out $(x) = w^T x = w_1 x [1] + w_2 x [2] + ... + w_m x [m]$

Max. likelihood $W = (X^T X)^{-1} (X^T Y)^{-1} (X^T Y)^{$

Multivariate Regression (con't)

The max. likelihood **w** is $w = (X^T X)^{-1}(X^T Y)$

 $X^{T}X$ is $m \times m$ matrix: i,j'th elt =

 X^TY is *m*-element vector: i'th elt =

$$\sum_{k=1}^{R} x_{ki} y_k$$

Constant Term in Linear Regression

What about a constant term?

What if linear data does not go through origin (0,0,...0) ?

Statisticians and Neural Net Folks all agree on a simple obvious hack.

Can you guess??

The constant term

 Trick: create fake input "X₀" that always takes value 1

Before: $Y=w_1X_1 + w_2X_2$...is a poor model

X ₀	<i>X</i> ₁	<i>X</i> ₂	Y
1	2	4	16
1	3	4	17
1	5	5	20

After:

 $Y = w_0 X_0 + w_1 X_1 + w_2 X_2$ >= w_0 + w_1 X_1 + w_2 X_2

... is good model!

Heteroscedasticity… Linear **Regression** with varying noise

Linear: Slide 19

Regression with varying noise

• Suppose you know variance of noise that was added to each datapoint.

MLE estimation with varying noise

$$\operatorname{argmax} \log p(y_1, y_2, ..., y_R | x_1, x_2, ..., x_R, \sigma_1^2, \sigma_2^2, ..., \sigma_R^2, w)$$

$$W = \operatorname{argmin}_{W} \sum_{i=1}^{R} \frac{(y_i - wx_i)^2}{\sigma_i^2} \qquad \text{Assuming i.i.d. and then plugging in equation for Gaussian and simplifying.}$$

$$= \left(w \text{ such that } \sum_{i=1}^{R} \frac{x_i(y_i - wx_i)}{\sigma_i^2} = 0 \right) \qquad \text{Setting dLL/dw}$$

$$= \frac{\left(\sum_{i=1}^{R} \frac{x_i y_i}{\sigma_i^2}\right)}{\left(\sum_{i=1}^{R} \frac{x_i^2}{\sigma_i^2}\right)} \qquad \text{Trivial algebra}$$

This is Weighted Regression

• How to minimize weighted sum of squares ?

Weighted Multivariate Regression

The max. likelihood \boldsymbol{w} is $\boldsymbol{w} = (WX^TWX)^{-1}(WX^TWY)$

 (WX^TWX) is an $m \ge m$ matrix: i,j'th elt is

 (WX^TWY) is an *m*-element vector: i'th elt

Non-linear Regression

(Digression...)

Linear: Slide 24

Non-linear Regression

Suppose y is related to function of x in that predicted values have a *non-linear dependence* on w:

Non-linear MLE estimation

argmax log
$$p(y_1, y_2, ..., y_R | x_1, x_2, ..., x_R, \sigma, w) =$$

GRADIENT DESCENT Goal: Find a local minimum of $f: \mathcal{R} \rightarrow \mathcal{R}$ Approach:

1. Start with some value for W

2. GRADIENT DESCENT: $\leftarrow w - \eta \frac{\partial}{\partial w} f(w)$

3. Iterate ... until bored ...

 η = LEARNING RATE = small positive number, e.g. η = 0.05

Good default value for anything !

QUESTION: Justify the Gradient Descent Rule

Gradient Descent in "m" Dimensions

Given $f(\mathbf{w}): \mathfrak{R}^m \to \mathfrak{R}$

$$\nabla f(\mathbf{w}) = \begin{pmatrix} \frac{\partial}{\partial w_1} f(\mathbf{w}) \\ \vdots \\ \frac{\partial}{\partial w_m} f(\mathbf{w}) \end{pmatrix}$$

points in direction of steepest ascent.

 $|\nabla f(w)|$ is the gradient in that direction

GRADIENT DESCENT RULE:

 $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla \mathbf{f}(\mathbf{w})$

Equivalently

$$w_j \leftarrow w_j - \eta \frac{\partial}{\partial w_j} f(w)$$

, ...,where w_j is jth weight
 "just like a linear feedback system"

Linear: Slide 29

Linear Perceptron

Linear Perceptrons

Multivariate linear models:

$$\operatorname{Out}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}$$

"Training" \equiv minimizing sum-of-squared residuals...

$$E = \sum_{k} (\text{Out } (\mathbf{x}_{k}) - y_{k})^{2}$$
$$= \sum_{k} (\mathbf{w}^{T} \mathbf{x}_{k} - y_{k})^{2}$$

by gradient descent...

 \rightarrow perceptron training rule

Linear Perceptron Training Rule

$$E = \sum_{k=1}^{R} (y_k - \mathbf{w}^T \mathbf{x}_k)^2$$

Gradient descent: to minimize *E*, update **w** ...

$$w_j \leftarrow w_j - \eta \frac{\partial E}{\partial w_j}$$

So what's $\frac{\partial E}{\partial w_i}$?

$$\frac{\partial E}{\partial w_j} = \sum_{k=1}^R \frac{\partial}{\partial w_j} (y_k - \mathbf{w}^T \mathbf{x}_k)^2$$
$$= \sum_{k=1}^R 2(y_k - \mathbf{w}^T \mathbf{x}_k) \frac{\partial}{\partial w_j} (y_k - \mathbf{w}^T \mathbf{x}_k)$$
$$= -2\sum_{k=1}^R \delta_k \frac{\partial}{\partial w_j} \mathbf{w}^T \mathbf{x}_k$$
$$\underbrace{\dots \text{where}}{\delta_k = y_k - \mathbf{w}^T \mathbf{x}_k}$$
$$= -2\sum_{k=1}^R \delta_k \frac{\partial}{\partial w_j} \sum_{i=1}^m w_i x_{ki}$$
$$= -2\sum_{k=1}^R \delta_k \frac{\partial}{\partial w_j} \sum_{i=1}^m w_i x_{ki}$$

Linear Perceptron Training Rule

$$E = \sum_{k=1}^{R} (y_k - \mathbf{w}^T \mathbf{x}_k)^2$$

Gradient descent: to minimize *E*, update **w** ...

$$w_j \leftarrow w_j - \eta \frac{\partial E}{\partial w_j}$$

...where...

Linear: Slide 34

The "Batch" perceptron algorithm

- 1) Randomly initialize weights $w_1 w_2 ... w_m$
- 2) Get your dataset (append 1's to inputs to avoid going thru origin).

3) for
$$i = 1$$
 to R $\delta_i := y_i - \mathbf{W}^T$

4) for *j* = 1 to m

$$w_j \leftarrow w_j + \eta \sum_{i=1}^R \delta_i x_{ij}$$

5) if $\sum \delta_i^2$ stops improving then stop. Else loop back to 3.

If data is voluminous and arrives fast

If input-output pairs (x, y) come in very quickly. Then

> Don't bother remembering old ones. Just keep using new ones.

observe
$$(\mathbf{x}, \mathbf{y})$$

 $\delta \leftarrow \mathbf{y} - \mathbf{w}^{\mathrm{T}} \mathbf{x}$
 $\forall j \ w_{j} \leftarrow w_{j} + \eta \, \delta \, x_{j}$

Gradient Descent vs Matrix Inversion for Linear Perceptrons GD Advantages (MI disadvantages):

GD Disadvantages (MI advantages):

Gradient Descent vs Matrix Inversion for Linear Perceptrons GD Advantages (MI disadvantage **Biologically plausible** • With very very many attrib (mR). each If fewer than m iterations n But we'll More easily parallelizable (or soon see that GD Disadvanta GD It's moronic has an important extra matrix, It's essentially 🔍 then solve a set of trick up its sleeve then the airect • If *m* is small it's espec matrix inversion me possele if you want to be efficient. Hard to choose a good lear rate Matrix inversion takes pred ztable time. You can't be sure when gradient descent will stop.

Linear Perceptron ...for Classification

Perceptrons for Classification

What if all outputs are 0's or 1's ?

We can do a linear fit.

Our prediction is 0 if $out(\mathbf{x}) \le \frac{1}{2}$

Blue = Out(x)

Green = Classification

1 if out(**x**)>¹/₂

WHAT'S THE BIG PROBLEM WITH THIS???

Classification with Perceptrons I

Don't minimize

$$\sum \left(y_i - \mathbf{w}^{\mathrm{T}} \mathbf{x}_i \right)^2 \, !$$

Instead, minimize # misclassifications:

where Round(x) = $\begin{cases} -1 \text{ if } x < 0 \\ 1 \text{ if } x \ge 0 \end{cases}$

[Assume outputs are +1 & -1, not +1 & 0]

New gradient descent rule:

if (\mathbf{x}_i, y_i) correctly classed, don't change

if wrongly predicted as 1

if wrongly predicted as -1

NOTE: CUTE & NON OBVIOUS WHY THIS WORKS!!

 $w \leftarrow w - x_i$

 $W \leftarrow W + X_i$

Classification with Perceptrons II: Sigmoid Functions Least squares fit useless This fit classifies better. But it's not least squares fit! **SOLUTION:** Instead of $Out(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ $Out(\mathbf{x}) = g(\mathbf{w}^{\mathsf{T}}\mathbf{x})$ We'll use $g: \mathfrak{R} \to (0,1)$ where is a squashing function

Linear: Slide 44

Rotating curve 180° centered on *(0,1/2)* produces same curve.

i.e. g(h) = 1 - g(-h)

Can you prove this?

The Sigmoid

$$g(h) = \frac{1}{1 + \exp(-h)}$$

Choose w to minimize

$$\sum_{i=1}^{R} [y_i - \text{Out}(\mathbf{x}_i)]^2 = \sum_{i=1}^{R} [y_i - g(\mathbf{w}^{\mathrm{T}} \mathbf{x}_i)]^2$$

Linear Perceptron Classification Regions

Use model:
$$Out(\mathbf{x}) = g(\mathbf{w}^{T} \times (1, \mathbf{x}))$$

= $g(\mathbf{w}_{0} + \mathbf{w}_{1}x_{1} + \mathbf{w}_{2}x_{2})$

In diagram... which region classified +1, and which 0 ??

Gradient descent with sigmoid on a perceptron

Note
$$g'(x) = g(x)(1-g(x))$$

Proof: $g(x) = \frac{1}{1+e^{-x}}$ so $g'(x) = \frac{-e^{-x}}{(1+e^{-x})^2}$
 $= \frac{1-1-e^{-x}}{(1+e^{-x})^2} = \frac{1}{(1+e^{-x})^2} - \frac{1}{1+e^{-x}} = \frac{-1}{1+e^{-x}} \left(1 - \frac{1}{1+e^{-x}}\right) = -g(x)(1-g(x))$
Out $(x) = g\left(\sum_k w_k x_k\right)$
 $E = \sum_i \left(y_i - g\left(\sum_k w_k x_k\right)\right)^2$
 $\frac{\partial E}{\partial w_j} = \sum_i 2\left(y_i - g\left(\sum_k w_k x_{ik}\right)\right) \left(-\frac{\partial}{\partial w_j} g\left(\sum_k w_k x_{ik}\right)\right)$
 $= \sum_i -2\left(y_i - g\left(\sum_k w_k x_{ik}\right)\right)g'\left(\sum_k w_k x_{ik}\right)\frac{\partial}{\partial w_j}\sum_k w_k x_{ik}$
 $= \sum_i -2\delta_i g(\operatorname{net}_i)(1-g(\operatorname{net}_i))x_{ij}$
where $\delta_i = y_i - \operatorname{Out}(x_i)$ net $i = \sum_k w_k x_k$

Linear: Slide 49

Other Things about Perceptrons

- Invented and popularized by Rosenblatt (1962)
- Even with sigmoid nonlinearity, correct convergence is guaranteed !
- Stable behavior for overconstrained and underconstrained problems

Perceptrons and Boolean Functions

If inputs are all 0's and 1's and outputs are all 0's and 1's...

• Can learn the function $x_1 \wedge x_2$

• Can learn the function $x_1 \vee x_2$.

• Can learn <u>any</u> conjunction of literals, e.g.

 $X_1 \wedge \gamma X_2 \wedge \gamma X_3 \wedge X_4 \wedge X_5$

QUESTION: WHY?

Perceptrons and Boolean Functions

- Can learn any disjunction of literals
 e.g. x₁ ^ ~x₂ ^ ~x₃ ^ x₄ ^ x₅
- Can learn majority function

$$f(x_1, x_2 \dots x_n) = \begin{cases} 1 \text{ if } n/2 x_i \text{'s or more are} = 1 \\ 0 \text{ if less than } n/2 x_i \text{'s are} = 1 \end{cases}$$

• What about the exclusive or function?

 $f(x_1, x_2) = x_1 \forall x_2 = (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2)$