
A Unified Bias-Variance Decomposition and its Applications

Pedro Domingos pedrod@cs.washington.edu

Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, U.S.A.

Abstract

This paper presents a unified bias-variance
decomposition that is applicable to squared
loss, zero-one loss, variable misclassification
costs, and other loss functions. The unified
decomposition sheds light on a number of sig-
nificant issues: the relation between some of
the previously-proposed decompositions for
zero-one loss and the original one for squared
loss, the relation between bias, variance and
Schapire et al.’s (1997) notion of margin, and
the nature of the trade-off between bias and
variance in classification. While the bias-
variance behavior of zero-one loss and vari-
able misclassification costs is quite different
from that of squared loss, this difference de-
rives directly from the different definitions of
loss. We have applied the proposed decom-
position to decision tree learning, instance-
based learning and boosting on a large suite
of benchmark data sets, and made several sig-
nificant observations.

1. Introduction

The bias-variance decomposition is a key tool for un-
derstanding machine-learning algorithms, and in re-
cent years its use in empirical studies has grown
rapidly. The notions of bias and variance help to ex-
plain how very simple learners can outperform more
sophisticated ones, and how model ensembles can out-
perform single models. The bias-variance decomposi-
tion was originally derived for squared loss (see, for
example, Geman et al. (1992)). More recently, several
authors have proposed corresponding decompositions
for zero-one loss. However, each of these decompo-
sitions has significant shortcomings. Kong and Diet-
terich’s (1995) decomposition allows the variance to
be negative, and ignores the noise component of mis-
classification error. Breiman’s (1996b) decomposition
is undefined for any given example (it is only defined
for the instance space as a whole), and allows the vari-
ance to be zero or undefined even when the learner’s

predictions fluctuate in response to the training set.
Tibshirani (1996) defines bias and variance, but de-
composes loss into bias and the “aggregation effect,” a
quantity unrelated to his definition of variance. James
and Hastie (1997) extend this approach by defining
bias and variance but decomposing loss in terms of two
quantities they call the “systematic effect” and “vari-
ance effect.” Kohavi and Wolpert’s (1996) decompo-
sition allows the bias of the Bayes-optimal classifier to
be nonzero. Friedman’s (1997) decomposition relates
zero-one loss to the squared-loss bias and variance of
class probability estimates, leaving bias and variance
for zero-one loss undefined. In each of these cases, the
decomposition for zero-one loss is either not stated in
terms of the zero-one bias and variance, or is devel-
oped independently from the original one for squared
loss, without a clear relationship between them.

In this paper we propose a single definition of bias
and variance, applicable to any loss function, and
show that the resulting decomposition for zero-one loss
does not suffer from any of the shortcomings of previ-
ous decompositions. Further, we show that notions
like order-correctness (Breiman, 1996a) and margin
(Schapire et al., 1997), previously proposed to explain
why model ensembles reduce error, can be reduced to
bias and variance as defined here. We also provide
what to our knowledge is the first bias-variance decom-
position for variable misclassification costs. Finally,
we carry out a large-scale empirical study, measuring
the bias and variance of several machine-learning al-
gorithms in a variety of conditions, and extracting sig-
nificant patterns.

2. A Unified Decomposition

Given a training set {(x1, t1), . . . , (xn, tn)}, a learner
produces a model f . Given a test example x, this
model produces a prediction y = f(x). (For the sake
of simplicity, the fact that y is a function of x will re-
main implicit throughout this paper.) Let t be the true
value of the predicted variable for the test example x.
A loss function L(t, y) measures the cost of predict-
ing y when the true value is t. Commonly used loss



functions are squared loss (L(t, y) = (t−y)2), absolute
loss (L(t, y) = |t − y|), and zero-one loss (L(t, y) = 0
if y = t, L(t, y) = 1 otherwise). The goal of learning
can be stated as producing a model with the smallest
possible loss; i.e., a model that minimizes the average
L(t, y) over all examples, with each example weighted
by its probability. In general, t will be a nondetermin-
istic function of x (i.e., if x is sampled repeatedly, dif-
ferent values of t will be seen). The optimal prediction
y∗ for an example x is the prediction that minimizes
Et[L(t, y∗)], where the subscript t denotes that the ex-
pectation is taken with respect to all possible values of
t, weighted by their probabilities given x. The optimal
model is the model for which f(x) = y∗ for every x.
In general, this model will have non-zero loss. In the
case of zero-one loss, the optimal model is called the
Bayes classifier, and its loss is called the Bayes rate.

Since the same learner will in general produce differ-
ent models for different training sets, L(t, y) will be a
function of the training set. This dependency can be
removed by averaging over training sets. In particular,
since the training set size is an important parameter
of a learning problem, we will often want to average
over all training sets of a given size. Let D be a set
of training sets. Then the quantity of interest is the
expected loss ED,t[L(t, y)], where the expectation is
taken with respect to t and the training sets in D (i.e.,
with respect to t and the predictions y = f(x) pro-
duced for example x by applying the learner to each
training set in D). Bias-variance decompositions de-
compose the expected loss into three terms: bias, vari-
ance and noise. A standard such decomposition exists
for squared loss, and a number of different ones have
been proposed for zero-one loss.

In order to define bias and variance for an arbitrary
loss function we first need to define the notion of main
prediction.

Definition 1 The main prediction for a loss func-
tion L and set of training sets D is yL,D

m =
argminy′ED [L(y, y′)].

When there is no danger of ambiguity, we will repre-
sent yL,D

m simply as ym. The expectation is taken with
respect to the training sets in D, i.e., with respect to
the predictions y produced by learning on the training
sets in D. Let Y be the multiset of these predictions.
(A specific prediction y will appear more than once in
Y if it is produced by more than one training set.) In
words, the main prediction is the value y′ whose aver-
age loss relative to all the predictions in Y is minimum
(i.e., it is the prediction that “differs least” from all the
predictions in Y according to L). The main prediction

under squared loss is the mean of the predictions; un-
der absolute loss it is the median; and under zero-one
loss it is the mode (i.e., the most frequent prediction).
For example, if there are k training sets in D, we learn
a classifier on each, 0.6k of these classifiers predict class
1, and 0.4k predict 0, then the main prediction under
zero-one loss is class 1. The main prediction is not nec-
essarily a member of Y ; for example, if Y = {1, 1, 2, 2}
the main prediction under squared loss is 1.5.

We can now define bias and variance as follows.

Definition 2 The bias of a learner on an example x
is B(x) = L(y∗, ym).

In words, the bias is the loss incurred by the main
prediction relative to the optimal prediction.

Definition 3 The variance of a learner on an exam-
ple x is V (x) = ED [L(ym, y)].

In words, the variance is the average loss incurred by
predictions relative to the main prediction. Bias and
variance may be averaged over all examples, in which
case we will refer to them as average bias Ex[B(x)] and
average variance Ex[V (x)].

It is also convenient to define noise as follows.

Definition 4 The noise of an example x is N(x) =
Et[L(t, y∗)].

In other words, noise is the unavoidable component of
the loss, incurred independently of the learning algo-
rithm.

Definitions 2 and 3 have the intuitive properties associ-
ated with bias and variance measures. ym is a measure
of the “central tendency” of a learner. (What “central”
means depends on the loss function.) Thus B(x) mea-
sures the systematic loss incurred by a learner, and
V (x) measures the loss incurred by its fluctuations
around the central tendency in response to different
training sets. If the loss function is nonnegative then
bias and variance are also nonnegative. The bias is in-
dependent of the training set, and is zero for a learner
that always makes the optimal prediction. The vari-
ance is independent of the true value of the predicted
variable, and is zero for a learner that always makes
the same prediction regardless of the training set. The
only property that the definitions above require of the
loss function is that its expected value be computable.
However, it is not necessarily the case that the ex-
pected loss ED,t[L(t, y)] for a given loss function L
can be decomposed into bias and variance as defined
above. Our approach will be to propose a decomposi-
tion and then show that it applies to each of several



different loss functions. Even when it does not apply,
it may still be worthwhile to investigate how the ex-
pected loss can be expressed as a function of B(x) and
V (x).

Consider an example x for which the true prediction
is t, and a learner that predicts y given a training set
in D. Then, for certain loss functions L, the following
decomposition of ED,t[L(t, y)] holds:

ED,t[L(t, y)]

= c1Et[L(t, y∗)] + L(y∗, ym) + c2ED[L(ym, y)]

= c1N(x) + B(x) + c2V (x) (1)

c1 and c2 are multiplicative factors that will take on
different values for different loss functions. It is easily
seen that this decomposition reduces to the standard
one for squared loss with c1 = c2 = 1, considering that
for squared loss y∗ = Et[t] and ym = ED[y] (Geman
et al., 1992):

ED,t[(t − y)2] = Et[(t − Et[t])
2] + (Et[t] − ED [y])2

+ED[(ED [y] − y)2] (2)

We now show that the same decomposition applies to
a broad class of loss functions for two-class problems,
including zero-one loss. (Below we extend this to mul-
ticlass problems for zero-one loss.) Let PD(y = y∗) be
the probability over training sets in D that the learner
predicts the optimal class for x.

Theorem 1 In two-class problems, Equation 1 is
valid for any real-valued loss function for which
∀y L(y, y) = 0 and ∀y1 6=y2

L(y1, y2) 6= 0, with c1 =

PD(y = y∗)−
L(y∗,y)
L(y,y∗)

PD(y 6= y∗) and c2 = 1 if ym = y∗,

c2 = −L(y∗,ym)
L(ym,y∗) otherwise.

Proof. We begin by showing that

L(t, y) = L(y∗, y) + c0L(t, y∗) (3)

with c0 = 1 if y = y∗ and c0 = −L(y∗,y)
L(y,y∗)

otherwise.

If y = y∗ Equation 3 is trivially true with c0 = 1.

If t = y∗, L(t, y) = L(y∗, y) − L(y∗,y)
L(y,y∗)

L(t, y∗) is true

because it reduces to L(t, y) = L(t, y) − 0. If t = y,

L(t, y) = L(y∗, y) − L(y∗,y)
L(y,y∗)

L(t, y∗) is true because it

reduces to L(t, t) = L(y∗, y) − L(y∗, y), or 0 = 0. But
if y 6= y∗ and we have a two-class problem, either t =
y∗ or t = y must be true. Therefore if y 6= y∗ it is

always true that L(t, y) = L(y∗, y) − L(y∗,y)
L(y,y∗)

L(t, y∗),

completing the proof of Equation 3. We now show in
a similar manner that

L(y∗, y) = L(y∗, ym) + c2L(ym, y) (4)

with c2 = 1 if ym = y∗ and c2 = −L(y∗,ym)
L(ym,y∗) otherwise.

If ym = y∗ Equation 4 is trivially true with c2 = 1.

If y = ym, L(y∗, y) = L(y∗, ym) − L(y∗,ym)
L(ym,y∗)L(ym, y)

is true because it reduces to L(y∗, ym) = L(y∗, ym) −

0. If y = y∗, L(y∗, y) = L(y∗, ym) − L(y∗,ym)
L(ym,y∗)L(ym, y)

is true because it reduces to L(y∗, y∗) = L(y∗, ym) −
L(y∗, ym), or 0 = 0. But if ym 6= y∗ and we have a two-
class problem, either y = ym or y = y∗ must be true.
Therefore if ym 6= y∗ it is always true that L(y∗, y) =

L(y∗, ym) − L(y∗,ym)
L(ym,y∗)L(ym, y), completing the proof of

Equation 4. Using Equation 3, and considering that
L(y∗, y) and c0 do not depend on t and L(t, y∗) does
not depend on D,

ED,t[L(t, y)] = ED[Et[L(t, y)]]

= ED[L(y∗, y) + c0Et[L(t, y∗)]]

= ED[L(y∗, y)] + ED [c0]Et[L(t, y∗)]

(5)

Substituting Equation 4 and considering that

ED [c0] = PD(y = y∗) −
L(y∗,y)
L(y,y∗)

PD(y 6= y∗) = c1 re-

sults in Equation 1.
�

In particular, if the loss function is symmetric (i.e.,
∀y1,y2

L(y1, y2) = L(y2, y1)), c1 and c2 reduce to c1 =
2PD(y = y∗) − 1 and c2 = 1 if ym = y∗ (i.e., if
B(x) = 0), c2 = −1 otherwise (i.e., if B(x) = 1).
Specifically, this applies to zero-one loss, yielding a
decomposition similar to that of Kong and Dietterich
(1995). The main differences are that Kong and Diet-
terich ignored the noise component N(x) and defined
variance simply as the difference between loss and bias,
apparently unaware that the absolute value of that dif-
ference is the average loss incurred relative to the most
frequent prediction. A side-effect of this is that Kong
and Dietterich incorporate c2 into their definition of
variance, which can therefore be negative. Kohavi and
Wolpert (1996) and others have criticized this fact,
since variance for squared loss must be positive. How-
ever, our decomposition shows that the subtractive ef-
fect of variance follows from a self-consistent definition
of bias and variance for zero-one and squared loss, even
if the variance itself remains positive. The fact that
variance is additive in unbiased examples but subtrac-
tive in biased ones has significant consequences. If a
learner is biased on an example, increasing variance de-
creases loss. This behavior is markedly different from
that of squared loss, but is obtained with the same def-
initions of bias and variance, purely as a result of the
different properties of zero-one loss. It helps explain
how highly unstable learners like decision-tree and rule
induction algorithms can produce excellent results in



practice, even given very limited quantities of data. In
effect, when zero-one loss is the evaluation criterion,
there is a much higher tolerance for variance than if
the bias-variance decomposition was purely additive,
because the increase in average loss caused by vari-
ance on unbiased examples is partly offset (or more
than offset) by its decrease on biased ones. The av-
erage loss over all examples is the sum of noise, the
average bias and what might be termed the net vari-
ance, Ex[c2V (x)]:

ED,t,x[L(t, y)] = Ex[c1N(x)] + Ex[B(x)]

+Ex[c2V (x)] (6)

by averaging Equation 1 over all test examples x, with
c2 positive for unbiased examples and negative for bi-
ased ones.

The c1 factor (see Theorem 1) also points to a key dif-
ference between zero-one and squared loss. In squared
loss, increasing noise always increases error. In zero-
one loss, for training sets and test examples where
y 6= y∗, increasing noise decreases error, and a high
noise level can therefore in principle be beneficial to
performance.

The general case of Theorem 1 is also important. In
many practical applications of machine learning, loss
is highly asymmetric; for example, classifying a can-
cerous patient as healthy is likely to be more costly
than the reverse. In these cases, Theorem 1 essentially
shows that the loss-reducing effect of variance on bi-
ased examples will be greater or smaller depending on
how asymmetric the costs are, and on which direction
they are greater in.

Equation 1 does not apply if L(y, y) 6= 0; in this
case the decomposition contains an additional term
corresponding to the cost of the correct predictions.
Whether it applies in the general multiclass case is an
open problem. However, it applies to the general mul-
ticlass problem for zero-one loss, as described in the
following theorem.

Theorem 2 Equation 1 is valid for zero-one loss
in multiclass problems, with c1 = PD(y = y∗) −
PD(y 6= y∗) Pt(y = t | y∗ 6= t) and c2 = 1 if ym = y∗,
c2 = −PD(y = y∗ | y 6= ym) otherwise.

We omit the proof in the interests of space; see Domin-
gos (2000). Theorem 2 means that in multiclass prob-
lems not all variance on biased examples contributes
to reducing loss; of all training sets for which y 6= ym,
only some have y = y∗, and it is in these that loss is
reduced.

3. Properties of the Unified

Decomposition

One of the main concepts Breiman (1996a) used to ex-
plain why the bagging ensemble method reduces zero-
one loss was that of an order-correct learner. A learner
is order-correct on an example x iff ∀y 6=y∗

PD(y) <
PD(y∗). Breiman showed that bagging transforms an
order-correct learner into a nearly optimal one. Order-
correctness and bias are closely related: a learner is
order-correct on an example x iff B(x) = 0 under
zero-one loss. (The proof of this is immediate from
the definitions, considering that ym for zero-one loss is
the most frequent prediction.)

Schapire et al. (1997) proposed an explanation for
why the boosting ensemble method works in terms of
the notion of margin. For algorithms like bagging and
boosting, which generate multiple hypotheses by ap-
plying the same learner to multiple training sets, their
definition of margin can be stated as follows.

Definition 5 (Schapire et al., 1997) In two-class
problems, the margin of a learner on an example x
is M(x) = PD(y = t) − PD(y 6= t).

A positive margin indicates a correct classification by
the ensemble, and a negative one an error. Intuitively,
a large margin corresponds to a high confidence in the
prediction. D here is the set of training sets to which
the learner is applied. For example, if 100 rounds of
boosting are carried out, |D| = 100. Further, for algo-
rithms like boosting where the different training sets
(and corresponding predictions) have different weights
that sum to 1, PD(.) is computed according to these
weights. Definitions 1–4 apply unchanged in this sit-
uation. In effect, we have generalized the notions of
bias and variance to apply to any training set selection
scheme, not simply the traditional one of “all possible
training sets of a given size, with equal weights.”

Schapire et al. (1997) showed that it is possible to
bound an ensemble’s generalization error (i.e., its zero-
one loss on test examples) in terms of the distribution
of margins on training examples and the VC dimen-
sion of the base learner. In particular, the smaller
the probability of a low margin, the lower the bound
on generalization error. The following theorem shows
that the margin is closely related to bias and variance
as defined above.

Theorem 3 The margin of a learner on an example
x can be expressed in terms of its zero-one bias and
variance as M(x) = ±[2B(x) − 1][2V (x) − 1], with
positive sign if y∗ = t and negative sign otherwise.



Proof. When y∗ = t, M(x) = PD(y = y∗) −
PD(y 6= y∗) = 2PD(y = y∗) − 1. If B(x) = 0, ym = y∗
and M(x) = 2PD(y = ym) − 1 = 2[1 − V (x)] − 1 =
−[2V (x) − 1]. If B(x) = 1 then M(x) = 2V (x) − 1.
Therefore M(x) = [2B(x)−1][2V (x)−1]. The demon-
stration for y∗ 6= t is similar, with M(x) = PD(y 6=
y∗) − PD(y = y∗).

�

Conversely, it is possible to express the bias and vari-
ance in terms of the margin: B(x) = 1

2 [1±sign(M(x))],
V (x) = 1

2 [1 ± |M(x)|], with positive sign if y∗ 6= t
and negative sign otherwise. The relationship between
margins and bias/variance expressed in Theorem 3 im-
plies that Schapire et al.’s theorems can be stated in
terms of the bias and variance on training examples.
Bias-variance decompositions relate a learner’s loss on
an example to its bias and variance on that example.
However, to our knowledge this is the first time that
generalization error is related to bias and variance on
training examples.

Theorem 3 also sheds light on the polemic between
Breiman (1996b, 1997) and Schapire et al. (1997)
on how the success of ensemble methods like bagging
and boosting is best explained. Breiman has argued
for a bias-variance explanation, while Schapire et al.
have argued for a margin-based explanation. Theo-
rem 3 shows that these are two faces of the same coin,
and helps to explain why the bias-variance explana-
tion sometimes seems to fail when applied to boosting.
Maximizing margins is a combination of reducing the
number of biased examples, decreasing variance on un-
biased examples, and increasing it on biased ones (for
examples where y∗ = t; the reverse, otherwise). With-
out differentiating between these effects it is hard to
understand how boosting affects bias and variance.

4. Experiments

We applied the bias-variance decomposition of zero-
one loss proposed here in a series of experiments
with classification algorithms. To our knowledge this
is the most extensive such study to date, in terms
of the number of data sets and number of algo-
rithms/parameter settings studied. This section sum-
marizes the results. We used the following 30 data
sets from the UCI repository (Blake & Merz, 2000):
annealing, audiology, breast cancer (Ljubljana), chess
(king-rook vs. king-pawn), credit (Australian), di-
abetes, echocardiogram, glass, heart disease (Cleve-
land), hepatitis, horse colic, hypothyroid, iris, labor,
LED, lenses, liver disorders, lung cancer, lymphogra-
phy, mushroom, post-operative, primary tumor, pro-
moters, solar flare, sonar, soybean (small), splice junc-
tions, voting records, wine, and zoology.

As the noise level N(x) is very difficult to estimate,
we followed previous authors (e.g., Kohavi & Wolpert
(1996)) in assuming N(x) = 0. This is not too detri-
mental to the significance of the results because we
are mainly interested in the variation of bias and vari-
ance with several factors, not their absolute values.
We estimated bias, variance and zero-one loss by the
following method. We randomly divided each dataset
into training data (two thirds of the examples) and test
data (one third). For each dataset, we generated 100
different training sets by the bootstrap method (Efron
& Tibshirani, 1993): if the training data consists of n
examples, we create a bootstrap replicate of it by taking
n samples with replacement from it, with each example
having a probability of 1/n of being selected at each
turn. As a result, some of the examples will appear
more than once in the training set, and some not at
all. The 100 training sets thus obtained were taken
as a sample of the set D, with D being the set of all
training sets of size n. A model was then learned on
each training set. We used the predictions made by
these models on the test examples to estimate average
zero-one loss, average bias and net variance, as defined
in Section 2. We also measured the total contribu-
tion to average variance from unbiased examples Vu =
1
n
[
∑n

i=1(1−B(xi))V (xi)] and the contribution from bi-
ased examples Vb = 1

n
[
∑n

i=1 cB(xi)V (xi)], where xi is
a test example, n is the number of test examples, c = 1
for two-class problems, and c = PD(y = y∗|y 6= ym) for
multiclass problems (see Theorem 2), estimated from
the test set. The net variance is the difference of the
two: V = Vu − Vb.

We carried out experiments with decision-tree induc-
tion, boosting, and k-nearest neighbor; their results
are reported in turn. Space limitations preclude pre-
sentation of the complete results; see Domingos (2000).
Here we summarize the main observations, and present
representative examples.

4.1 Decision-Tree Induction

We used the C4.5 decision tree learner, release 8 (Quin-
lan, 1993). We measured zero-one loss, bias and vari-
ance while varying C4.5’s pruning parameter (the con-
fidence level CF) from 0% (maximum pruning) to
100% (minimum) in 5% steps. The default setting is
25%. Surprisingly, we found that in most data sets CF
has only a minor effect on bias and variance (and there-
fore loss). Only at the CF=0% extreme, where the tree
is pruned all the way to the root, is there a major im-
pact, with very high bias and loss; but this disappears
by CF=5%. These results suggest there may be room
for improvement in C4.5’s pruning method (cf. Oates
& Jensen (1997)).



In order to obtain a clearer picture of the bias-variance
trade-off in decision tree induction, we replaced C4.5’s
native pruning scheme with a limit on the number of
levels allowed in the tree. (When a maximum level
of m is set, every path in the tree of length greater
than m is pruned back to a length of m.) The dom-
inant effect observed is the rapid decrease of bias in
the first few levels, after which it typically stabilizes.
In 9 of the 25 data sets where this occurs, bias in fact
increases after this point (slightly in 6, markedly in 3).
In 5 data sets bias increases with the number of levels
overall; in 3 of these (echocardiogram, post-operative
and sonar) it increases markedly. Variance increases
with the number of levels in 26 data sets; in 17 of these
the increase is generally even, and much slower than
the initial decrease in bias. Less-regular patterns oc-
cur in the remaining 9 data sets. Vu and Vb tend to
be initially similar, but Vb increases more slowly than
Vu, or decreases. At any given level, Vb typically off-
sets a large fraction of Vu, making variance a smaller
contributor to loss than would be the case if its effect
was always positive. This leads to the hypothesis that
higher-variance algorithms (or settings) may be better
suited to classification (zero-one loss) than regression
(squared loss). Perhaps not coincidentally, research
in classification has tended to explore higher-variance
algorithms than research in regression.

Representative examples of the patterns observed are
shown in Figure 1, where the highest level shown is
the highest produced by C4.5 when it runs without
any limits. Overall, the expected pattern of a trade-
off in bias and variance leading to a minimum of loss
at an intermediate level was observed in only 10 data
sets; in 6 a decision stump was best, and in 14 an
unlimited number of levels was best.

4.2 Boosting

We also experimented with applying AdaBoost (Fre-
und & Schapire, 1996) to C4.5. We allowed a maxi-
mum of 100 rounds of boosting. (In most data sets,
loss and its components stabilized by the 20th round,
and only this part is graphed.) Boosting decreases loss
in 21 data sets and increases it in 3; it has no effect in
the remainder. It decreases bias in 14 data sets and in-
creases it in 7, while decreasing net variance in 18 data
sets and increasing it in 7. The bulk of bias reduction
typically occurs in the first few rounds. Variance re-
duction tends to be more gradual. On average (over
all data sets) variance reduction is a much larger con-
tributor to loss reduction than bias reduction (2.5% vs.
0.6%). Over all data sets, the variance reduction is sig-
nificant at the 5% level according to sign and Wilcoxon
tests, but bias reduction is not. Thus variance reduc-

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

L
os

s 
(%

)

Level

L
B
V

Vu
Vb

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12

L
os

s 
(%

)

Level

L
B
V

Vu
Vb

Figure 1. Effect of varying the number of levels in C4.5
trees: glass (top) and primary tumor (bottom).

tion is clearly the dominant effect when boosting is
applied to C4.5; this is consistent with the notion that
C4.5 is a “strong” learner. Boosting tends to reduce
both Vu and Vb, but it reduces Vu much more strongly
than Vb (3.0% vs. 0.5%). The ideal behavior would
be to reduce Vu and increase Vb; it may be possible to
design a variant of boosting that achieves this, and as
a result further reduces loss. Examples of the boosting
behaviors observed are shown in Figure 2.

4.3 K-Nearest Neighbor

We studied the bias and variance of the k-nearest
neighbor algorithm (Cover & Hart, 1967) as a func-
tion of k, the number of neighbors used to predict a
test example’s class. We used Euclidean distance for
numeric attributes and overlap for symbolic ones. k
was varied from 1 to 21 in increments of 2; typically
only small values of k are used, but this extended range
allows a clearer observation of its effect. The pattern
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Figure 2. Effect of boosting on C4.5: audiology (top) and
splice junctions (bottom).

of an increase in bias and a decrease in variance with
k producing a minimal loss at an intermediate value
of k is seldom observed; more often one of the two ef-
fects dominates throughout. In several cases bias and
variance vary in the same direction with k. In 13 data
sets, the lowest loss is obtained with k = 1, and in
11 with the maximum k. On average (over all data
sets) bias increases markedly with k (by 4.9% from
k = 1 to k= 21), but variance decreases only slightly
(0.8%), resulting in much increased loss. This contra-
dicts Friedman’s (1997) hypothesis (based on approxi-
mate analysis and artificial data) that very large values
of k should be beneficial. This may be attributable to
the fact that, as k increases, what Friedman calls the
“boundary bias” changes from negative to positive for
a majority of the examples, wiping out the benefits of
low variance. Interestingly, increasing k in k-NN has
the “ideal” effect of reducing Vu (by 0.5% on average)
while increasing Vb (0.3%). Figure 3 shows examples
of the different types of behavior observed.
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Figure 3. Effect of varying k in k-nearest neighbor: audi-
ology (top) and chess (bottom).

5. Future Work

The main limitation of the definitions of bias and vari-
ance proposed here is that many loss functions can-
not be decomposed according to them and Equation 1
(e.g., absolute loss). Since it is unlikely that meaning-
ful definitions exist for which a simple decomposition
is always possible, a central direction for future work
is determining general properties of loss functions that
are necessary and/or sufficient for Equation 1 to apply.
Even when it does not, it may be possible to usefully
relate loss to bias and variance as defined here. (For
example, in Domingos (2000) we show that, as long as
the loss function is a metric, it can be bounded from
above and below by linear functions of the bias, vari-
ance and noise.)

Another major direction for future work is applying
the decomposition to a wider variety of learners, in
order to gain insight about their behavior, both with
respect to variations within a method and with respect



to comparisons between methods. We would also like
to study experimentally the effect of different domain
characteristics (e.g., sparseness of the data) on the bias
and variance of different learning algorithms. The re-
sulting improved understanding should allow us to de-
sign learners that are more easily adapted to a wide
range of domains.

6. Conclusion

This paper proposed unified definitions of bias and
variance, applicable to any loss function. The resulting
decomposition specializes to the conventional one for
squared loss, avoids the difficulties of previous ones for
zero-one loss, and is also applicable to variable misclas-
sification costs. While the decomposition is not always
purely additive, we believe that more insight is gained
from this approach—formulating consistent definitions
and investigating what follows from them—than from
crafting definitions case-by-case to make the decom-
position purely additive. For example, uncovering the
different role of variance on biased and unbiased exam-
ples in zero-one loss leads to an improved understand-
ing of classification algorithms, and of how they differ
from regression ones. This was illustrated in an exten-
sive empirical study of bias and variance in decision
tree induction, boosting, and k-nearest neighbor.

The bias-variance decomposition proposed in this pa-
per is available in C code at http://www.cs.washing-
ton.edu/homes/pedrod/bvd.c.
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