
Linear Classifiers and 
Regressors

“Borrowed” with permission from 
Andrew Moore (CMU)
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Single-Parameter 
Linear Regression



Linear: Slide 3

Regression vs
 

Classification

Regressor Prediction of
real-valued output

Input
Attributes

Density
Estimator

ProbabilityInput
Attributes

Classifier Prediction of
categorical output

Input
Attributes
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Linear Regression

Linear regression assumes 
expected value of output y given input x, E[y|x],

 
is linear.

Simplest case:   Out(x) = w×x
 

for some unknown w.

Challenge: Given dataset, how to estimate w.

inputs outputs

x1 = 1 y1 = 1

x2 = 3 y2 = 2.2

x3 = 2 y3 = 2

x4 = 1.5 y4 = 1.9

x5 = 4 y5 = 3.1

DATASET

← 1 →

↑
w
↓
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1-parameter linear regression
Assume data is formed by

yi

 

=  w×xi

 

+  noisei

where…
•

 
noise signals are independent

•
 

noise has normal distribution with 
mean 0 and unknown variance σ2

P(y|w,x)
 

has a normal distribution with
•

 
mean   w×x

•
 

variance  σ2
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Bayesian Linear Regression
P(y|w,x) = Normal(mean

 
w×x ;  var

 
σ2)

Datapoints
 

(x1

 

,y1

 

) (x2

 

,y2

 

) …
 

(xn

 

,yn

 

) 
are EVIDENCE

 
about w.

Want to infer w from data:
P(w | x1, x2,…, xn,  y1, y2…, yn

 

)

•?? use BAYES rule to work out a posterior 
distribution for w given the data ??

•Or Maximum Likelihood Estimation ?
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Maximum likelihood estimation of w

Question:
“For what value of w is this data most likely to have 

happened?”

⇔
What value of w maximizes

1 2 1 2
1

( , ,..., | , ,..., , ) ( , ) ?
n

n n i i
i

P y y y x x x w P y w x
=

= ∏
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∑
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Linear Regression

Maximum likelihood w
 minimizes 

E(w) =
 sum-of-squares of residuals

⇒
 

Need to minimize a quadratic function of w.

( ) ( ) ( )2 2 2 2( ) 2i i i i i i
i i

w y wx y x y w x wΕ = − = − +∑ ∑ ∑ ∑

E(w) w
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Linear Regression
Sum-of-squares 

minimized when

2∑
∑=

i

ii

x

yx
w

The maximum likelihood 
model is

Can use for prediction

Note: Bayesian stats would 

provide a prob dist of w

…

 

and predictions would give a

 prob

 

dist of expected output

Often useful to know your confidence.

Max likelihood also provides kind of 

confidence!

p(w)

w

Out(x) = w×x
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Multi-variate  Linear 
Regression
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Multivariate Regression
What if inputs are vectors?

Dataset has form
x1 y1

x2 y2

x3 y3
.:                      :
.
xR yR

Input is 2-d;

Output value is “height”

3 .

. 4                                              
6 .

. 5
. 8

. 10

x1

x2
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Multivariate Regression

11 12 1 1

21 22 22 2

1 2

........ .....

........ .....
  

........ .....

m

m

R R RmR R

x x x y
x x x y

x x x y

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

1x
x

x y

x
MM M

R datapoints; each input has m components …
 

as Matrices:

Max. likelihood     w  = (XTX) -1(XTY)

IMPORTANT EXERCISE:  
PROVE IT !!!!!

Linear regression model assumes ∃
 

vector w s.t.
Out(x)  =  wTx = w1

 

x[1] + w2

 

x[2] + … + wm

 

x[m]
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Multivariate Regression (con’t)

The max. likelihood w is w = (XTX)-1(XTY)

XTX is m ×m matrix:  i,j’th
 

elt
 

=

XTY is m-element vector:  i’th
 

elt
 

=

∑
=

R

k
kjkixx

1

∑
=

R

k
kki yx

1
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Constant Term in 
Linear Regression
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What about a constant term?
What if

 linear data does not 
go through origin 
(0,0,…0) ?

Statisticians and 
Neural Net Folks all 
agree on a simple 
obvious hack.

Can you guess??
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The constant term
•

 
Trick: create fake input “X0

 

”
 

that always 
takes value 1

X1 X2 Y
2 4 16
3 4 17
5 5 20

X0 X1 X2 Y
1 2 4 16
1 3 4 17
1 5 5 20

Before:
Y=w1X1+ w2

 

X2 

…is a poor model

After:
Y= w0X0+w1X1+ w2

 

X2 

= w0+w1X1+ w2

 

X2 

…is good model!
Here, you should 
be able to see MLE 

w0 , w1 , w2

 

by inspection 
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Linear 
Regression with 
varying noise

Heteroscedasticity
...
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Regression with varying noise
•

 
Suppose you know variance of noise that was 
added to each datapoint.

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

σ=1/2

σ=2

σ=1

σ=1/2

σ=2xi yi σi
2

½ ½ 4
1 1 1
2 1 1/4
2 3 4
3 2 1/4

),(~ 2
iii wxNy σAssume What’s th

e MLE 

estim
ate of w?
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MLE estimation with varying noise

2 2 2
1 2 1 2 1 2log ( , ,..., | , ,..., , , ,..., , )argmax R R Rp y y y x x x w

w
σ σ σ

2

2
1

( )argmin
R

i i

i i

y wx

w
σ=

−
= ∑

Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

2
1

( ) such that 0
R

i i i

i i

x y wxw
σ=

⎛ ⎞−
= =⎜ ⎟
⎝ ⎠

∑
Setting dLL/dw

 
equal to zero

2
1

2

2
1

R
i i

i i
R

i

i i

x y

x
σ

σ

=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑

Trivial algebra
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This is Weighted Regression
•

 
How to minimize weighted sum of squares ?

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

σ=1/2

σ=2

σ=1

σ=1/2

σ=2

∑
=

−R

i i

ii wxy

w 1
2

2)(argmin σ

2

1

iσ
where weight for i’th

 
datapoint

 
is
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Weighted Multivariate Regression

The max. likelihood w is w = (WXTWX)-1(WXTWY)

(WXTWX) is an m x m matrix:  i,j’th
 

elt
 

is

(WXTWY) is an m-element vector:  i’th
 

elt

∑
=

R

k i

kjki xx

1
2σ

∑
=

R

k i

kki yx
1

2σ
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Non-linear 
Regression

(Digression…)
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Non-linear Regression
Suppose y

 
is related to function of x

 in that predicted values have a non-linear dependence on w:

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

xi yi

½ ½
1 2.5
2 3
3 2
3 3

),(~ 2σii xwNy +Assume What’s th
e MLE 

estim
ate of w?
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Non-linear MLE estimation

=),,,...,,|,...,,(log 2121argmax wxxxyyyp
w

RR σ

( )2

1
argmin

R

i i
i
y w x

w =

= − +∑
Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

1
 such that 0

R
i i

i i

y w x
w

w x=

⎛ ⎞− +
= =⎜ ⎟⎜ ⎟+⎝ ⎠

∑ Setting dLL/dw

 
equal to zero

We’re down the 
algebraic toilet

Common (but not only) approach:
Numerical Solutions:
•

 

Line Search
•

 

Simulated Annealing
•

 

Gradient Descent
•

 

Conjugate Gradient
•

 

Levenberg

 

Marquart
•

 

Newton’s Method

Also, special purpose statistical-

 
optimization-specific tricks such as 
E.M. (See Gaussian Mixtures lecture 
for introduction) So guess w

hat 

we do?



Linear: Slide 28

GRADIENT DESCENT
Goal: Find a local minimum of  f: ℜ→ℜ
Approach:

( )fw w w
w

η ∂
← −

∂

QUESTION:  Justify the Gradient Descent Rule

Good default value for anything !

1.
 

Start with some value for  w

2.
 

GRADIENT DESCENT:

3.
 

Iterate …
 

until bored …

η = LEARNING RATE = small positive number, e.g. 
η = 0.05



Linear: Slide 29

Gradient Descent in “m”
 

Dimensions

ℜ→ℜm:)f(w

( )wf-ww ∇← η

Given

points in direction of steepest ascent.

GRADIENT DESCENT RULE:

Equivalently
( )wf-

j
jj w
ηww
∂
∂

← ….where   wj

 

is  j th

 
weight

“just like a linear feedback system”

( )
( )

( )⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

=∇

wf

wf

wf
1

mw

w
M

( )wf∇ is the gradient in that direction
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Linear Perceptron
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Linear Perceptrons

“Training”
 

≡
 

minimizing sum-of-squared residuals…

( )( )

( )2

2

∑

∑

−=

−=Ε

Τ

k

k

y

y

kk

kk

x   

xOut

w

Out(x) = wTxMultivariate linear models:

by gradient descent…
→

 
perceptron training rule
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Linear Perceptron Training Rule

∑
=

−=
R

k
k

T
kyE

1

2)( xw

Gradient descent:
 to minimize E,

 update w …

j
jj w

Eηww
∂
∂

← -

So what’s ?
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E

∂
∂
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∂
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1
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−
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∂
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1

)()(2 xwxw

∑
= ∂

∂
−=

R

k
k

T

j
k w
δ

1

2 xw

k
T

kk yδ xw−=
…where

∑ ∑
= =∂

∂
−=

R

k

m

i
kii

j
k xw
w

δ
1 1

2

∑
=

−=
R

k
kjk xδ

1

2
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Linear Perceptron Training Rule

∑
=

−=
R

k
k

T
kyE

1

2)( xw

Gradient descent:
 to minimize E,

 update w …

j
jj w

Eηww
∂
∂

← -

∑
=

+←
R

k
kjkjj xδηww

1

2

We frequently neglect the 2 (meaning 
we halve the learning rate)

…where…

∑
=

−=
∂
∂ R

k
kjk

j

xδ
w
E

1
2
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The “Batch”
 

perceptron algorithm
1)

 
Randomly initialize weights  w1

 

w2

 

… wm

2)
 

Get your dataset 
(append 1’s to inputs to avoid going thru origin).

3)
 

for i = 1 to R

4)
 

for  j = 1 to m

5)
 

if             stops improving then stop. 
Else loop back to 3.

iii y xwΤ−=:δ

∑
=

+←
R

i
ijijj xww

1

δη

∑ 2
iδ



Linear: Slide 36

ijijj

iii

xww
y

ηδ
δ

+←
−← Τxw

A RULE KNOWN BY
MANY NAMES

The LMS Rule

The delta rule

The Widrow Hoff rule

Classical

conditioning

The adaline rule
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If data is voluminous and arrives fast

If input-output pairs (x,y) come in very quickly.  
Then

Don’t bother remembering old ones.  
Just keep using new ones.

observe (x,y)

jjj xδηwwj
y

    
xw
+←∀

−← Τδ
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GD Advantages (MI disadvantages):
•

 

Biologically plausible
•

 

With very very many attributes each iteration costs only O(mR). If 
fewer than m iterations needed we’ve beaten Matrix Inversion

•

 

More easily parallelizable (or implementable

 

in wetware)?

GD Disadvantages (MI advantages):
•

 

It’s moronic
•

 

It’s essentially a slow implementation of a way to build the XTX matrix 
and then solve a set of linear equations

•

 

If m is small it’s especially outageous. If m is large then the direct 
matrix inversion method gets fiddly but not impossible if you want to 
be efficient.

•

 

Hard to choose a good learning rate
•

 

Matrix inversion takes predictable time. You can’t be sure when 
gradient descent will stop.

Gradient Descent vs
 

Matrix Inversion 
for Linear Perceptrons
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GD Advantages (MI disadvantages):
•

 

Biologically plausible
•

 

With very very many attributes, each iteration costs only O(mR).

 
If fewer than m iterations needed, faster than Matrix Inversion

•

 

More easily parallelizable (or implementable

 

in wetware)?

GD Disadvantages (MI advantages):
•

 

It’s moronic
•

 

It’s essentially a slow implementation of a way to build XTX matrix, 
then solve a set of linear equations

•

 

If m is small it’s especially outrageous. If m is large then the direct 
matrix inversion method gets fiddly but not impossible if you want to 
be efficient.

•

 

Hard to choose a good learning rate
•

 

Matrix inversion takes predictable time.

 
You can’t be sure when gradient descent will stop.

Gradient Descent vs
 

Matrix Inversion 
for Linear Perceptrons

But we’ll
soon see that

GD
has an important extra

trick up its sleeve



Linear: Slide 40

Linear Perceptron  
…for Classification
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Regression vs
 

Classification

Regressor Prediction of
real-valued output

Input
Attributes

Density
Estimator

ProbabilityInput
Attributes

Classifier Prediction of
categorical output

Input
Attributes
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Perceptrons for Classification
What if all outputs are 0’s or 1’s ?

or

We can do a linear fit.

Our prediction is   0 if out(x)≤½

1 if out(x)>½

Blue = Out(x)

Green = Classification

WHAT’S THE BIG PROBLEM WITH THIS???
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Classification with Perceptrons I
( )2

w x !i iy Τ−∑Don’t minimize

Instead, minimize # misclassifications: ( )( )∑ Τ− iiy xw Round

NOTE: CUTE &
NON OBVIOUS WHY 

THIS WORKS!!
[Assume outputs are +1 & -1, not  +1 & 0]

-1 if x<0
1 if x≥0

where   Round(x) =

if (xi ,yi ) correctly classed, don’t change

if wrongly predicted as 1
 

w  w  – xi

if wrongly predicted as -1
 

w  w + xi

New gradient descent rule:
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Classification with Perceptrons II:
 Sigmoid Functions

Least squares fit useless
This fit classifies better.  
But it’s not least squares fit!SOLUTION:

Instead of Out(x) = wTx

We’ll use    Out(x) = g(wTx)

where                            is a 
squashing function

( ): 0,1g ℜ→



Linear: Slide 46

The Sigmoid

)exp(1
1)(

h
hg

−+
=

Rotating curve 180o

 centered on (0,1/2)
produces same curve.
i.e.   g(h) = 1 – g(-h)

Can you prove this?
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The Sigmoid

Choose  w to minimize

[ ] [ ]∑∑
=

Τ

=

−=−
R

i
ii

R

i
ii gyy

1

2

1

2 )xw()x(Out

)exp(1
1)(

h
hg

−+
=
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Linear Perceptron Classification 
Regions

0      0
0

1
1

1

X2

X1

Use model:         Out(x) = g (wT×(1,x) )

= g ( w0

 

+ w1

 

x1

 

+
 

w2

 

x2 ) 

In diagram…
 

which region classified +1, and which 0 ??
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Gradient descent with sigmoid on a perceptron

( ) ( ) ( )( )

( ) ( )
( )

( ) ( )
( ) ( )( )

2

Note    ' 1

1Proof:      so   ' 21 1

1 1 1 1 1 1                1 12 2 1 1 11 1

Out(x)

2

k k
k

i k ik
i k

i k ik
kj

g x g x g x

xeg x g xxe xe

xe g x g xx x xe e ex xe e

g w x

y g w x

y g w x
w

= −

−−
= =

−+ −+

− ⎛ ⎞− − −
= = − = − = − −⎜ ⎟− − −+ + +⎝ ⎠− −+ +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞
Ε = −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∂Ε ⎛
= −

∂

∑

∑ ∑

∑

( ) ( )( )

     2 '

    2 net 1 net

where    Out(x )      net

k ik
i kj

i k ik k ik k ik
i k k kj

i i i ij
i

i i i i k k
k

g w x
w

y g w x g w x w x
w

g g x

y w x

δ

δ

⎛ ⎞⎛ ⎞ ∂⎞ ⎛ ⎞
−⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞ ∂⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

= − −

= − =

∑ ∑

∑ ∑ ∑ ∑

∑

∑

( )∑
=

−+←
R

i
ijiiijj xggww

1
1δη

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

m

j
ijji xwgg

1

iii gy −=δ

The sigmoid perceptron 
update rule:

where
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Other Things about Perceptrons

•
 

Invented and popularized by Rosenblatt (1962)

•
 

Even with sigmoid nonlinearity, 
correct convergence is guaranteed !

•
 

Stable behavior for overconstrained
 

and 
underconstrained

 
problems
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Perceptrons and Boolean Functions
If inputs are all 0’s and 1’s and outputs are all 0’s and 1’s…

•
 

Can learn the function   x1

 

∧
 

x2  

•
 

Can learn the function x1

 

∨
 

x2 .

•
 

Can learn any
 

conjunction of literals, e.g.
x1

 

∧
 

~x2

 

∧
 

~x3

 

∧
 

x4

 

∧
 

x5

QUESTION:  WHY?

X1

X2

X1

X2
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Perceptrons and Boolean Functions
•

 
Can learn any disjunction of literals

e.g. x1

 

∧
 

~x2

 

∧
 

~x3

 

∧
 

x4

 

∧
 

x5

•
 

Can learn majority function
f(x1

 

,x2

 

… xn

 

) =    1 if  n/2 xi

 

’s or more are = 1
0 if less than n/2 xi

 

’s are = 1

•
 

What about the exclusive or function?
f(x1

 

,x2

 

) = x1 ∀
 

x2

 

= 
(x1

 

∧
 

~x2

 

) ∨
 

(~ x1

 

∧
 

x2

 

)


