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Framework for 
Learning
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Formal: Spam Detection
P( x, y ) : distribution of

email messages x and
their true labels y (spam or not spam)

training sample: set of email messages that have been 
labeled by the user
learning algorithm: . . . this course. . .
f: classifier produced by learning alg
test point: A new email message x
(with a true, but hidden, label y

 
∈

 
{ spam, not_spam})

loss function L(ŷ ; y) :
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Approaches to Learning Classifier

1. Learn classifier directly:

 
f : X → Y

where Y

 

is discrete 
--

 

e.g., Y = {+1,  –1 }
2. Learn regression function:

 
r : X → ℜ
c1 if r(x) >λ

 

c2 if r(x) ≥ λ
3. Learn conditional distribution: 

P( y | x )
4. Learn joint distribution: 

P( y, x )

Linear Models:
(a) Learn classifier: Perceptron 

Algorithm
(b) Learn regression function: 

LMS
(c) Learn conditional distribution: 

Logistic Regression
(d) Learn joint distribution:

 
Linear discriminant

 

analysis
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Inferring Classifier f from P( y | x )

Given x, predict class y that minimizes the expected 
loss:
f(x) = argminŷ

 

Ey|x [ L(ŷ, y) ] = argminŷ
 

∑y

 

P( y | x ) L(ŷ, 
y) 
Eg: For specific email message x
P( y = spam | x ) = 0.6    P( y = not_spam

 
| x ) = 0.4

(Note P( y = spam | x ) >  P( y = not_spam

 

| x )

 

)
What is optimal prediction ŷ?

Expected loss of ŷ = spam :       0 x 0.6 + 10 x 0.4  = 4
Expected loss of ŷ = not spam:  1  x 0.6 + 0 x  0:4 = 0.6

⇒ optimal prediction is “not spam”
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“Bias”
 

of Learning Algorithms
Learning algorithm embodies some “bias"
to prefer one hypothesis over another
. . . ideally: matched to assumptions/environment
Two types of bias:

restriction bias or language bias
Specifies what hypothesis space is searched
(Eg, Gaussian, Mixture of Gaussians, DecisionTrees, 
Piece-wise linear functions, . . . )

preference bias or search bias
specifies how hypothesis space is explored
⇒ leads to different (first) answer

Tradeoff: Suppose A ⊂ B
+: B more likely to include correct hypothesis
–: B more likely to include INcorrect

 

hypothesis
(Size of H, VCDimension

 
of H)
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Terminology
Labeled example: Example of form [ x, f(x) ]
Labeled sample: Set of {[ xi, f(xi) ]}
Classifier: Discrete-valued function.
Possible values f(x) ∈

 
{ 1, …, K} called “classes"; 

“class labels”
Binary classification: f(x) ∈

 
{ +1, –1 }

Concept: Boolean function.
x s.t. f(x) = 1 called “positive examples”
x s.t. f(x) = 0 called “negative examples”

Target function (target concept): “True function" f
generating the labels
Hypothesis: Proposed function h believed to be similar 
to f.
Hypothesis Space: Space of all hypotheses that can, in 
principle, be output by a learning algorithm
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Key Issues in Machine Learning
What are good hypothesis spaces?

Which spaces are useful in practical applications; why?
What algorithms can work with these spaces?

∃ general design principles for machine learning alg's?
How can we optimize accuracy on future data points?

Avoiding “overfitting”
How can we have confidence in results?

How much training data is required to find accurate hypotheses? 
(statistical question)

Are some learning problems computationally 
intractable?
(computational question)
How can we formulate application problems as 
machine learning problems?
(engineering question)
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Framework for Hypothesis Spaces
Size: Is size of hypothesis space flat or stratified?

Flat spaces: easier to understand
Stratified spaces are generally more useful.
Stratified spaces introduce “overfitting".

Randomness: Is each hypothesis deterministic or 
stochastic?

Affects hypotheses evaluation:
Deterministic: training example either  consistent or inconsistent
Stochastic: training example either  more/less  likely

Parameterization: Is each hypothesis described 
by symbolic (discrete) choices, or
by continuous parameters (or both)?
Typically. . .find

discrete parameters by combinatorial search;
continuous parameters by numerical search.
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Framework for Hypothesis Spaces (2)



10

Framework for Learning Algorithms
Search Procedure

Direction Computation: solve for hypothesis directly.
Local Search: start with initial hypothesis, make small 
improvements until a local optimum.
Constructive Search: start with empty hypothesis, gradually add 
structure to it until local optimum.

Timing
Eager: Analyze training data and construct an explicit hypothesis.
Lazy: Store training data and wait until a test data point is 
presented, then construct ad hoc hypothesis to classify that one
data point.

Online vs. Batch (for eager algorithms)
Online: Analyze each training example as it is presented.
Batch: Collect training examples, analyze them, output an 
hypothesis.
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Framework for Learning Alg's
 

(2)
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Three Types of Learning Tasks
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Evaluating Any Classifier
Natural handling of “mixed” data types

Continuous, ordered discrete, unordered discrete
Handling of missing values
Robustness to outliers in input space
Insensitive to monotone transformations of inputs
Computational scalability for large data sets
Ability to deal with irrelevant inputs
Ability to extract linear combinations of features
Interpretability
Predictive power
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Handling Mixed Data Types
Indicator Variables

gender: Convert to 0/1 variable.
county of residence: Introduce a 0/1 variable for each 
county

Ordered discrete variables
Eg: {small, medium, large},   {mild, moderate, severe}

Treat as unordered
Treat as real-valued

Can sometimes to measure “distances" between discrete 
terms.
(Eg: How often is one value mistaken for another?)
Can combine “distances" with “multi-dimensional scaling" to 
assign real values
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Missing Values: Two cases

Missing at random: Independent errors cause 
certain features to be missing.

Clouds prevent satellite from seeing ground
Data transmission (wireless network connection) is lost

Missing for cause:
Physician decided not to perform a particular medical 
measurement
Fail to record very large or very small values.
Human subjects systematically refuse to answer 
personal questions
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Dealing with Missing Values
Missing at random:

“Generative models" (learning P( x; y )) can produce a model of 
P( x ) even when some features are not measured.
Can apply EM to “fill in" missing features
Replace each missing value by

its average value or
its most likely value
(either within class y or after pooling all classes)

∃ specialized methods for decision trees.
Missing for cause:

Should model the causes of missingness; then fit the combined 
model.
Treat “missing" as a separate value

easy if feature is discrete,
if real-valued feature, introduce indicator feature
(1 iff

 

feature was measured)
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Comments wrt
 

Missing Data
Special algorithms for missing data
(eg, version of Nearest Neighbor that just sets each [?; x]

 

pair to 
Max value)
Just ignore tuples with missing data

. . . either completely or partially
Imputation: fill in single value for each missing value x.v

. . . based on values of other attributes x.w

. . . based on (stochastic) relations learned from other tuples
May impute many completed datasets (“multiple imputation") at one 
time
. . . or sequentially –

 

related to Gibbs, MCMC, . . .
Explicitly compute DISTRIBUTION over (each) missing value

⇒EM
Types of missing-ness

MCAR: missing completely at random
… random benign coin-flips, uncorrelated with value of attribute, ...

MAR: can depend on values of other
NMAR
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Robust to Outliers in Input Space

LMS: Any outlier has strong impact on 
squared error objective function

⇒ not robust.
Logistic Regression: Outliers far from the 
decision boundary have little impact.
Multivariate Gaussian Models/LDA: 
Outliers will have a strong impact on the 
models of P( x | y )
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Scaling Criteria

Monotone Scaling:
Linear classifiers sensitive to non-linear 
transformations of the inputs, as non-linear xfor

 may make data less linearly separable.

Computational Scaling: All linear methods 
scale well to large data sets.

Gaussian models scale O(mn3 )
m = #examples,
n = #attributes

Others: O(mn
 

)
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Remaining Criteria
Ability to Deal with Irrelevant Inputs:

Theory: irrelevant inputs receive  0 weights
Practice: irrelevant features cause trouble !
Multivariate Gaussian methods are worst
… matrix becomes singular⇒ cannot be inverted!
. . . but see \regularization".

Ability to Extract Linear Combinations of Features:
Linear methods work extracting linear combinations of input 
features!

Interpretability:
All easy to interpret.

Predictive power:
For small data sets, these methods often perform best.
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Scoring Linear Methods:
 LMS, Logistic regression, LDA
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