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Linear Regression

DATASET
o o] inputs outputs
x,=1 y;=1
[ ® X, =3 Yy = 2.2
[ [ Xq=2 V3= 2
A 1_1\' x,=1.5 y,=19
xs=4 ys=3.1

Linear regression assumes
expected value of output y given input x, £/y/x/, is linear.

Simplest case: Out(x) = wxx for some unknown w.
Challenge: Given dataset, how to estimate w.
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1-parameter linear regression

Assume data is formed by
Y; = Wxx; + noise,

where...

e noise signals are independent

e noise has normal distribution with
mean 0 and unknown variance ¢

P(y/w,x) has a normal distribution with
e mean Wwxx

e variance o2
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Bayesian Linear Regression

P(yiw,x) = Normal(mean wxx; var 02)

Datapoints (xi,)1) (6, 5) ... (X, V)
are EVIDENCE about w.

Want to infer w from data:
Pw| x, Xo..., Xop Vi, Vourry Vo)

o?? use BAYES rule to work out a posterior
distribution for w given the data ??

¢Or Maximum Likelihood Estimation ?
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Maximum likelihood estimation of w

Question:

“For what value of wis this data most likely to have
happened?”

&
What value of w maximizes

Py, Voreer ¥, | X0 X500y X, W) =HP(yl.w,xl.) ?
i=1
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arg max- H P(y;w,x; )
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J

'

Linear: Slide 8



Linear Regression

Maximum likelihood w
minimizes

E(w) = ‘
sum-of-squares of residuals

E(w) |y —

E(w) = Z:(yl.—wxl.)2 = Zi:yl.z —(Zle.yl.)w+(in2)w

I

= Need to minimize a quadratic function of w.
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Linear Regression

Sum-of-squares ‘
minimized when

p(w)
2N, p——

2
E X. . .
! Note: Bayesian stats would

The maximum likelihood provide a prob dist of w
model is ... and predictions would give a

OUt(X) = WxX prob dist of expected output

Often useful to know your confidence.

Can use for prediction

Max likelihood also provides kind of

confidence!
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Multi-variate Linear
Regression



Multivariate Regression

What if inputs are vectors?

3.

. 10

Dataset has form

)4
V2
Y3

YR

Input is 2-d;
Output value is “height”
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Multivariate Regression

R datapoints; each input has /m components ... as Matrices:

..... Xpwoon | | Xy Xy e Xy, 2
..... ) T X X T Y
X = .2 _| " 22 . 2 y = .2
o Xpen || Xpg o Xpp e Xpy | | VR |
IMPORTANT EXERCISE:
PROVE IT !

Linear regression model assumes 3 vector w s.t.
Out(x) = Wx = wux(1]+ wx(2] + ... +w, x/m]

Max. likelihood —w = (XTX)-Y(XTY) —
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Multivariate Regression (cont)

The max. likelihood w is w = (XTX)-1(XTY)

R
XTX'is m xm matrix: ij’th elt = Zxkixkj
k=1

R

XTY is m-element vector: ith elt =
Zxkiyk
k=1
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Constant Term In
Linear Regression
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What about a constant term?

What if height 73]
linear data does not nlo
go through origin 60" ////
(0,0,...0) ? o]
65
Statisticians and 63"
Neural Net Folks all o
agree on a simple joarsatoms

obvious hack.

Can you guess??
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The constant term
e Trick: create fake input “X}," that always

takes value 1

X, | X5 |Y
2 |4 |16
3 (4 |17
5 |5 |20
Before:

Y=w X+ WX,

...Is @ poor model

Xy | X; | X5 |Y
1 (2 |4 |16
1 (3 |4 |17
1 (5 |5 |20
After:

Here, you should

be able to see MLE
Wy, Wy, W,

by inspection

Y= wXy+wW X+ WX,
= Wyt WXt WX

...Is good model!
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Regression with
varying noise
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Regression with varying noise
e Suppose you know variance of noise that was

added to each datapoint.
y=3— ® .,

XY |of :

L V2 |4 y=2— ®

1 |1 |1 0:"/2
_q o=1

2 1 1/4 = ‘0:2‘ ® i

2 3 4 - | |

3 2 1/4 x=0 x=1 X=2

pssume ¥, ~ N(wx,,07)
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MLE estimation with varying noise

al’gmax log p(1,, Vyyeeer Vi |xl,xz,...,xR,O'f,022,...,62,w)

44 Assuming i.i.d. and
— WX. then plugging in
— argm | N Z (y ! ) equation for Gaussian
o and simplifying.
w
& x (v, —wx,) Setting dLL/dw
= | w such that Z — = 0 equal to zero
i=1 G,'

QR

i=1

b

R Y, Trivial algebra
2| ——

=

Q.
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This is Weighted Regression

e How to minimize weighted sum of squares ?

wx, )

argman(y’

w

l

y=3- ¢

y=2-

o=2

o=1/2

where weight for i‘th datapointis _2
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Weighted Multivariate Regression

The max. likelihood w is w = (WXTWX)-1(WXTWY)

R
(WXTWX) is an m x m matrix: i,j’'th eltis Z >

(WXTWY) is an m-element vector: ith elt
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Non-linear
Regression

(Digression...)



Non-linear Regression

Suppose v is related to function of x

in that predicted values have a non-linear dependence on w:
y=3 = o o
Xi 1Y o
1 |2 y=2— ®
1 2.5
2 |3 y=1-
®
3 2 _
y=0 I
3 3 x=0 x=1

Assume ), = N(\/W-l-xl. ,0'2)
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Non-linear MLE estimation

argmaX 109 p(V1, Voreeos Vi | X0 X500y X, 0, W) =

w

Common (but not only) approach:
Numerical Solutions:

e Line Search

e Simulated Annealing
e Gradient Descent

e Conjugate Gradient
e Levenberg Marquart
e Newton’s Method

Also, special purpose statistical-
optimization-specific tricks such as
E.M. (See Gaussian Mixtures lecture
for introduction)

Assuming i.i.d. and
then plugging in
equation for Gaussian
and simplifying.

Setting dLL/dw
equal to zero

We're down the
lgebraic toilet

Linear: Slide 26



GRADIENT DESCENT

Goal: Find a local minimum of - H— X
Approach:

1. Start with some value for w

0
2. GRADIENT DESCEN®: <— w — 17— (w)

ow

3. Iterate ... until bored ...

n = LEARNING RATE = small positive number, e.g.
n = 0.05

Good default value for anything !

QUESTION: Justify the Gradient Descent Rule
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Gradient Descent in "m” Dimensions

Given f(w):R" >R

vi(w)= : points in direction of steepest ascent.

N Y,
|Vf(W)( is the gradient in that direction

GRADIENT DESCENT RULE:  |W < W -7Vf(w)

Fquivalently W, < W, - if(w) where w; is ;U
f f naw J ]
J “just like a linear feedback system”

h weight
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Linear Perceptron



Linear Perceptrons

Multivariate linear models: Out(x) = Wix

“Training” = minimizing sum-of-squared residuals...

E = Zk: (Out (x,)- v, )
— Zk (WTXk — yk)2

by gradient descent...
— perceptron training rule
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Linear Perceptron Training Rule

R
E=) (y,-W'%)’
k=1

Gradient descent:
to minimize £,
update w ...

OF
W

ok,

ow ;

So what's

50

P Z_(Yk WTXk)2

8w =~

19
= E ,Z(Yk _WTXk)
k=1 ow

R

J

:—225,{LWTX,€

k=1 ow Jj

(e

- WTXk)

...where

O = Vi

—W'X,

T
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Linear Perceptron Training Rule

R
E=) (y,-W'%)’
k=1

Gradient descent:
to minimize £,

update w ...
oF
W, =W, =1——
('9w
...where...

———225 X
k=1

R
W, =W, + 2;725kxkj

\ k=1

We frequently neglect the 2 (meaning
we halve the learning rate)
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The "Batch” perceptron algorithm

1) Randomly initialize weights w; w, ... w

2) Get your dataset
(append 1's to inputs to avoid going thru origin).

3) for /I=1to R S = v —WTXZ.

l

4) for j=1tom

R
W, W, + 772 5l.xl.j
=1

5) if 2.8 stops improving then stop.
Else loop back to 3.
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T

5i<_yi_w X,

Wj(—Wj

775l.xl.j

The delta ryje

s——

Classical
conditioning

A RULE KNOWN BY
MANY NAMES
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If data is voluminous and arrives fast

If input-output pairs (x,y) come in very quickly.
Then

Don’t bother remembering old ones.
Just keep using new ones.

observe (X, ))

S — y—W' X
Vi w, <w, +nox,
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Gradient Descent vs Matrix Inversion

for Linear Perceptrons
GD Advantages (MI disadvantages):

GD Disadvantages (MI advantages):
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Gradient Descent vs Matrix Inversion

for Linear Perceptrons
GD Advantages (MI disadvantag” )):

e Biologically plausible

e With very very many attrib each 07" J(mMR).
If fewer than m iterations < Arsinn

e More easily parallelizahle o2 But we'll

GD Disadvantay 200 S5 ek
It's moronic GD

e It's essentially< has an important extra X matrix,

then solve a set o1

o If mis smallit's espe trick up its sleeve hen theairect

matrix inversion me poSsw. le if you want to
be efficient.

e Hard to choose a good lea 4 rate

e Matrix inversion takes pred|able time.
You can’t be sure when gradient descent will stop.
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Linear Perceptron
...for Classification
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Perceptrons for Classification

What if all outputs are O’'s or 1’s ?

— .
or —
I PP Yy S

We can do a linear fit. Blue = Out(x)

Our prediction is 0 if out(x)<’2
1 if out(x)>%2

Green = Classification

WHAT’'S THE BIG PROBLEM WITH THIS???
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Classification with Perceptrons I

Don’t minimize Z(yi —WTXZ.)Z !

Instead, minimize # misclassifications: Z(yl. — Round (W Xl.))

-1 if x<0
NOTE: CUTE &
NON OBVIOUS WHY
THIS WORKS!!

where Round(x) =

1if x=0

[Assume outputs are +1 & -1, not +1 & 0]

New gradient descent rule:

If (X;,y;) correctly classed, don't change

If wrongly predicted as 1 w < w — X

if wrongly predicted as -1 w & W+ X;
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Classification with Perceptrons II:
Sigmoid Functions

Least squares fit useless
This fit classifies better.

But it’s not least squares fit!

SOLUTION:
Instead of  Out(x) = wTx
We'll use Out(x) = g(w™x)

where £:%—(0.1)
squashing function

IS a
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The Sigmoid

o(h)=—

N

gih

ng -

0eE -+

Rotating curve 180°
centered on (0,1/2)

produces same curve.
.e. g(h)=1-g(-h)

04 -+

02 -

o

Can you prove this?

Linear: Slide 46




The Sigmoid

1
 1+exp(—h)

g(h)

. /
4“
&
.:
i

Choose w to minimize

ZR:[yi —OU'[(XZ.)]Z = i[yi _g(WTXi)]Z

i=1
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Linear Perceptron Classification

Regions
0O O
] 20 .
X T 1
1
X, —
Use model: Out(x) = g (W'x(1,x) )

=g( W+ wx + nmpx)

In diagram... which region classified +1, and which 0 ??
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Gradient descent with sigmoid on a perceptron

Note g'(x) =

g(x) (1-2())

Proof: g(x)=

-1

x]=—g(x>(1—g<x>)

l+e

2 2 —x —X
(1+e_X) (1+e_X) 1+e l+e

A

where & =y, -Out(x,) net,=> wux,
k

, 0
g (; WiXik j % ; WiXik

The sigmoid perceptron
update rule:

W, < W, +7725g(1 g

o 1 w,@j
j=1

0, =
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Other Things about Perceptrons

Invented and popularized by Rosenblatt (1962)

Even with sigmoid nonlinearity,
correct convergence is guaranteed !

Stable behavior for overconstrained and
underconstrained problems
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Perceptrons and Boolean Functions

If inputs are all 0's and 1’s and outputs are all 0’'s and 1’s...

D
« Can learn the function x; Ax, %
) -
X
| |
: X%
» Can learn the function x, v X, . \
Xl \

« Can learn any conjunction of literals, e.g.
X4 A ~Xo A ~X3 A X4 A X

QUESTION: WHY?
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Perceptrons and Boolean Functions

« Can learn any disjunction of literals
€.9. X4 A ~Xy A ~X3 A X4 A Xz

« Can learn majority function
f(X4,X5 ... X,) = | 1if n/2 Xx’s or more are = 1
O if less than n/2 x/'s are = 1

 What about the exclusive or function?

(X0 X0) = Xy ¥ Xp =
(Xg A ~Xa) v (~ Xq A Xp)
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